
The Adventures of a KeyStroke
An in-depth look into Keyloggers on Windows

Emre TINAZTEPE

1

What you will learn?

¡ Completing this training, you will be able to:
¡  Use a kernel debugger for malware analysis,
¡  Understand the threats posed by keyloggers,
¡  Detect / Remove all kinds of keyloggers,
¡  Understand how a keylogger works in greatest detail,
¡  Be prepared to Advanced Persistent Threats!

¡ We will cover a lot of OS Internal structures.

¡ Without dealing with OS Internals, you can’t be sure
that your system is clean.

2

Who am I?

¡  Emre TINAZTEPE

¡  Ex military:
¡  Maltepe Military High School (21 / 421)
¡  Turkish War Academy (8 / 838)
¡  Passed half of his life in the army (First Lieutenant)
¡  Resigned 3 years ago.

¡  Low level guy who likes to deal with OS Internals

¡ Currently leading a Malware Analysis Team

¡ Responsible of malware analysis and mobile av dev.

3

Methodology

¡ Hard to easy because it all starts at hardware L

¡  If you have question, just interrupt me.

¡ Hands on labs combined with theory.
¡  Labs are made in a Win 7 x32 machine.

4

Why keyloggers?

¡  Because keyboard is the device you command your
computers.

¡  Logging keys from a PC provides the malware
authors with great power.

¡  Best way to gather intelligence.
¡  Russia is said to be switching to “typing machines” in

critical institutions.

¡  Best way to get rich J

5

Before we begin

¡  Please download these files:
¡  Materials: http://bit.ly/1aLVnOI (pass: infected)
¡  Labs: http://bit.ly/16FZ73t

¡ Please turn your AV/Windows Defender OFF!

6

VirtualBox 7

Window Detective 8

API Monitor 9

Rootkit Unhooker 10

GMER / Tuluka 11

Process Explorer 12

Windbg 13

Windbg Cheat Sheet

¡  lm : Lists loaded modules (drivers , dlls)

¡  ���!process -1 0 : Displays current process

¡  ���!process 0 0 winlogon.exe : Displays info for the process

¡  .process EPROCESS : Switches to the process (implicit)

¡  bp ADDRESS : Puts a breakpoint at the address

¡  g,p,t : Go, Step, Trace

¡  bl : Lists the breakpoints

¡  bc INDEX : Clears the BP indicated by the index

¡  bd INDEX : Disables BP temporarily

¡  .echo : Outputs a string

14

Windbg Cheat Sheet

¡  .cls : Clears the screen

¡  u ADDRESS / SYMBOL : Unassembles the address

¡  uf ADRESS OF FUNCTION : Unassembles the whole func.

¡  db ADDRESS : Dumps the address.

¡  ? poi(ADDRESS) : Displays the address pointed by.

¡  !pic / !ioapic : Displays information about interrupt controllers.

¡  !drvobj \Driver\kbdclass 0x7: Display the specified driver.

¡  !devobj OBJECT : Display information about device obj.

15

Let’s infect ourselves
¡  Restart RED VM, make sure it is not in “KERNEL DEBUG” mode.

¡  Go to Materials/Keyloggers directory

¡  Double click “Elite Keylogger.exe”

¡  Install with default settings (Click NEXT multiple times)

¡  Choose “Allow” in case Windows Defender consents.

¡  Restart the VM in non debug mode.

¡  Write “unhide” on start menu and provide a password at least 3 chars
long.

¡  Fire up a “Notepad” and write your name in it.

¡  Please also provide your Credit Card number JJJ

¡  Do not save it please, it is safer ???

16

You are infected now L

¡ We will see how to detect keyloggers in the following ours.

¡  For the moment, please restore your VM to snapshot
“Informatics” and start your VM in “Kernel Debugging” Mode.

17

Ready to dive? 18

An overview of a mother board

North Bridge

CPU

Front Side Bus (FSB)

Internal Bus (IB)

Peripherals

19

An overview of a mother board

¡  Bus is a communication system that transfers data
between components inside a computer,

¡  FSB is the CPU's connection to the North Bridge and
through it to rest of the system,

¡ North Bridge is a high-speed hub that in most
systems connects the CPU to the graphics card and
to RAM,

¡  South Bridge is a slower-speed hub that connects
the CPU to the rest of the system.

20

South Bridge (SB)

¡  It is also named as “Input/Output Controller Hub”.

¡ Responsible from the peripheral device connections
such as USB, PCI, PS/2, Sound and etc.

¡ Why two bridges?
¡  Same as the idea of having RAM, Cache, Register
¡  Simpler design which is easy to modify in terms of IO

capabilities.

¡  It is what you actually connect your keyboard to.

21

PS/2 Keyboard Controller

¡  A component of a mainboard which handles the
connection between a motherboard and a PS/2
keyboard.

22

PS/2 Keyboard

¡  Just a limited computer system which scans a
wireframe continuously for finding a closed/opened
circuit.

23

PS/2 Keyboard

¡  The PS/2 Keyboard is a device that talks to a PS/2
controller using serial communication.

¡  The PS/2 Keyboard accepts commands and sends
responses to those commands, and also sends
scancodes indicating when a key was pressed or
released.

¡  The keyboards processor includes its own timer, 33
instruction set, and can even access 128K of
external memory.

16 Byte Buffer

24

Talking to a Keyboard?

¡  A PS/2 Keyboard accepts many types of commands,

¡  Each command is one byte,

¡  Some commands have data byte/s which must be
sent after the command byte,

¡  The keyboard typically responds to a command by
sending either an "ACK" (to acknowledge the
command) or a "Resend" (to say something was
wrong with the previous command) back.

25

Talking to a Keyboard?

-  Commands must be sent one at a time (IN/OUT),
-  Some commands have data byte/s which must be sent after the

command byte,
-  0xFE (resend) expects a command to be sent again,
 while 0xFA (ACK) means command is successfully processed.

26

PS/2 Keyboard Controller/Encoder Ports
IO Port Access Type Purpose

Keyboard Encoder

0x60 Read Read Input Buffer

0x60

Write

Send Command

Keyboard Controller

0x64 Read Status Register

0x64 Write Send Command

-  Port 0x60 is what we use for reading and writing data to/from the
keyboard device,

-  The Status Register contains various flags that indicate the state of
the PS/2 controller such as the state of input/output buffers,

-  The Command Port (0x64) is used for sending commands to the PS/2
Controller (not to PS/2 Devices).

27

Some of the PS/2 Keyboard Encoder
Commands

Command Description Data

0xED Set LEDs Bit0: ScrollLock
Bit1: NumberLock
Bit2: CapsLock

0xEE Echo For diagnostic purposes.

0xF0 Get/set current scan code set 0: Get current scan code set
1: Set scan code set 1
2: Set scan code set 2
3: Set scan code set 3

0xF4 Enable scanning -

0xF5 Disable scanning Discard key presses or mouse
movements. Used especially while
identifying the attached PS/2 device in
order to prevent messing up the
identification process.

28

Scancodes and Code Sets

¡  A scan code set is a set of codes that determine
when a key is pressed or repeated, or released.

Scancode

Make Code Release Code

29

Scancodes and Code Sets

¡  There are 3 scan code sets, normally on PC
compatible systems the keyboard itself uses scan
code set 2 and the keyboard controller translates
this into scan code set 1 for compatibility.

Microsoft Keyboard Scan Code Specification Document

30

How to read scancodes?

¡  Poll the Bit 0 of status register and then read the
data from port 0x60
¡  To much CPU time!
¡  Multiple PS/2 devices lead to problems for differentiating

the data.

¡ Wait for an interrupt to occur
¡  Much better!
¡  Wait for an IRQ 1 / IRQ 12 (wait for the next slideJ)

31

What is an interrupt?

¡  Interrupt is a signal to the processor emitted by
hardware or software indicating an event that needs
immediate attention.

CPU
Device

(Harddisk,
Keyboard)

 Do this and let me know when it’s done!
 I am a little bit busy J

It’s done!

 Let’s see what you have.

32

Why called as “IRQ”?

¡  Each peripheral device requests to “Interrupt the
CPU” this is why it is a “Request” which may or may
not be handled by the CPU.

¡ Question: What happens when multiple devices
send an IRQ at the same time?

¡  Answer: The one with a higher IRQL gets processed
while the others keep waiting.

33

Interrupt Handling

¡ One of the best advantages of an interrupt driven
device is the ability to overlap device’s processing
time with the CPU’s activity.

CPU

t1 t2

Device
Process a lengthy operation

Issue an operation

34

Where do I connect my device?

¡ Question: If we have 2 or more devices attached to
our mainboard, how will we differentiate one
device’s interrupt from the other?

¡  Answer: Each motherboard has an at least one
Programmable Interrupt Controller (PIC / APIC) into
which your external devices get connected. You do
not have to do anything, all is done seamlessly by
this electronic circuit.

35

Programmable Interrupt Controller

¡ OMG! What is an interrupt controller?

¡ One of the most important chips making up the x86
architecture,

¡ Without it, the x86 architecture would not be an
interrupt driven architecture,

¡  The function of the PIC is to manage hardware
interrupts and send them to the appropriate system
interrupt.

¡  This way, no polling needed J

36

APIC

¡ More sophisticated interrupt handling and the ability
to send interrupts between processors.

¡  In an APIC-based system, each CPU is made of a
"core" and a "local APIC".

CPU

Local APIC Core

37

I/O APIC

¡  The external I/O APIC is part of Intel’s system chip
set. Its primary function is to receive external
interrupt events from the system and its associated
I/O devices and relay them to the local APIC as
interrupt messages.

¡  It is programmed by the OS before enabling
interrupt handling mechanism.

Local APIC

I/O APIC Local APIC

Local APIC

External
Devices

Interrupt Messages

38

What magic CPU does to handle IRQs?

¡  There is no magic, we tell it what to do.

¡ We create a table of function pointers and tell the
CPU where it resides.

¡  This table is called as “Interrupt Descriptor Table”
and the address for this table is hold by a register
called IDTR (IDT register).

Handler 0

Handler 1

Handler 2

Handler 3

Handler 4

IDT RAM

IDTR

Keyboard Interrupt Handler

39

Intel x86 CPU Modes

¡  3 + 1 Modes of operation is supported by CPU.
¡  Real Mode
¡  Virtual 8086 Mode
¡  Protected Mode
¡  System Management Mode

40

Real Mode

¡  Also called real address mode.

¡ Real mode is characterized by a 20-bit segmented
memory address space and unlimited direct
software access to all memory, I/O addresses and
peripheral hardware.

¡ Real mode provides no support for memory
protection, multitasking, or code privilege levels.

¡  Before the release of the 80286, which introduced
Protected mode, real mode was the only available
mode for x86 CPUs.

¡  In the interests of backwards compatibility, all x86
CPUs start in real mode when reset.

41

Protected Mode

¡  Also called protected virtual address mode.

¡  It allows system software to use features such as
virtual memory, paging and safe multi-tasking
designed to increase an operating system's control
over application software.

Power ON Real Mode
Protected

Mode Create some
tables for
Virtual Memory
and set PE bit in
CR0 register

42

Virtual 8086 Mode

¡  Also called virtual real mode.

¡  Allows the execution of real mode applications that
are incapable of running directly in protected mode
while the processor is running a protected mode
operating system.

43

System Management Mode

¡  Is an operating mode in which all normal execution
(including the operating system) is suspended, and
special separate software (usually firmware or a
hardware-assisted debugger) is executed in high-
privilege mode.

¡  SMM is a special-purpose operating mode provided
for handling system-wide functions like:
¡  Handle system events like memory or chipset errors,
¡  Manage system safety functions, such as shutdown on

high CPU temperature and turning the fans on and off,
¡  Emulate motherboard hardware that is unimplemented

or buggy.

44

More on SMM

¡  A powerful mode of CPU which can even preempt
the whole OS!!!

¡  SMM is entered via the SMI (system management
interrupt)

¡  SMM is a really good place to execute malicious
software without modifying the structures
created by OS.

Here comes the karate kick!

45

#1 SMM Rootkits 46

An overview of SMM Rootkits

¡ Did you know that you can see the keystrokes even
before they are handled by “Interrupt Handler”?

Normal Path

Infected Path

47

The implementation

1.  Use SMRAM Control Register (SMRAMC)
¡  Check bit D_OPEN (is SMRAM visible to outside code)
¡  Check bit D_LCK (is SMRAMC is read-only, if yes a reset

is needed)

2.  If D_LCK bit is clear:
1.  Set D_OPEN bit to make SMRAM visible to protected

mode code,
2.  Copy the SMM Handler code to the handler portion of

SMRAM defined by Intel Docs,
3.  Clear D_OPEN bit and set D_LCK bit to protect our evil

code J

3.  We are invisible!

48

Routing IRQ 1 to Malicious SMM Handler

1.  Modify the I/O APIC in such a way that when ever
a user presses a key, our SMM code is executed,

2.  SMM Handler reads the scan code, logs it and
sends a special command to keyboard for
overcoming the problem of a popped up scancode.

3.  This in turn makes the next data written into the
keyboard buffer available for OS Keyboard
Interrupt handler,

4.  Send an IPI to ourself for handling an emulated
IRQ 1!

5.  Let the OS think it is a real scancode generated by
the keyboard encoder J

49

Pros & Cons

1.  Pros
1.  Totally invisible to the OS!
2.  No need to change any OS created structures.
3.  Very hard to detect.

2.  Cons
1.  Works only with PS/2
2.  Limited to single processor system
3.  D_LCK bit is already set on modern systems L

50

#2 IDT Hooking 51

Structure of an Interrupt Descriptor Table

1.  Protected Mode counterpart of Real Mode
Interrupt Vector Table (IVT),

2.  Contains at most 256 entries.

3.  Each entry is 8 bytes long and they are structured
as defined below:

 nt!_KIDTENTRY
 +0x000 Offset : Uint2B
 +0x002 Selector : Uint2B
 +0x004 Access : Uint2B
 +0x006 ExtendedOffset : Uint2B

52

Keyboard Interrupt is not mapped to IDT#1???

1.  Where is IRQ 1 mapped? Which IDT Entry???
¡  “IOAPIC makes IRQ and remaps IRQ to IDT.”

2.  Methods for retrieving the vector address:
¡  Use APIC
¡  Scan kernel memory
¡  Use the kernel API function (HalGetInterruptVector)

���kd> !ioapic
IoApic @ FEC00000 ID:1 (11) Arb:0
Inti00.: 00000000`000100ff Vec:FF FixedDel Ph:00000000 edg high m
Inti01.: 01000000`00000991 Vec:91 LowestDl Lg:01000000 edg high
Inti02.: 00000000`000100ff Vec:FF FixedDel Ph:00000000 edg high m
Inti03.: 00000000`000100ff Vec:FF FixedDel Ph:00000000 edg high m

kd> !idt –a
31: 84866058 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 84866000) NO I/O APIC
���91: 84864058 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 84864000)

53

How to read scancode?

1.  It’s as easy as executing an “in al,60h” instruction J
¡  IN instruction empties the data, we need to put it back into its

place for system’s use.

2.  Here is an excerpt from the Keyboard Controller command
set:

 Command 0xd2: Write keyboard output buffer

Write the keyboard controllers output buffer with the byte
next written to port 0x60, and act as if this is a keyboard
generated data.

54

Here is the method

IDT

Entry Keylogger Interrupt Handler

Original Interrupt Handler

Record the keystroke
into a buffer and
execute the special
keyboard controller
command for putting
it back into place

55

#3 Hacking KINTERRUPT 56

Structure of a KINTERRUPT 57

Where does this code come from?

1.  KINTERRUPT->DispatchCode is actually a modified version
of KiInterruptTemplate.

2.  Can be easily modified for different kinds of interrupts such
as KiChainedDispatch, KiFloatingDispatch.

58

What does a DispatchCode do?

Acquire the
SpinLock of

ServiceRoutine

Raise the IRQL
to

DEVICE_IRQL

Call the
ServiceRoutine Lower IRQL

Release the
SpinLock of

ServiceRoutine

This is the point where “Interrupt Servicing” takes place!
i8042KeyboardInterruptService

59

How to intercept

1.  Put an inline hook into DispatchCode’s prolog,

2.  Create a new KINTERRUPT object and make EDI point to it,

3.  Replace the ServiceRoutine field of KINTERRUPT,

4.  Inline hook the ServiceRoutine.

60

Windows Driver Model

¡  A layered design with support for adding drivers into the stack
dynamically.

¡  Great design for management.

¡  Allows another driver to filter some other driver’s packets.

61

Keyboard Device Stack 62

What is an IRP?

¡  A structure which is used by the I/O manager for defining a request
targeted to a device.

¡  Reading a file, writing to a file and much more operation is handled
with IRPs.

¡  Each IRP has a Major code which makes it possible to call appropriate
handler for that IRP.

Upper Driver

Class Driver

Lower Driver

Keylogger

63

i8042prt.sys

1.  Port driver for 8042 compatible keyboard and mouse
devices.

2.  Handles the interrupt for a keyboard device and delivers it
to the system.

3.  Contains good candidates for a keylogger.

64

i8042prt.sys

I8042prt.sys I8042KeyboardInterruptService

I8xGetByteAsynchronous

GLOBALS Globals;

I8042KeyboardIsrDpc

I8xWriteDataToKeyboardQueue

65

i8042prt.sys Overview

I8xGetByteAsynchronous Call IsrHookCallback if one is
registered I8xQueueCurrentKeyboardInput I8xWriteDataToKeyboardQueue

Uses Globals.Read method
internally

May also terminate the
ISR by modifying

ContinueProcessing param

Queues a DPC for giving a
chance to class driver for processing

the input data at DISPATCH_LEVEL
(I8042KeyboardIsrDpc)

Adds the INPUT data into
keyboard input data queue

66

#4 i8042prt!Globals Hack 67

i8042prt.sys GLOBALS structure 68

A look into i8042prt!Globals

kd> dps i8042prt!Globals
8d9540c0 85799cd8
8d9540c4 8594cab8
8d9540c8 85a52c88
8d9540cc 8281a094 hal!READ_PORT_UCHAR
8d9540d0 8281a0fc hal!WRITE_PORT_UCHAR
8d9540d4 00720070
8d9540d8 859b3c80

���8d94c601 ffb0a0000000 push dword ptr [eax+0A0h]
8d94c607 ff15cc40958d call dword ptr [i8042prt!Globals+0xc (8d9540cc)]
8d94c60d 8807 mov byte ptr [edi],al
8d94c60f 0fb6c0 movzx eax,al

Replace it with your own J

69

Globals Read Data Hook

kd> bl *
 0 d 8d94c57c 0001 (0001) i8042prt!I8xGetByteAsynchronous+0x81 "r al;g;"
 1 d 8d94c599 0001 (0001) i8042prt!I8xGetByteAsynchronous+0x9e "r al;g;"
 2 e 8d94c60d 0001 (0001) i8042prt!I8xGetByteAsynchronous+0x112 "r al;g;"

���0 3d 0 3d 0 3d 9 1d 1e 1d 9e 1d 1f 1d 9f 1d 20 1d a0 1d
21 1d a1 1d 22 1d a2 1d 23 1d

Here we have the keystrokes, also little noisy but can be parsed with a simple
script.

70

#5 I8xGetByteAsynchronous 71

I8xGetByteAsynchronous

¡ Defined as

 I8xGetByteAsynchronous(CCHAR KeyboardType,UCHAR*ScanCode)

¡  Pretty good place to hook.

¡  Internally uses Global.Read

72

#6 Hacking IsrHookCallback 73

IsrHookCallback

¡ Used by upper level drivers to modify the scancode in the
ISR routine.

¡ Gets called right after scan code is retrieved from the
keyboard controller.

74

Hack IsrHookCallback

¡  As easy as modifying DEVICE_EXTENSION of port device:
¡  DeviceObject->DeviceExtension->IsrHookCallback

¡ Right after that, keys will start flowing into our callback!

¡ Callback can even stop the ISR’s processing.

75

#7 Hacking ClassService 76

What does I8xQueueCurrentKeyboardInput do?

¡  Queues a DPC for further processing.

¡  DPC calls DeviceExtension->ConnectData.ClassService function for
delivering the scan code information to the class driver.

¡  Question: Can’t we hook that?

¡  Answer: Definitely yes!

¡  How: Replace the ClassService function with your own J

77

I8xQueueCurrentKeyboardInput

¡ Queues a DPC object for further processing the input data.

¡  This gives class drivers or any upper level drivers a chance to
process the input data structure, even modify it!

¡  As soon as IRQL drops to DISPATCH_LEVEL, DPC gets
executed and calls the callback supplied by Class Driver.

I8042KeyboardIsrDpc

Class Service Callback

78

DPC – Deferred Procedure Call

¡  Time is a precious thing!

¡ Do what ever you can to make hardware feel better and
queue a procedure to be called when everything is OK.

¡  This prevents keeping a CPU at a high IRQL level for a long
time.

79

#8 I8xWriteDataToKeyboardQueue 80

I8xWriteDataToKeyboardQueue

¡  A great candidate for hooking!

¡  Gets the INPUT data as it’s second parameter and writes that into it’s
internal data queue.

¡  Flags describe whether the key is down or up.

81

#9 Filter Drivers 82

How to filter?

¡  Meaning of layer in malware authors slang:
¡  “A point for injecting evil”

¡  Two methods:
¡  IoAttachDevice API: The IoAttachDevice routine attaches the

caller's device object to a named target device object, so that I/O
requests bound for the target device are routed first to the caller.

¡  Registry hacks for devices. Set UpperFilter and LowerFilters. Upper
filter drivers go between the operating system and the main driver,
and lower filter drivers go between the main driver and the
hardware.

NTSTATUS IoAttachDevice(
 In PDEVICE_OBJECT SourceDevice,
 In PUNICODE_STRING TargetDevice,
 Out PDEVICE_OBJECT *AttachedDevice
);

83

Let’s check for Keyboard Filters

1.  Go to Materials/Applications copy RegShot directory to your Desktop.

2.  Execute “regshot.exe”

3.  Set output path to “Desktop”

4.  Click on “1st Shot” -> “Shot”

5.  Install “Zemana AntiLogger Free.exe”

6.  Go to regshot again and click “2nd Shot” -> “Shot”

7.  Click “compare”

8.  Search for “﻿UpperFilters” (Upper filters for keyboard device)

9.  Copy the GUID and google it. Guess what does it define?

10.  Restart the machine in DEBUG MODE and execute:
1.  !drvobj \Device\kbdclass
2.  !devstack SECOND OBJECT ADDRESS

84

#10 IRP Handler Hooking 85

Keyboard Class Driver

¡  \Driver\kbdclass

¡  Represents a Keyboard Device either USB or PS/2.

¡  Used exclusively by the Raw Input Thread (RIT) (coming next).

86

Look at the difference

¡ KbdClass has a READ routine while the Port Driver
doesn’t! Why?

87

Here is why

¡  Port driver doesn’t provide a read routine because it
expects a “Keyboard Class Service Callback” to be
registered by a class driver.

¡  Class driver gets the requests from the RIT and waits
for KeyboardClassServiceCallback to get called by the
keyboard port driver’s ISR DPC.

¡  This callback is registered by sending an IRP carrying a
structure called as CONNECT_DATA with an
IOCTL_INTERNAL_KEYBOARD_CONNECT code.

¡  This in turn makes the port driver record this callback
routine for calling whenever an interrupt occurs.

¡  When ever the service callback gets called by port
driver’s DPC, class driver completes the request of RIT
which makes the RIT send another request.

88

KeyboardClassServiceCallback

¡ Routine which dequeues an IRP each time it gets
called by the port driver’s ISR DPC.

¡  As soon as data is copied to the IRP, it completes
the IRP with STATUS_SUCCESS.

89

#12 Inline hooking for ClassCallback 90

Hook the class callback

¡  We have already hacked this callback routine but in a
different way. It was just a replacement of a pointer in
ConnectData structure residing in port driver’s
DeviceExtension.

¡  This time, another approach.

¡  Put an inline hook into KeyboardClassServiceCallback
which will make us the king of scancodes J

¡  As easy as putting a 5 byte prolog into the routine.

91

Let’s talk about “Raw Input Thread”

¡  A thread of csrss.exe which continuously makes a
read request to keyboard class device.

¡  It is the guy who retrieves keystrokes from the
class driver and posts them to appropriate queues.

¡  It’s mainly a loop which makes a request and waits
for that request to complete which in turn makes
another request and so forth…

¡ Key method here is ������StartDeviceRead which sends a
read request to class driver asynchronously with an
APC object.

92

How it functions?

Make an async
read request

StartDeviceRead

Wait for it to
complete

Process the
keyboard data
in APC routine

Go to step one

Calls ProcessKeyboardInput

93

#13 Hacking Device Templates 94

What is a Device Template?

¡  A structure for keeping device specific attributes
such as keyboard and mouse.

¡  This is where the word “KbdClass” comes from J

¡  Also contains a function pointer which is responsible
for processing the Keyboard or Mouse input hence
the name : “ProcessKeyboardInput”

95

Device Template 96

It’s dump time 97

#14 Hook ProcessKeyboardInput 98

ProcessKeyboardInput

ProcessKeyboardInput

���ProcessKeyboardInputWorker

99

Inside ProcessKeyboardInput

¡  Find the first call to worker function.

¡  EBX points to scancode,

¡ Worker function is also a good target.

���

100

#15 Hook ProcessKeyboardInputWorker 101

Inline Hook ProcessKeyboardInputWorker

¡  Pretty obvious J

¡  You can easily see that it is a 3 parameter function
with the 1st parameter as ScanCode.

102

#16 Hacking xxxProcessKeyEvent 103

xxxProcessKeyEvent

¡ Called by ProcessKeyboardInputWorker until each
input event gets consumed.

¡  Lets take a look at the parameters:
¡  Pointer to a Keyboard Event structure,
¡  An ULONG_PTR value carrying extra information,
¡  A flag indicating if key is from hardware or not.

¡  Performs some language specific operations.

104

Break on xxxProcessKeyEvent 105

Virtual Key vs. Scan Code

Scancode Virtual Key

Hardware Dependent Independent

106

Virtual Key vs. Scan Code 107

xxxProcessKeyEvent

xxxProcessKeyEvent

���UpdateRawKeyState

���xxxKeyEvent

108

Raw Key State Table

¡  Just a simple array holding UP / DOWN states of keys.

¡ Represents the physical state of keyboard.

¡  Let’s put a BP on it.

109

Hook UpdateRawKeyState

¡  Two params:
¡  VirtualKey
¡  Key State (Make / Break)

110

#17 RawKeyState Sniffer 111

Sniffing Raw Key State Table

¡ Can be easily retrieved by disassembling UpdateRawKeyState.

¡  First LEA instruction points to it,

¡  AV buster J

112

Raw Key State Sniffer

¡  Put a BP on UpdateRawKeyState

¡  2 bits for each VKEY (Down/Up – Toggled)

113

Raw Key State Sniffer Demo

¡  Put a BP on UpdateRawKeyState end address.

gafRawKeyState

Offset: gafRawKeyState + (VK * 2 bits)

114

#18 Hacking xxxKeyEvent 115

xxxKeyEvent

¡  Very critical function!

¡  Performs the POST operation of key into input queue.

¡ Called by xxxProcessKeyEvent for every input event.

¡ Responsible from calling window hooks (wait for next slides)

¡  Params:
¡  Virtual Key with flags,
¡  ScanCode

116

xxxKeyEvent

Call Low
Level

Keyboard
Hook

Update
Async Key

State
Table

Post Input
Message

117

xxxKeyEvent

¡  Very critical function!

¡  Performs the POST operation of key into input queue.

¡ Called by xxxProcessKeyEvent for every input event.

¡ Responsible of calling window hooks (wait for next slides)

¡  Params:
¡  Virtual Key with flags,
¡  ScanCode

118

#19 Hacking UpdateAsyncKeyState 119

UpdateAsyncKeyState

¡  Looks same as the method for UpdateRawKeyState

¡  Async keystate table could also be sniffed.

120

#20 Hacking PostInputMessage 121

Thread

PostInputMessage

¡ What it does?

¡ Calls ﻿StoreQMessage for saving the message into queue.
Another target for hooking J

¡  Foreground thread queue receives the input event.

Input
Event

Input Queue

122

PostInputMessage

¡  Put a BP on PostInputMessage.

123

Here comes the second part J

¡  Thread now has an input event in it’s queue. Kernel is over!

¡ What’s next?

124

Create Window API

¡ Creates a window with a Window Class.

¡ What is a window class?

125

Classes vs. Windows

Window
Class

Window
1

Window
2

Window
3

Window Procedure

126

WNDPROC Function

¡  Function defined as:

¡  Every window has one WNDPROC. This is the entry point for
window messages.

LRESULT CALLBACK WindowProc(
 In HWND hwnd,
 In UINT uMsg,
 In WPARAM wParam,
 In LPARAM lParam
);

127

#21 Hacking Window Procedures 128

WNDPROC Function

¡ We can either inline hook the WndProc or we can set a new
WndProc by using GetWindowLong / SetWindowLong APIs.

129

#22 Subclassing a Window 130

Subclassing

¡ MSDN Blog: When you subclass a window, you set the window
procedure to a function of your choosing, and you remember
the original window procedure so you can pass it to the
CallWindowProc function when your subclass function wants to
pass the message to the original window procedure.

Window Subclass Procedure
 (Log The Keystroke)

Window Class

Call The Original Window Procedure

131

Subclassing

¡  SetWindowSubclass API is pretty good for that.

¡ CallWndProc could be used for retrieving keys from subclassed
windows.

132

Classes vs. Windows

Window
Class

Window
1

Window
2

Window
3

133

Message Loops

¡  Each UI Thread has one message loop for processing window
messages.

¡  http://msdn.microsoft.com/en-us/library/windows/desktop/
ms644928(v=vs.85).aspx

134

#23 Hacking GetMessage / PeekMessage 135

GetMessage / PeekMessage

¡ Used for getting a message from the thread’s message queue.

BOOL WINAPI GetMessage(
 Out LPMSG lpMsg,
 _In_opt_ HWND hWnd,
 In UINT wMsgFilterMin,
 In UINT wMsgFilterMax
);

BOOL WINAPI PeekMessage(
 Out LPMSG lpMsg,
 _In_opt_ HWND hWnd,
 In UINT wMsgFilterMin,
 In UINT wMsgFilterMax,
 In UINT wRemoveMsg
);

Blocking

Non-Blocking

136

GetMessage / PeekMessage

¡  Sniff GetMessage API call.

137

#24 Hacking Translate and Dispatch 138

TranslateMessage / DispatchMessage

¡  Sniff TranslateMessage / DispatchMessage API calls.

139

TranslateMessage

¡  Translate to what?

WM_KEYDOWN

TranslateMessage

WM_CHAR GetMessage

140

DispatchMessage

¡ Calls the Window Procedure of a Window Class.

¡ Hooking it will definitely give you a lot power.

141

#25 Hacking Counterparts 142

Kernel Mode Counterparts

¡  The APIs which are used for message handling and delivering
such as DispatchMessage,GetMessage, PeekMessage.

¡  All of them have their kernel mode counterparts starting with
NtUser*. NtUserGetMessage, NtUserPeekMessage,
NtUserTranslateMessage.

¡  These could be inline hooked by kernel mode keyloggers.

¡  Best example for this is “Elite Keylogger” (newest versions)

¡  Pretty effective!

143

Inspecting Kernel Mode Counterparts

¡  Anti-rootkits such as GMER, KernelDetective or Tuluka could
be used for detecting these kind of modifications.

144

#26 SSDT Shadow Hooking 145

What is SSDT Shadow?

¡  Just a simple table residing in win32k.sys module.

¡ Holds the addresses of system services.

¡  This table is the glue between user mode APIs and the kernel
mode counterparts.

¡ Hooking this table is so easy, and also effective.

146

How it is used?

NtUserGetMessage

User Mode Kernel Mode

SSDT
Shadow

NtUserGetMessage

W32pServiceTable

sysenter

147

How to check?

¡ We can use anti-rootkits

¡ Windbg can also be used for displaying SSDT Shadow Table.

148

Conversion Functions

¡ MapVirtualKey / MapVirtualKeyEx

¡  ToAscii / ToAsciiEx

¡  VkKeyScan / VkKeyScanEx

149

#27 GetKeyState / GetAsyncKeyState 150

GetKeyState / GetAsyncKeyState

¡  APIs for determining the state of a key at some point time.

¡ Difference is:
¡  GetKeyState is more specific and doesn’t reflect the interrupt-level

state information,
¡  GetAsyncKeyState reflects the interrupt-level state of keys.

¡ One of the most widely used technique by keyloggers.

151

#28 GetKeyboardState 152

GetKeyboardState

¡  API for determining the state of a keyboard.

¡  Fills an array of virtual keys.

¡ One of the most widely used method used by keyloggers.

153

#29 Text Output APIs 154

Text Output APIs

¡  APIs used by applications to output text.

¡  Examples:
¡  TextOut
¡  ExtTextOut
¡  DrawText / DrawTextEx

155

#30 GetWindowText 156

GetWindowText

¡ Can be used within an injected thread.

¡ Copies the text of the specified window's title bar (if it has
one) into a buffer. If the specified window is a control, the text
of the control is copied. However, GetWindowText cannot
retrieve the text of a control in another application.

157

#31 WM_GETTEXT Message 158

WM_GETTEXT Message

¡ Can be used for retrieving another applications window
content.

159

#32 SetWindowsHookEx 160

SetWindowHookEx

¡  Another term for saying “Keylogger” J

¡ Definitely the MOST WIDELY USED technique for keylogging!!!

¡ Nearly %95 of keyloggers use it J

161

Why?

¡  It is a way for providing callbacks to developers but widely
used by malware authors.

¡ Have pretty much variations such as “Low Level Hook”, “Get
Message Hook” and etc.

162

Hook Types

¡ WH_CALLWNDPROC : Installs a hook procedure that
monitors messages before the system sends them to the
destination window procedure.

¡ WH_CALLWNDPROCRET : Installs a hook procedure that
monitors messages after they have been processed by the
destination window procedure.

¡ WH_CBT : Installs a hook procedure that receives
notifications useful to a Computer Based Training (CBT)
application.

¡ WH_DEBUG : Installs a hook procedure useful for debugging
other hook procedures.

163

Hook Types

¡ WH_GETMESSAGE : Installs a hook procedure that monitors
messages posted to a message queue.

¡ WH_JOURNALRECORD : Installs a hook procedure that
records input messages posted to the system message queue.

¡ WH_KEYBOARD : Installs a hook procedure that monitors
keystroke messages.

¡ WH_KEYBOARD_LL : Installs a hook procedure that
monitors low-level keyboard input events.

164

Low Level Hooks

¡  Starting from this slide

¡ What is a Hook Function?

¡ Only low level hooks are allowed in Raw Input Thread.

¡  Ability to block some input events using these hooks.

¡ Will be described separately.

165

#33 DirectX Keylogger 166

DirectX

¡ Not widely used but a good way for logging keystrokes.

167

How?

¡  Pretty easy to implement with DirectInputCreateEx API.

¡ CreateDevice API is used for keyboard device creation.

168

#34 Browser Extensions 169

Browser Extensions

¡  Sneaky creatures!

¡ Not widely used but a great for bypassing security measures.

170

Inspecting

¡  XPI files are just zip files.

¡ Unzip it and analyze what it does.

171

Demos

¡ Go to Materials/Keyloggers folder:
¡  Analyze martin.exe
¡  Analyze AKLT_3.0.exe
¡  Analyze refog_personal_manager.exe”
¡  Analyze Elite Keylogger
¡  Analyze java keylogger
¡  Analyze Free Keylogger

172

Thanks 173

Questions?

174

