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Abstract

Parrot is a runtime system for dynamically typed programming languages.
Despite several attempts in it’s 10 years of history, it does not provide any
support for multithreaded computation.

This thesis shows a way to implement threading support in Parrot using a
hybrid approach using a combination of lightweight (“green”) threads and OS
threads. These lightweight threads are used as messages in a system where
reading shared variables is allowed but only the one owner thread may write
to it. The implementation of this hybrid approach is described in detail and
benchmarks are presented demonstrating the viability of this design.
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Kurzfassung

Parrot ist eine Laufzeitumgebung für dynamisch typisierte Programmier-
sprachen. Trotz mehrerer Anläufe in seiner zehnjährigen Geschichte, bietet
Parrot keine Unterstützung für Multithreading.

Diese Arbeit zeigt einen Weg, um Threadingunterstützung in der Lauf-
zeitumgebung zu implementieren mit Hilfe eines hybriden Systems aus leicht-
gewichtigen und Betriebssystem-Threads. Diese leichtgewichtigen Threads
werden als Nachrichten in einem System benutzt, in dem das Lesen von
gemeinsamen Daten erlaubt ist, aber nur der eine besitzende Thread dar-
auf schreiben darf. Die Implementierung wird detailiert beschrieben und mit
Benchmarks die Brauchbarkeit des Designs gezeigt.
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Chapter 1

Introduction and motivation

On July 19th 2000, the Perl 6 design process was announced. Perl 5 had
been a flexible and widely used programming language but had started to
show its age and suffered from early design decisions.

Am example of Perl:
1 use common::sense;
2
3 my @friends = qw(Ann Bob);
4 say "Hello $_" foreach @friends;

The Perl interpreter is written in C and has accumulated a lot of cruft
over the years. The general consensus among the core developers was that
the code had reached a state where maintenance was approaching impossi-
bility [11]. An attempt to reimplement these internals had failed but led to
the decision that the interpreter for a Perl 6 language should be developed
independently of the needs of Perl 5. Since the Perl 6 syntax was very much
in flux (and parts of it still are) the designers of these new internals tried to
work very independently of any syntax related questions [12]. Taking up the
name born in an April Fool’s Day joke announcing the merging of the Perl
and Python programming languages, these new internals were called Parrot
[14].

Parrot evolved from being just the interpreter for the new version of Perl
to being a language independent VM providing features like garbage collec-
tion, exception handling and dynamic typing. At the time when the Parrot
project started, the Java and .NET VM were widely used, but both targeted
statically typed languages. Parrot thus filled a quickly growing niche.

The Perl 6 design process began with asking the Perl users what they
were expecting from the new version of the language. The very first feature
that got asked for was well integrated multithreading support [15]. Perl 5
had two different implementations of thread support. In the first model,
called 5005threads, data was shared by default and shared access to data
had to be explicitly synchronized. This was similar to the models used by
languages such as C or Java. The implementation however suffered from

1



1. Introduction and motivation 2

data corruption and crashes and thus was not recommended for production
use [8]. Perl 5.6 introduced the newer model called ithreads, mostly as a
way to emulate fork on Win32 platforms. Perl 5.8 exposed this Application
Programming Interface (API) to the user of the programming language. In
this new model, all data is copied to each thread and afterwards thread local.
Data must be explicitly shared between threads.

In other words, in Perl threads are not lightweight at all. They have severe
impact on memory usage, writes to shared variables are expensive and still
not all features of the language are usable in threaded programs.

Being born at a time when Perl 6 still looked much more similar to
Perl 5 than it does nowadays, Parrot’s threading support initially was very
close to Perl’s ithreads model. Previous attempts to change this into the
more conventional model of data shared by default or implementing new
technologies like Software Transactional Memory failed. For example Parrot
has never supported running multiple threads and having garbage collection
at the same time.

1.1 Why is multithreading support so important?

In the year 2005 development of faster Central Processing Units (CPUs)
shifted from increased speed of a single core to adding more cores. Modern
processors contain up to 12 cores with even mobile phones having up to four.
To utilize a modern CPU’s power, code needs to be run in parallel. In UNIX
(and thus Perl) tradition, this is accomplished using multiple processes being
a good solution for many use cases. For many others like auto threading of
hyper operators in Perl 6, the cost of process setup and communication would
be prohibitively high except for very large data sets.

1.2 Why is multithreading support so difficult to
implement?

Low level programming languages like C provide only the bare necessities,
leaving the responsibility for preventing data corruption and synchronization
entirely to the user. A high-level language like Perl 6 on the other hand
provides complex and compound data types, handles garbage collection and
a very dynamic object system. Even seemingly simple things like a method
call can become very complex. In a statically typed programming language
the definition of a class is immutable. Thus, calling a method on an object
contains just the steps of determining the object’s class, fetching the required
method from this class and calling it. Calling the same method again can
then even omit the first two steps since their results cannot change.

In a dynamic language, the object may change its class at runtime. The
inheritance hierarchy of the class may be changed by adding or removing
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parent classes. Methods may be added to or removed from classes (or objects)
at runtime and even the way how to find a method of a class may change.
So a simple method call results in the following steps:

• determining the class of the object,
• determining the method resolution method of the class,
• finding the actual method to call,
• calling the method.

These steps have to be repeated for every method call, because the results
may change any time. In a threaded environment, a thread running in parallel
may change the underlying data and meta data in between those sequences
and even between those steps. As a consequence, this meta data has to be
protected from corruption introducing the need for locks in a performance
critical area.

Many interpreters for dynamic languages like Python [4] or Ruby [1]
handle this problem by using a global interpreter lock to effectively serialize
all operations. This is a proven and reliable way but leaves much of the
hardware’s potential unused.

1.3 Current status

During the years of back and forth and failed attempts of adding threading
support to Parrot, the Perl 6 specification evolved to a point where the largest
parts of the language were covered and its features were implemented in the
compilers. The lack of concurrency primitives in Parrot however prevents
any progress in the area of concurrency support.

Before the work on this thesis started, Parrot did not have any threading
support at all. The previous, defunct implementation had been removed.

This thesis suggests a new approach based on a hybrid threading sys-
tem. So called green threads are used to simplify the implementation of a
nearly lock free multithreading implementation. This approach is based on
a design by Andrew Whitworth and Nat Tuck [18]. The goal of this thesis is
to demonstrate the advantages of this model and produce a working imple-
mentation which can be used to investigate the performance characteristics
of a hybrid threading system.



Chapter 2

Concurrency in other
programming platforms

This chapter is about programming platforms. A platform is seen as a com-
bination of a programming language and a runtime. E.g. for the Python
programming language there are multiple runtimes with different implemen-
tations of threading support.

2.1 Java

In Java, the user is responsible for preventing concurrency issues. The lan-
guage provides synchronization primitives like mutexes, but the interpreter
(the Java Virtual Machine, JVM) does not protect the consistency of the
provided data structures. The class library provides the user with high-level
data structures explicitly designed for multithreaded scenarios.

Java version 1.1 used green threads to support multithreaded execution of
Java programs. Green threads are threads simulated by the virtual machine
(VM) but unable to use more than one CPU core for processing. Details
are described in chapter 4. Version 1.2 introduced native Operating System
(OS) threading support which since has become the standard way to do
multithreading in Java [10].

Following is an example of a multithreaded program in Java. The program
spawns 10,000 threads, each one waiting for the starter variable to be set to
1 before adding it’s name to an array:

1 import java.util.Vector;
2 import java.util.ArrayList;
3
4 class ThreadingExample {
5 private static Vector<Integer> results = new Vector<Integer>();
6 private static int starter = 0;
7
8 private class Sayer extends Thread {

4



2. Concurrency in other programming platforms 5

9 private int name;
10
11 public Sayer(int name) {
12 this.name = name;
13 }
14
15 public void run() {
16 while (starter == 0) {
17 try { Thread.sleep(100); } // milliseconds
18 catch(InterruptedException e) { }
19 }
20
21 results.add(name);
22 }
23 }
24
25 public static void main(String args[]) {
26 ThreadingExample e = new ThreadingExample();
27 e.test();
28 }
29
30 private void test() {
31 ArrayList<Thread> threads = new ArrayList<Thread>();
32
33 for (int i = 0; i < 10000; i++) {
34 Thread t = new Sayer(i);
35 t.start();
36 threads.add(t);
37 }
38
39 starter = 1;
40
41 for(Thread t: threads)
42 try { t.join(); }
43 catch(InterruptedException e) { }
44
45 System.out.println(results.size());
46 }
47 }

The program exploits the fact that all methods in the Vector class are
synchronized, i.e. thread-safe. If the results array was a non-thread-safe Ar-
rayList instead, access would have to be locked manually:

1 synchronize(results) {
2 results.add(name);
3 }

2.2 Python

Python provides threading support through the threading module.
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The CPython implementation of the Python runtime uses a Global Inter-
preter Lock (GIL) to protect its internal consistency [9]. This is a single lock
taken whenever the interpreter executes Python bytecode. Because of this
lock, only one thread can execute bytecode at any time so all built-in types
and the object model are implicitly type safe. The drawback is that Python
code cannot benefit from having multiple CPU cores available. However I/O
operations and calls to external libraries are executed without holding the
GIL, so in applications with multiple I/O bounded threads, there may still
be a performance benefit from using multithreading.

To run Python code in parallel, multiple processes have to be used. The
multiprocessing module provides support for spawning processes exposed
through an API similar to the threading module [5]. Since processes may
not directly access other processes’ memory, the multiprocessing module pro-
vides several means of communication between processes: Queues, Pipes and
shared memory support.

Following is an example of a multithreaded program in Python. The
program spawns 10,000 threads, each one waiting for the starter variable to
be set to 1 before appending it’s name to an array:

1 from threading import Thread
2 from time import sleep
3
4 starter = 0
5 results = []
6 threads = []
7
8 def sayer(name, results):
9 while starter == 0:

10 sleep(0.1)
11 results.append(name)
12
13 for i in range(10000):
14 t = Thread(target = sayer, args = (i, results))
15 t.start();
16 threads.append(t)
17
18 starter = 1
19
20 for t in threads:
21 t.join()
22
23 print len(results)

Even though many threads append to the same array, they do not have
to take any locks. The GIL implicitly protects the array by allowing only
one Python instruction to be run at any time. This is a contrast to the Java
version in section 2.1 where the user has to prevent concurrency issues either
by using a thread-safe data structure or through manual locking.



Chapter 3

Parrot

Parrot consists of the VM (also called interpreter), and various tools to
facilitate the implementation of programming languages on top of the Parrot
VM (the Parrot Compiler Toolkit). This thesis concentrates on the VM itself.
The interpreter is written in C. Example code and test cases are written in
Parrot Intermediate Representation (PIR) a high-level assembly language
abstracting register allocations and function calling conventions.

Contrary to other widely used VMs like the JVM or the Common Lan-
guage Runtime (CLR) which are stack based, Parrot mirrors contemporary
hardware CPUs more closely by being register based. A stack based VM usu-
ally pops the operands for an operation from the top of a stack and pushes
the result back. Thus the operands are chosen implicitly by ordering of the
operations allowing the opcodes to be without operands. In a register based
VM on the other hand, each operation has to specify the operands explic-
itly. Compilers for stack machines are simpler because they do not have to
care about register allocation and code is independent of prior or subsequent
code [6]. The rationale behind giving up the simplicity of a stack based im-
plementation is the hope of simplifying just-in-time (JIT) compilation and
improved performance of nested function and method calls.

The current design of Parrot uses four sets of registers where each one
has an unlimited number of registers. The four sets are correspondingly to
Parrot’s types:

• integer,
• floating point,
• string and
• PolyMorphic Container (PMC).
The first three register types are self explanatory. String in Parrot is a

low-level type with the interpreter handling all memory allocation issues and
Unicode encoding. String values are immutable.

7



3. Parrot 8

3.1 PolyMorphic Containers (PMCs)

PMCs are containers for all high level types such as objects, arrays, hash
tables or code. Thus, they are similar to Python’s PythonObject types. PMCs
are defined by C structs and are garbage collected. Their definition looks like:

1 struct PMC {
2 Parrot_UInt flags;
3 VTABLE *vtable; /∗ Pointer to vtable. ∗/
4 DPOINTER *data; /∗ Pointer to attribute structure. ∗/
5 PMC *_metadata; /∗ Pointer to metadata PMC. ∗/
6 };

In short, they contain a pointer to a type specific data structure and some
meta data. The vtable is a virtual method table, where the type’s behavior is
defined. It contains a list of function pointers forming Parrot’s unified type
interface. This interface is a union of numeric, string, array, hash and object
like behaviors. For example the get_integer function returns an integer value
for the data type. For a simple int it is the value. For an array it may be the
number of elements. The find_method function makes user defined methods
of objects possible.

In this way, a language implementer can define the basic types of the
language and available operations on them. For each vtable entry, there is a
corresponding opcode in Parrot’s bytecode. Thus an inc $P0 instruction calls
the increment vtable function of the PMC pointed to by the $P0 register.

PMCs are implemented in pmc files with method bodies written in C.
These files are preprocessed to plain C before compilation.

3.2 ParrotInterpreter

The Parrot interpreter is represented by a C struct called parrot_interp_t.
This structure contains pointers to the garbage collector’s runtime data, the
loaded types, vtables, the runloop, the current continuation and other global
data. A pointer to this structure is passed to almost every function as the
first parameter.

There is also the ParrotInterpreter PMC which exposes parts of the par-
rot_interp_t struct to the user.

3.3 Continuation passing

Control flow in Parrot is modeled using continuation passing. A continuation
is a data structure containing the state of a program at a given point in its
execution. It contains all information necessary to continue a program in a
certain state, e.g. a call stack, the instruction pointer and contents of local
variables. Calling a continuation means restoring the state encapsulated in
the continuation.
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callback
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Figure 3.1: Example of a callback executing in a nested runloop.

When a function is called, instead of pushing a return address on the
stack, the function is given a return continuation as part of its parameters.
Returning from a function means calling the return continuation with pos-
sible return values stored in the registers where the calling code is expecting
them. Continuation passing makes things like tail call optimization1 simple
and as described in chapter 4 is a important part of implementing green
threads.

3.4 Runloops

A runloop is the inner most loop executing bytecode in Parrot. It consists
of two steps as shown in the following pseudo code:

1 while (pc != NULL) { // program counter points to an opcode
2 op = fetch_opcode_at(pc);
3 pc = execute_opcode(op);
4 }

It is also a data structure containing information needed to support ex-
ception handling. When some operation in Parrot bytecode is calling a C
function and this C function in turn is again executing Parrot bytecode, a
nested runloop is started. Examples for such situations include calling a li-
brary function with a callback as parameter and exceptions thrown inside
Parrot’s C code calling a previously defined exception handler in user code.
This is shown in figure 3.1.

3.5 Exception handling

Before entering a runloop, the setjmp C function is used to save the current
stack position and register contents in a data structure stored in the runloop
meta data. This is effectively creating something resembling a continuation

1When in the last statement of a function another function is called and its value
returned unchanged, the outer function can just pass on its return continuation thus
saving the need to create a new continuation and one step on returning from the nested
function.
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at the C level. When an exception is created within the interpreter, the
runloop stack is searched for the runloop containing a suitable exception
handler. longjmp is then used to unwind the call stack up to the point where
setjmp was called and the call environment is restored. While having great
similarities with continuations, this mechanism is more limited. It only allows
to jump back to a point “higher” in the call stack.

3.6 Garbage collector (GC)

Parrot supports different Garbage Collector (GC) implementations which
can be selected at interpreter startup. Currently, there are four implementa-
tions of different algorithms:

• Inf: a GC for debugging purposes never collecting any garbage.
• MS: a basic mark and sweep implementation.
• MS2: a non-recursive mark and sweep implementation.
• GMS: a generational, non-compacting, mark and sweep GC.

GMS is the default.
A mark and sweep GC operates in two phases: In the mark phase, starting

from a known root set of objects, the GC follows pointers in the object graph,
marking each encountered object as alive. In the sweep phase, all objects not
being alive are destroyed and all the live flags are reset.

In a process with many objects, having to traverse the whole graph may
take a considerable amount of time. To mitigate this, a generational GC
extends this algorithm by assuming that the longer an object is alive, the
lower the chances are that it will become unused. So, the objects are par-
titioned into different generations. The youngest generation will always be
traversed while the older generations will be handled much less frequently or
even never more at all.

3.7 Historical development

Much of Parrot’s previous threading related code has been removed to clean
up the code and improve performance. Since the existing threading sup-
port was known to be unreliable and seriously flawed, this was no trade off.
The final parts were removed by the merging of the kill_threads branch on
September, 21st 2011.

In 2010, Nat Tuck began working on a green_threads branch during his
Google Summer of Code internship. The feature got prototyped using pure
PIR and then implemented in Parrot’s core. He got it to work in simple
cases and started to work on OS thread support but the internship ended
before the code was ready to be merged into the master branch. The code
lay dormant until the work on this thesis started in 2011.



Chapter 4

Green threads

Green threads are one way to model concurrent control flows in a program.
To get a better understanding of what they are and how they work, the
possible options for supporting concurrency are discussed before explaining
green threads in detail.

4.1 Coroutines

Coroutines are functions retaining their state between calls. Instead of re-
turning, they yield control back to the calling function, possibly with an
intermediate result returned. A very simple example in Python looks like:

1 def counter():
2 for i in range(0, 100):
3 yield i

This function returns one integer for every call, counting from 0 to 100. An
example usage looks like:

1 def count\_up():
2 x = counter()
3 print x
4 x = counter()
5 print x

This example prints the numbers 0 and 1. For the two functions to run in
parallel, they have to cooperate. One by calling the other repeatedly and the
callee by yielding control back to the caller.

4.2 Operating system threads

OS threads are like multiple processes running in parallel but share their
memory. The OS is responsible for giving each of these threads CPU time
to run. OS threads are the only option where more than one thread may be
executed by the CPU(s) at the same time if the hardware permits.

11
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4.3 Green threads

Green threads or lightweight threads are threads managed by the VM instead
of by the OS. For better distinction green threads are henceforth referred to
as tasks. These tasks only run pseudo parallel. The VM has a scheduler and
support for preempting running tasks. Preemption means to suspend a task
regardless of what it is currently doing and probably resuming it later on.
This is an implementation of the many-to-one threading model very similar
to what an OS running on a system with a single CPU core does. Advantages
of green threads are:

• They allow pseudo concurrent processing without endangering the in-
terpreter’s internal consistency.

• Green threads are light weight having low memory overhead and close
to zero creation time.

• They do not depend on OS threading support.
• The interpreter controls the point of preemption of a green thread.
• The interpreter controls the scheduling policy and may allow the user

to influence it or even take over completely.
• Garbage collection can be implemented like in a singlethreaded process.
• Critical sections can be protected by disabling the scheduler until the

code is clear of the section.
Disadvantages include:

• Green threads do not allow more than one CPU core to be used for
computations.

• Blocking calls like I/O block the interpreter including other green
threads.

• The interpreter has to provide logic and timers to control green threads.
Green threads differ from coroutines in that the interpreter decides when

a running task is to be preempted while a coroutine depends on explicit yield
calls.

Below is an example in order to explain why concurrent processing can
endanger the interpreter’s internal consistency. The basic problem are con-
current writes to shared variables. Assuming an implementation of an array
class consisting of the field holding the data and the number of contained
elements in a separate member variable:

1 pmclass ResizableIntegerArray auto_attrs provides array {
2 ATTR INTVAL size; /∗ number of INTVALs stored in this array ∗/
3 ATTR INTVAL * int_array; /∗ INTVALs are stored here ∗/

To append a new value, the array has to read the current size, write the new
value at the position size + 1 and then write the incremented size back into
the member variable. Now, if two threads simultaneously try to do this, it
may happen that both read the same size, write to the same position (with
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one overwriting the value of the other) and write back the same incremented
size. In this case one of the appended values is lost.

In a more complicated example, the array could have to resize its data
buffer to accept the new value. It would read the current size, allocate a
new buffer, copy the values to the new buffer and then destroy the old one.
Again, if two threads try to do this simultaneously, one of them could still
be copying data, while the other already destroys the old buffer. This leads
to the copying thread accessing freed memory.

When garbage collection is brought into the mix, the possibilities for
corruption grow even further. At the point where the first thread needs to
allocate the new buffer, the GC could decide that it needs to clear some
unused memory. It would have to traverse the object graph to mark alive
objects. Between the mark and the sweep phases, the second thread could
change the pointer to the buffer from the old one to the new one. So the old
buffer would have been marked alive, while during the sweep phase the new
buffer would be in its place, but not yet marked alive.

4.4 Green threads in Parrot

Parrot’s green threads implementation is based on Nat Tuck’s green_threads
branch developed during his Google Summer of Code internship [13].

In Parrot, green threads are called Tasks. Each task is assigned a fixed
amount of execution time. After this time is up a timer callback sets a flag
which is checked at execution of every branch operation. Since the inter-
preter’s state is well defined at this point, its internal consistency is guaran-
teed. The same holds for the GC. Since task preemption is only done while
executing user-level code, the GC can do its work undisturbed and without
the need for measures like locking. Since user-level code is allowed to dis-
able the scheduler, it can be guaranteed to run undisturbed through critical
sections.

The scheduler is implemented as a PMC type. This allows the user to
subclass this PMC thus allowing fine-grained control over the scheduling
policy. Features, a user could add this way would be for example giving
different priorities to tasks or implementing the possibility to suspend and
resume a task.



Chapter 5

Design of hybrid threads

This chapter describes how green threads are used to solve the following
problems occurring when trying to implement threading support:

• How to ensure internal interpreter consistency when doing writes to
shared variables?

• How to implement critical sections?
• How to handle GC?
In keeping the analogy of the interpreter being a software CPU, mul-

tithreading is implemented by having a separate interpreter with its own
register set for each thread. Thus the words thread and interpreter are used
interchangeably as there is a 1:1 relationship between them. When a user
starts a new task, the scheduler first looks for an idle thread. If one can
be found, the task is scheduled on the thread’s interpreter. If none can be
found, a new thread with a new interpreter is started. Parrot tries to opti-
mize the number of utilized threads by creating at most one for each CPU
core in the system. If more tasks are started than the maximum number
of threads, the tasks are distributed evenly among the running interpreters.
This is effectively an implementation of the N:M threading model.

5.1 Shared data

As described in the introduction, cross-thread writes to shared variables may
endanger the internal consistency of the interpreter. Traditionally, the solu-
tion to this problem is the use of locks of varying granularity. Fine-grained
locking allows code to run in parallel but taking and releasing locks costs per-
formance. It not only increases the instruction count and memory accesses
but it also forces the CPU cores to coordinate and thus communicate. Even
a seemingly simple operation like an atomic increment can take two orders of
magnitude longer than a normal increment [7]. While the gain through being
able to utilize multiple CPU cores may offset this cost, it is still impacting

14
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the common case of having only a single thread running.
Too coarse locking on the other hand would reduce scalability and the

performance gains through parallel execution by having threads wait for
extended periods for locks to become available. In the extreme case of having
a global interpreter lock it would effectively serialize all computations costing
much of the benefits of using threads in the first place.

The other problem with locking is the possibility of introducing dead-
locks. For example, two functions F1 and F2 both use two resources A and
B protected by locks. If F1 first locks A and then tries to lock B while F2
has already locked B and is now trying to lock A, the program would come
to a halt. Both functions would be left waiting for the other to unlock the
resource which will never happen. With fine-grained locking, the possibilities
for such bugs grow quickly. At the same time, it is easy to miss a case where
a lock would be appropriate leading to difficult to diagnose corruption bugs.

The solution for these problems implemented in this thesis is to sidestep
them altogether by disallowing write access to shared variables. The pro-
grammer (or in most cases the compiler) is obliged to declare a list of all
shared variables before a newly created task is started. The interpreter would
then create proxy objects for these variables which the task can use to access
the data. These proxies contain references to the original objects. They use
these references to forward all reading vtable functions to the originals. Write
access on the other hand would lead to a runtime error.

In other words, all data is owned by the thread creating it and only the
owner may write to it. Other threads have only read access.

For threads to be able to communicate with their creators and other
threads, they still need to write to shared variables. This is where green
threads come into play. Since green threads are light weight, it is feasible for
a thread to create a task just for updating a variable. This task is scheduled
on the interpreter owning this variable. To reduce latency, the task is flagged
to run immediately. The data-owning interpreter will preempt the currently
running task and process the new write task. Put another way, the data-
owning interpreter is told what to write to its variables, so other threads
don’t have to.

5.2 Critical sections

Critical sections can be implemented by disabling preemption until the code
has left the section. With other threads not being allowed to write to the
data and the current task running uninterrupted it it guaranteed to complete
without the data being changed from outside.
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:MainThread :A :ChildThread

task1 task2

schedule(write_task)

write_task

write

task1

Figure 5.1: task2 running on ChildThread is sending the write_task to the
MainThread to write to the shared variable A.

5.3 Garbage collection (GC)

A GC has to traverse and process the entire graph of objects in memory. If
during this traversal another thread is changing this structure by creating
new objects, moving them around in the graph or removing them, the GC’s
data would be compromised. For example, it could happen that the GC does
not mark referenced objects alive because they were added to objects which
have already been processed.

In previous attempts to implement threading support in Parrot, the so-
lution to this problem was to disable the GC while multiple threads were ac-
tive. While multithreaded GC algorithms exist, their implementation would
have been too complex and brittle for this thesis [2]. Other VMs solve this
problem by suspending all threads while the GC is running. Suspending all
threads is not as simple as it sounds because these threads can be in any
state at the time. For example, they could be blocking on some long running
I/O operation like waiting for a reply on a network connection. A thread
can stay in this condition indefinitely thereby never being able to confirm
synchronization.

Since cross-threaded writes are already forbidden and all read access to
other thread’s data goes through the narrow channel of proxy objects, forcing
a complete separation of the thread’s memory domains is only a small step.
By having separate memory areas for each interpreter, it becomes possible
to have each interpreter run its own GC. This way, the known to work
singlethreaded GC implementation can be used nearly unchanged.
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With separated memory domains, it can happen that an object is created
on one thread, used on another thread but not any more on the owner thread.
Without any additional measures, the GC would collect such objects, since
it does not know about references from other threads. But since all objects
which could be accessed from other threads have to be pushed onto the task
object representing these threads, the objects can still be referenced from
the task object. Since the task is still owned by the original thread, the GC
knows that these objects are still in use.



Chapter 6

Implementation of hybrid
threads

6.1 Scheduler

The scheduler is the place where most of the green thread logic is imple-
mented. It consists of two parts: functions using the prefix Parrot_cx which
are located in src/scheduler.c and the Scheduler PMC type containing the
scheduler’s data and public interface.

The process of executing and preempting tasks is pictured in figure 6.1
and described in detail in the rest of this section.

Parrot_cx_init_scheduler is called from Parrot_interp_initialize_inter-
preter whenever a new interpreter is created, e.g., on interpreter startup and
whenever a new thread is created. It creates the scheduler PMC and sets up
alarm signal handling.

The scheduler is hooked into the system by replacing the call to execute
the main_sub by a call to Parrot_cx_begin_execution. The latter creates
the main task using main_sub as the task’s code. This task is then put
onto the run queue. The scheduler timer gets enabled and control is given to
Parrot_cx_outer_runloop.

Parrot_cx_outer_runloop is the loop taking tasks from the run queue
and executing them. Despite its name, it may not be confused with runloops
discussed in section 3.4. This function has to execute tasks as long as tasks
are available. If no tasks are available, it lets the thread sleep to not uselessly
burn CPU time. On the other hand it should simply end instead of sleep if
no tasks are available, no alarms pending and no tasks are being executed
on other threads.

As can be seen in listing 6.2, Parrot_cx_outer_runloop therefore consists
of two nested loops. The inner loop fetches tasks from the task queue and
executes as long as tasks are available. Even when all tasks are finished there
may still be alarms pending which upon termination would trigger new tasks

18
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Figure 6.1: Control flow of task execution and preemption.

to be scheduled. For this reason, there is an outer loop checking for pending
alarms. If it finds any it puts the thread to sleep until the next alarm expires.

Parrot_cx_next_task contains the code to take the next task from the
run queue and execute it. Before calling the task, it checks if there are other
tasks still in the queue. Only if other tasks are waiting, task preemption
is enabled. Otherwise, the current task will run until it finishes by itself,
schedules other tasks or an alarm expires. This is an optimization reducing
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1 do {
2 while (tasks_available()) {
3 Parrot_cx_next_task()
4 Parrot_cx_check_alarms()
5 }
6
7 clean_finished_foreign_tasks()
8
9 if (

10 not tasks_available()
11 and (alarms_pending() or foreign_tasks_active())
12 ) {
13 Parrot_thread_wait_for_notification()
14 Parrot_cx_check_alarms()
15 }
16 } while (
17 alarms_pending()
18 or foreign_tasks_active()
19 or tasks_available()
20 )

Figure 6.2: Pseudo code describing Parrot_cx_outer_runloop.

the runtime overhead of green threads in the important single tasking case
to zero.

To enable task preemption, Parrot_cx_enable_preemption sets a flag
on the scheduler PMC and uses Parrot_cx_set_scheduler_alarm to set an
alarm at a point in time PARROT_TASK_SWITCH_QUANTUM millisec-
onds in the future.

Checking for expired alarms after every executed operation would be too
costly. Therefore the branch operation has been picked as the point where
alarms are checked. To make this as cheap as possible, Parrot increments
the global alarm_serial. This serial is compared to the value last seen by the
Parrot_cx_check_scheduler function. If they are different, or the SCHED-
ULER_wake_requested flag is set, Parrot_cx_check_scheduler wakes up
the scheduler by calling Parrot_cx_run_scheduler.

Parrot_cx_check_quantum is used to check if the alarm signal means
that the current task has used its assigned quantum and should therefore be
preempted.

Preemption of a task is implemented in Parrot_cx_preempt_task. It uses
Parrot_cx_stop_task to create a continuation at the current point of exe-
cution and store it as the task’s code. The task itself is then appended at
the end of the run queue. The function returns a NULL opcode which is
propagated all the way up through the stack back to the branch operation
checking for alarms. The operation then recognizes this as the signal to stop
processing and to exit the runloop.
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The control flow ends up back at Parrot_cx_next_task at the point
after executing the task. Parrot_cx_next_task then returns to Parrot_cx_-
outer_runloop.

The schedule opcode is used to schedule a new task from user code. It
uses Parrot_cx_schedule_task which starts new worker threads if needed
and possible and pushes the task on the target thread’s scheduler’s task
queue. If the target thread previously was executing only a single task, its
preemption has been disabled for optimization as described above. So in this
case Parrot_cx_schedule_task has to enable preemption to give the new
task a chance to run.

Parrot_cx_schedule_immediate is used in various places like at alarm
expiry for putting a task at the head of the run queue and immediately
causing preemption of the currently running task. It does this by setting
SCHEDULER_wake_requested and SCHEDULER_resched_requested flags
the same as when the preemption alarm expires. To be precise, this mecha-
nism leads to the current task being preempted at the next branch operation
since this is the place where the mentioned flags will be checked.

Alarms can be registered using Parrot_cx_schedule_alarm. It puts the
alarm in the appropriate place in the ordered alarm list and uses Par-
rot_alarm_set which sets the actual alarm but only if there is not another
alarm already set for an earlier time, since there can only be one POSIX
alarm pending at any time.

Parrot_cx_schedule_sleep is the actual implementation of the sleep op.
Like in Parrot_cx_preempt_task, Parrot_cx_stop_task is used to get an
updated task at the current execution position, but instead of pushing this
on the run queue, it is used as a callback for a newly set alarm. Again, the
NULL opcode is used to stop processing of the current task.

6.2 Scheduler PMC

The Scheduler PMC contains the following attributes:
• PMC *task_queue: list of tasks/green threads waiting to run.
• Parrot_mutex task_queue_lock : a lock protecting the task_queue so

other threads can access it safely.
• PMC *alarms: list of future alarms ordered by time.
• PMC *all_tasks: hash of all active tasks by ID.
• UINTVAL next_task_id : ID to assign to the next created task.
• Parrot_Interp interp: a reference to the scheduler’s interpreter.
push_pmc and unshift_pmc are used to add a task at the end, respec-

tively the beginning of the task_queue. shift_pmc is used to fetch and re-
move a task from the tip of the task_queue. get_integer returns the number
of tasks in the task_queue. These four methods use the task_queue_lock to
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make accessing the task_queue thread-safe. Thus, the Scheduler PMC acts
as a container while using task_queue to actually store the data.

alarms is list containing all pending alarms, sorted by their expiration
time. Sorted insertion is used to keep alarms in order. Sorting makes it simple
and efficient to retrieve all alarms that have expired at a certain point in time.

The active_tasks returns an array containing all tasks which have been
run at least once and are not yet finished, e.g., they are currently being
executed or are preempted.

6.3 Task PMC

The Task PMC contains the following attributes:
• UINTVAL id : Unique identifier for the task.
• FLOATVAL birthtime: the creation time stamp of the task.
• Parrot_Interp interp: the interpreter which created the task.
• PMC *code: the code to run.
• PMC *data: additional data for the task given as parameter to code.
• INTVAL killed : flag marking killed tasks.
• PMC *waiters: tasks waiting on this one.
• PMC *shared : list of variables shared with this task.
• PMC *partner : copy of this task in another thread.
The invoke method is used to run the task. It first checks the killed flag

to see if the task has been killed while waiting in the task queue. Parrot
manages a recursion depth counter which records, how many levels the call
stack has. This counter is incremented by Parrot_Sub_invoke for each call
to a subroutine and decremented when a subroutine returns. While Par-
rot_Sub_invoke is used to start or resume a task, the executed subroutine
does not return when the task is preempted. This leads to recursion depth
growing until a recursion depth exceeded exception is thrown. Therefore, as
a workaround, the current recursion depth is saved to a local variable and
restored when the task stops executing.

The next steps are to add the task to the list of active tasks and to
invoke the task’s code. data is an optional parameter to the subroutine given
as code. Since this can be a compound object, a single parameter can cover
all use cases.

If the task has been killed while being in the task queue or while running
or it just ended, it gets removed from the list of active tasks and all tasks
registered with this task’s waiters array are added to the scheduler’s task
queue to be run.

push_pmc and pop_pmc are used to add or remove variables to the task’s
list of shared variables. For these variables, proxies will be created when the
task is run on a different thread.
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The kill method is used to set the task’s killed flag.

6.4 Runloops

Runloops are created whenever a part of Parrot’s C internals starts to execute
bytecode. This can be at interpreter startup to start the actual program
execution or when some library function needs to execute a user callback.
An exception handler can also be such a callback. Each runloop has a unique
id. These ids are numbered from 0 and increased by 1 whenever a new runloop
is created.

When an exception is thrown, Parrot searches for a previously set up ex-
ception handler and executes it. As part of exception handling finalization, it
cleans up, freeing any information no longer needed. The exception handler
does not have to have been set up in the same runloop from which the excep-
tion has been thrown. Parrot uses the runloop id to identify such situations
and free the nested runloops up to the level of the exception handler.

A continuation also contains the id of the runloop in which it has been
created. When resuming a preempted task, this id is not the same as the
one of the runloop created for executing its code. This leads to Parrot not
finding the correct runloop when finalizing an exception.

To mitigate this, the reset_runloop_id_counter function is used by Par-
rot_cx_outer_runloop to reset the global runloop id counter back to 0 when
resuming a task. This way, the task retains the same runloop id over its life
time.

If Parrot were to preempt a task while it is executing a nested runloop, it
would have to somehow capture not only the interpreter’s current state but
also the C stack between the outermost runloop and the currently executing
one. It would also have to recreate these call and runloop stacks when resum-
ing the task. Otherwise, the task would be ended as soon as the executing
callback would be completed since instead of some C function called by an
operation in the bytecode, the scheduler is the owner of the runloop.

Thus, the scheduler checks for the current runloop id and does not pre-
empt a task if it is currently running a nested runloop. Furthermore even a
manual yield to another task is not possible in such a situation. The only
way to solve this problem is to get rid of nested runloops in the interpreter.

6.5 Alarms and timers

Timers used for sleep, alarms and preemption use a common timer thread
implemented in src/alarm.c. This thread sleeps until a new alarm is set or
the currently active one expires. When the latter happens, it increases the
global alarm serial and notifies all threads that a timer is expired. Since it
does not keep a list of pending alarms but knows only about the next one,
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interpreter threads are obliged to reset their next alarms upon notification.

6.6 Threads

This section describes how OS threads are used to execute tasks in parallel.

6.6.1 Creation

Each thread is represented by an instance of the ParrotInterpreter PMC.
These interpreters are kept in the threads_array defined in src/thread.c. It
is a C array instead of one of Parrot’s dynamic arrays implemented as PMCs
because although ParrotInterpreter is implemented as a PMC itself, it is not
garbage collected because of the bootstrapping issues this would create.

src/thread.c also contains thread management functions all prefixed by
Parrot_thread_. Threads are created when Parrot_cx_schedule_task de-
termines that all existing threads are busy and new threads can be started.
Parrot_cx_schedule_task uses Parrot_thread_create to create a new in-
terpreter by cloning the current one and giving it an empty thread_data
structure.

The task is then scheduled with the new interpreter’s scheduler using
Parrot_thread_schedule_task. This function uses Parrot_thread_create_-
local_task to create a corresponding task on the new interpreter and then
pushes it onto the scheduler. Since each interpreter has its own GC, all
objects used on the interpreter must origin from this GC’s memory pools.
That is why Parrot_thread_create_local_task creates a new local_task as
desribed in figure 6.3. Proxies are created for the task’s code and data at-
tributes (lines 3 and 4). The task object of the originating interpreter and
the new local_task are linked using their partner attributes containing a
pointer to the other object (lines 11 and 12). For all variables in the original
task’s shared array proxies are created an put into the shared array of the
local_task (lines 6–9). Parrot_thread_create_proxy is used for this purpose.

Parrot_thread_insert_thread is used to put the new interpreter into the
threads_array.

Parrot_thread_run is the function where the actual OS thread is created.
It uses macros defined in the include/parrot/thr_*.h include files which act
as an OS abstraction layer.

Parrot_thread_outer_runloop is used as the thread’s main function. It
is very similar to Parrot_cx_outer_runloop. The most important difference
is that Parrot_thread_outer_runloop waits indefinitely for new tasks while
Parrot_cx_outer_runloop ends if no tasks are queued and no alarms are
pending.
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1 local_task = new Task()
2
3 local_task->code = Parrot_thread_create_proxy(task->code)
4 local_task->data = Parrot_thread_create_proxy(task->data)
5
6 foreach (variable in task->shared) {
7 proxy = Parrot_thread_create_proxy(variable)
8 push(proxy, local_task->shared)
9 }

10
11 local_task->partner = task
12 task->partner = local_task

Figure 6.3: Pseudo code describing Parrot_thread_create_local_task.

6.6.2 Proxies

Proxies are the arbiters between threads. They are the only means for a
thread to access another thread’s data and are implemented by the Proxy
PMC type. This type has only two attributes, which are not garbage col-
lected:

• PMC *target : the PMC this object proxies to.
• Parrot_Interp interp: the interpreter owning target.
As described in section 3.1, PMC source files get preprocessed before com-

pilation by a C compiler. This preprocessing is done by the pmc2c.pl Perl
script. This script is extended by the Parrot::Pmc2c::PMC::Proxy module
which creates default implementations for all vtable functions not otherwise
defined in the proxy.pmc file. The default implementation for all writing
functions just calls cant_do_write_method which creates a runtime excep-
tion.

All other methods call the vtable method of the same name on the target
passing the current interpreter as interp and all other parameters unchanged.
This causes all access to globals by the proxied function to go through the
thread’s interp and new PMCs created during the call to be allocated from
the thread’s memory pool. If the method returns a PMC from the target’s
interp, another proxy object has to be created and wrapped around it so it
can be safely returned to the caller.

To differ between PMCs originating from the target’s interp and those
created on the thread’s interp during the call, the GC is told to set the
new PObj_is_new_FLAG on newly created PMCs. The PARROT_THR_-
FLAG_NEW_PMC flag on the interp is used to communicate this require-
ment to the GC.

The alternative of calling the proxied function using the target’s interp
leads to concurrency issues with the GC. Any call may cause GC to run.
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Since the GC also scans the C stack the target’s GC would find the thread’s
PMCs there and mark them confusing the thread’s GC. Disabling the GC
requires a lock since the target’s GC may already have started collecting.

Sub

The Sub PMC represents executable subroutines. A Sub does not only con-
tain the code to execute but also the context in which to execute the code
such as visible globals and namespaces. If a proxy to such a Sub were created
and invoke called on it, the code would access this context directly since it
belongs to the same interp as the proxied Sub itself. Thus, an operation like
get_global fetches a global from an unproxied namespace and an unproxied
global is be put into the target register. Since this is happening while run-
ning invoke on the original Sub, Proxy cannot intercept the call and create
a Proxy for the result.

This is the reason why Parrot_thread_create_proxy does not create
a Proxy for a Sub but uses Parrot_thread_create_local_sub to create a
copy on the thread’s interp with proxies for all PMC attributes like names-
pace_stash and ctx.

6.6.3 Writing to shared variables

As described in chapter 5, to write to shared variables, a thread creates a
task and schedules it on the data owning interpreter. An example task looks
like this:

1 .sub write_to_variable
2 .param pmc variable
3 variable = 1
4 .end

This is a subroutine with just one parameter. The variable passed as this
parameter is the one the task should write to. In this case the constant value
1 would be written to the variable. In PIR, an assignment to a PMC gets
translated to a method call. In this case, the set_integer_native is called
changing the variable’s value. Since PMCs are passed by reference, it is the
original variable which gets written to.

Code to create the task looks like:
1 write_task = new ['Task']
2 setattribute write_task, 'code', write_to_variable
3 setattribute write_task, 'data', shared_variable
4 interp.'schedule_proxied'(write_task, shared_variable)

Line 1 creates a new task object. The example subroutine is used for the
task’s code attribute. shared_variable is used for data. At this point, shared_-
variable is actually the proxy object created for the shared integer PMC.
The interpreter object contains a schedule_proxied method which is used
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to schedule the write_task on the thread owning the original variable. This
owner thread’s interpreter cannot be used directly for scheduling the task,
since it would have to be stored in a register to be accessible to PIR code.
But then, the same problem as described in section 6.6.1 would occur with
the ParrotInterpreter PMC tripping up the GC.

schedule_proxied uses Parrot_thread_create_local_task which in this
case detects that the data given as parameter for the task’s code is actu-
ally a proxy already and unwraps the proxied object. Parrot_cx_schedule_-
immediate is then used to make the data owning interpreter execute the task
as soon as possible.

To protect a critical section, preemption can be disabled so the critical
section runs uninterrupted:

1 .sub swap_variables
2 .param pmc a, b
3 .local temp
4 disable_preemption
5 temp = a
6 a = b
7 b = temp
8 enable_preemption
9 .end

6.6.4 wait operation

Using tasks to write to shared variables makes such actions inherently asyn-
chronous. This is not always what is needed by the implemented algorithm.
For example, when the shared variable is a lock, processing should continue
as soon as it’s acquired. The wait operation is used to wait for a task’s com-
pletion. The waiting task is added to the waited for task’s waiters list and
preempted immediately. When a task finishes, all the tasks in the waiters list
are scheduled again for execution. Since for each task a local copy is created
on the target thread, the running task not only checks its own waiters list
but also its partner’s.

If a task on the main thread was waiting for a task on another thread to
finish and no other tasks are in the scheduler’s queue on the main thread,
the main thread exits if no alarms are pending. To prevent this unintended
exit, all tasks are added to the scheduler’s foreign_tasks list when they are
scheduled on other threads. To end the program with other threads still
running, an explicit exit operation has to be used.

6.6.5 Garbage collection

Since each interpreter has its own GC and consequently its own memory
areas and can only access its own data directly, the GC can act as if there
were no other threads. After replacing references to global data by proxies,
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only a few special cases had to be built into the GC. The global variable
PMCNULL is used in many places in the code, but should be handled only
by the main thread’s GC.

Only the main thread is allowed to load additional bytecode or create
new classes since it owns the data structures used to manage these things.
Child threads use these via proxies. In previous implementation attempts
code segments, classes and vtables have been copied for each new interpreter
making thread startup a costly operation while still causing subtle problems.

Code segments and vtables are only marked by the main thread’s GC.
Code segments are managed in Parrot using PackFile structures. Besides
the code itself, these structures contain tables of constants used in the code.
These constants are expanded to PMCs by the bytecode loader when the code
is loaded from disk or put there directly by the PIR compiler. Since PackFiles
are no PMCs, the Proxy PMC cannot be used to shield them from the GC.
Accessing the contained constants would therefore lead to unproxied PMCs
being accessed by different threads. Since PackFiles may only be loaded by
the main thread, the bytecode loader and the compiler were changed to flag
all PackFile constants as shared. They still are used as is on all threads, but
the GC knows to only handle shared PMCs on the main thread.

Scheduling tasks on other interpreters may cause garbage collection due
to the need of creating proxy objects. To protect the GC from concurrency
issues, garbage collection is disabled during creation of the new Task object
and the proxies on the target thread’s interp. But since the target thread may
itself be allocating memory or collecting garbage, the GC has to be protected
by a lock as well. The interp->thread_data->interp_lock lock is used for this.
It is checked by all allocation and freeing functions which are also the only
places where a garbage collection run may be triggered. Note that despite
the GC being protected from concurrent access, this alone would still not be
enough to share a GC between different threads since these threads could be
changing references to objects while the GC does its marking and sweeping.
When only creating new proxies (which contain no references visible to the
GC), accessing a foreign GC is safe on the other hand.

6.6.6 Conclusion

This threading implementation is mostly contained in a few files. Only a few
changes had to be done in other places like the ParrotInterpreter and the GC.
This is a major difference to the previous implementation where all PMCs
contained threading related code. As the next chapter shows, this design
helped to reach a working state and meet the performance goals quickly.



Chapter 7

Tests and benchmarks

In addition to Parrot’s extensive test suite, tests were conducted using three
test programs.

7.1 tasks.pir

tasks.pir is a simple test program, executing two tasks called a and b which
run in tight loops printing their name on each 100000th iteration. The pro-
gram ends after running for 10 seconds. This is a test of thread creation
and task scheduling but does not access any shared variables. The code is as
follows:

1 .sub main :main
2 .local pmc task, a, b, a_task, b_task
3 task = get_global 'task'
4 a = new ['String']
5 a = "a"
6 b = new ['String']
7 b = "b"
8 a_task = new ['Task']
9 setattribute a_task, 'code', task

10 setattribute a_task, 'data', a
11 b_task = new ['Task']
12 setattribute b_task, 'code', task
13 setattribute b_task, 'data', b
14 schedule a_task
15 schedule b_task
16 sleep 10
17 exit 0
18 .end
19
20 .sub task
21 .param pmc name
22 .local int i
23 start:
24 print name
25 i = 0

29
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26 loop:
27 inc i
28 if i >= 100000 goto start
29 goto loop
30 .end

The test shows that task creation and execution works and that tasks do
run in parallel.

7.2 moretasks.pir

moretasks.pir is an extended test where the main task creates 50000 child
tasks. These tasks poll a shared variable with pauses of 100 ms. When the
variable is set to 1, they schedule tasks on the main thread to write their
number to a results array. When the results array contains the expected
number of results, the process is repeated.

This test stresses reading and writing to shared variables, allocation and
garbage collection. It proved to be valuable for finding all sorts of concurrency
issues. The complete source code is available in appendix A.

The program runs stable and does not leak memory demonstrating that
the GC works.

7.3 matrix_part.winxed

This test implements matrix multiplication [17] using four threads. For sim-
plicity the second matrix only has one column. The program is written in
the Winxed programming language. Winxed is a low-level language with
Javascript like syntax and the possibility to include sections of PIR code
verbatim making it possible to try experimental opcodes while writing more
readable and concise code than with PIR alone. The complete source code
is available in appendix B.

The program consists of the parts initialization, computation and ver-
ification. Computation is parallelized using four tasks each calculating one
fourth of the result vector. Runtime is compared to a simple singlethreaded
implementation. Run times were measured using the time command and are
recorded in table 7.1.

As can be seen, the multithreaded implementation gives an average speed-
up of 2.31 for the computation and 1.61 in total.

7.4 chameneos.pir

Chameneos is a game useful for testing peer-to-peer cooperation of threads
presented in [3]. It revolves around fictional creatures, each being of one of
three colors. Two of these creatures may meet and exchange their colors, each
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Table 7.1: Runtime comparison for matrix multiplication

singlethreaded computation multithreaded computation
1. run 28.522 s 19.530 s 17.543 s 8.478 s
2. run 28.427 s 19.463 s 17.320 s 8.283 s
3. run 28.200 s 19.235 s 17.489 s 8.473 s
average 28.383 s 19.409 s 17.451 s 8.411 s

Table 7.2: Runtime comparison for Mandelbrot set calculation

singlethreaded 1 thread 2 threads 4 threads 8 threads
1. run 89.931 s 89.978 s 45.813 s 24.028 s 17.445 s
2. run 89.707 s 89.871 s 45.906 s 24.048 s 17.695 s
3. run 90.318 s 89.839 s 45.951 s 24.049 s 17.573 s
average 89.985 s 89.896 s 45.890 s 24.042 s 17.571 s
speedup 1.000 1.001 1.959 3.739 5.116

one independently calculating and adopting a complementary color depend-
ing on those two. These creatures have to be implemented using preemptive
kernel or lightweight threads. Since the color calculation is trivial this test’s
performance depends on the available thread synchronization primitives and
writes to shared variables. It therefore represents a worst case scenario for
the implemented threading model. The complete source code is available in
appendix C.

Preliminary benchmarks have shown Parrot’s performance to be within
an order of magnitude of that of an optimized implementation in Perl 5.
Since Parrot does not yet offer the user any synchronization primitives, locks
had to be implemented using a shared variable which is written to only by
the main thread. Replacing this primitive method with a native semaphore
implementation would probably reduce runtime to a small fraction.

7.5 mandel_inter.winxed

Calculating an image of the Mandelbrot set [16] is a common benchmark for
multithreading implementations since calculations of points are independent
of each other and are thus easily parallelizable. A simple implementation
of the escape time algorithm written in Winxed has been used to determine
scalability properties of the threading implementation. The image is split into
lines which are calculated alternatedly by a configured number of tasks. Run
times were measured using the time command on an Intel Core i7 3770K
processor with 16 GiB RAM running openSUSE 12.1 and are recorded in
table 7.2
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As can be seen, the implementation scales nearly linearly up to four
threads reflecting the CPUs four physical cores. Using eight threads, the
speedup is only 1.368 compared to four threads but this seems to be more a
limitation of the hardware than the implementation.



Chapter 8

Conclusion, further work and
experiences

This thesis shows a way to implement threading support in a dynamic lan-
guage runtime. Changes to the interpreter itself could be kept at a reason-
able level and very local to the threading implementation itself. Benchmarks
have shown that no slowdowns were measurable in the still very impor-
tant singlethreaded case, while the implementation scales well using multiple
threads.

Practice will show how this threading model will fare with real world
workloads. It very much depends on the ratio of read to write accesses to
shared variables.

8.1 Further work

There are several ways in which the current implementation can be improved.

8.1.1 Remove locking from the GC

The initial goal of an almost lock free implementation has not been met. The
GC has to take a lock in most of its functions. Though these locks are used
only when more than one interpreter thread is running, they still represent an
overhead which could be avoided. A way to accomplish this is to pre-allocate
proxy objects instead of allocating them on demand. The allocation could
be done as part of a thread’s outer runloop. This eliminates the need for
the locks in the GC. The number of proxy objects to pre-allocate would be
an important knob for optimization, since too few objects lead to starvation
quickly when many tasks are scheduled.

33
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8.1.2 Allow threads to create threads

In the current implementation, there are several places with an implicit as-
sumption that new threads may be only started from the main thread. Simi-
larly only the main thread may schedule tasks on other threads. Sub threads
may schedule tasks only on the main thread, not on other sub threads. These
restrictions are not inherent in the implemented threading model but were
introduced due to time constraints.

8.1.3 Dynamic maximum number of threads

The maximum number of threads is determined by the MAX_THREADS
constant in include/parrot/thread.h. Instead the value should be determined
at runtime probably depending on the available hardware resources, demand
and system load.

8.1.4 Allow multi-level proxying

Communication between sub threads is currently restricted by the fact that
proxy objects can only be transfered back to the thread which created them.
To remove this restriction, Parrot_thread_create_proxy has to be extended
to detect an attempted transfer of a proxy to a different thread and unwrap
it first before creating a new proxy.

8.1.5 Allow redistribution of tasks to other threads

Currently, the scheduler picks the interpreter with the smallest number of
tasks in the task queue for scheduling a new task. This can lead to a situation
where threads sit idle while tasks have to wait in other thread’s queues. Some
tasks get scheduled on specific threads because they need write access to the
thread’s PMCs. To allow migration of waiting tasks to idle threads, there
has to be a method to distinguish such tasks from tasks which are there
simply because the thread’s queue was the shortest at the time the task
got scheduled. The more difficult part of implementing task migration is
that proxies are allocated on the target interpreter at the time of scheduling.
Since these proxies belong to the interpreter, they are created on, new proxies
would have to be created on the interpreter the task is being migrated to.
It is yet unclear if this overhead can be offset by better utilization of idle
threads.

8.2 Experiences

I picked a very advanced topic for my Bachelor’s thesis. While I had to
invest many more hours than strictly necessary to get a Bachelor’s degree,
the work was also very interesting, instructive and hopefully valuable to the
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Parrot project and the free software community. Considering that I had no
prior experience with Parrot which is a complex piece of software, it is not
surprising that I spent most of the time discovering how it works and how
its many features interact. In addition, concurrency usually brings with it
difficult to diagnose problems further complicated by Parrot’s cross platform
nature.

It is therefore no exaggeration to state that without the help of the Parrot
community I could not have come nearly as far as I did in the time I had.
They are very welcoming and were supportive and grateful from the first
day, boosting my motivation. I can only recommend to other students to
approach the free software communities when looking for thesis topics.



Appendix A

moretasks.pir

This program tests the GC by creating tasks and writing to shared variables.
1 .sub main :main
2 .local pmc task, sayer, starter, number, interp, tasks, results
3 .local int i, num_results, results_rem
4 interp = getinterp
5 sayer = get_global 'sayer'
6 init:
7 starter = new ['Integer']
8 i = 1
9 starter = 0

10 say "1..100"
11 tasks = new ['ResizablePMCArray']
12 results = new ['ResizablePMCArray']
13 start:
14 number = new ['String']
15 number = i
16 task = new ['Task']
17 push task, results
18 push task, starter
19 setattribute task, 'code', sayer
20 setattribute task, 'data', number
21 print "ok "
22 say number
23 push tasks, task
24 schedule task
25 inc i
26 if i > 50000 goto run
27 goto start
28 run:
29 starter = 1
30 check_results:
31 pass
32 num_results = results
33 results_rem = num_results % 1000
34 if results_rem != 0 goto skip_say
35 say num_results
36 skip_say:

36
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37 if num_results >= 50000 goto end
38 goto check_results
39 end:
40 goto init
41 .end
42
43 .sub sayer
44 .param pmc name
45 .local pmc interp, task, starter, results, result_sub, result_task
46 .local int i
47 interp = getinterp
48 task = interp.'current_task'()
49 starter = pop task
50 results = pop task
51 result_sub = get_global 'push_result'
52 start:
53 if starter > 0 goto run
54 sleep 0.1
55 goto start
56 run:
57 result_task = new ['Task']
58 setattribute result_task, 'code', result_sub
59 setattribute result_task, 'data', results
60 push result_task, name
61 interp.'schedule_proxied'(result_task, results)
62 .end
63
64 .sub push_result
65 .param pmc results
66 .local pmc interp, task, number
67 interp = getinterp
68 task = interp.'current_task'()
69 number = pop task
70 push results, number
71 .end



Appendix B

matrix_part.winxed

This program implements multithreaded matrix multiplication.
1 #!./parrot
2 # Copyright (C) 2012, Parrot Foundation.
3
4 function main() {
5 var multi_part_code = multi_part;
6 var matrix = new 'FixedPMCArray'(10000);
7 var vector = new 'FixedIntegerArray'(10000);
8 var results = new 'FixedIntegerArray'(10000);
9 ${set_global 'results', results};

10
11 for (int i = 0; i < 10000; i++) {
12 matrix[i] = new 'FixedIntegerArray'(10000);
13 for (int j = 0; j < 10000; j++)
14 matrix[i, j] = 1;
15
16 vector[i] = 1;
17 results[i] = 0;
18 }
19
20 var tasks = new 'FixedPMCArray'(4);
21 for (int i = 0; i < 4; i++) {
22 var task = new 'Task';
23 task.code = multi_part_code;
24 task.data = i;
25 ${ push task, matrix };
26 ${ push task, vector };
27
28 ${schedule task};
29 tasks[i] = task;
30 }
31
32 for (int i = 0; i < 4; i++)
33 ${wait tasks[i]};
34
35 for (int i = 0; i < 10000; i++)
36 if (results[i] != 10000) {

38
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37 print("results[");
38 print(i);
39 print("]: ");
40 say(results[i]);
41 say("wrong result!");
42 exit(1);
43 }
44 exit(0);
45 }
46
47 function multi_part(var partition) {
48 var result = new 'FixedIntegerArray'(2500);
49 var interp;
50 ${getinterp interp};
51 var task = interp.current_task();
52 var vector;
53 ${ pop vector, task };
54 var matrix;
55 ${ pop matrix, task };
56
57 int start = partition * (10000 / 4);
58 for (int i = 0; i < (10000 / 4); i++) {
59 int r = 0;
60 var row = matrix[start + i];
61 for (int j = 0; j < 10000; j++)
62 r += (row[j] * vector[j]);
63 result[i] = r;
64 }
65
66 var res_task = new 'Task';
67 var set_result;
68 ${get_global set_result, 'set_result'};
69 res_task.code = set_result;
70 res_task.data = result;
71 ${ push res_task, partition };
72
73 interp.schedule_proxied(res_task, matrix);
74 ${wait res_task};
75 }
76
77 function set_result(var result) {
78 var interp;
79 ${getinterp interp};
80 var task = interp.current_task();
81 var partition;
82 ${ pop partition, task };
83 var results;
84 ${get_global results, 'results'};
85
86 int start = partition * (10000 / 4);
87 for (int i = 0; i < (10000 / 4); i++)
88 results[start + i] = result[i];
89 }
90
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91 # Local Variables:
92 # mode: winxed
93 # fill-column: 100
94 # End:
95 # vim: expandtab shiftwidth=4 ft=winxed:
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chameneos.pir

An implementation of the Chameneos game testing thread synchronization.
1 # Copyright (C) 2012, Parrot Foundation.
2
3 .sub 'main' :main
4 .local pmc colors, start_colors, at_most_two, at_most_two_waiters,

mutex, sem_priv, first_call, a_color, b_color, chameneos, chameneo,
code, data, number, color, dummy, count

5 .local int i
6
7 dummy = new ['Continuation'] # workaround, see TODO in Proxy

instantiate
8
9 count = new 'Integer'

10 count = 0
11 set_global 'count', count
12
13 colors = new ['ResizableStringArray']
14 colors = 3
15 colors[0] = 'Blue'
16 colors[1] = 'Red'
17 colors[2] = 'Yellow'
18
19 start_colors = new ['ResizableIntegerArray']
20 start_colors = 4
21 start_colors[0] = 2
22 start_colors[1] = 0
23 start_colors[2] = 1
24 start_colors[3] = 0
25
26 # init cooperation
27 at_most_two_waiters = new ['ResizablePMCArray']
28 at_most_two = new ['Integer']
29 at_most_two = 2
30 mutex = new ['Integer']
31 mutex = 1
32 sem_priv = new ['Integer']
33 sem_priv = 0
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34 first_call = new ['Integer']
35 first_call = 1
36 a_color = new ['Integer']
37 a_color = -1
38 b_color = new ['Integer']
39 b_color = -1
40
41 code = get_global 'chameneos_code'
42 chameneos = new ['ResizablePMCArray']
43 chameneos = 4
44 i = 0
45 init_chameneos:
46 chameneo = new ['Task']
47 chameneos[i] = chameneo
48 data = new ['FixedPMCArray']
49 data = 2
50 number = new ['Integer']
51 number = i
52 data[0] = number
53 color = new ['Integer']
54 color = start_colors[i]
55 data[1] = color
56 setattribute chameneo, 'code', code
57 setattribute chameneo, 'data', data
58 push chameneo, b_color
59 push chameneo, a_color
60 push chameneo, first_call
61 push chameneo, at_most_two
62 push chameneo, at_most_two_waiters
63 push chameneo, mutex
64 push chameneo, sem_priv
65 push chameneo, colors
66 schedule chameneo
67
68 inc i
69 if i < 4 goto init_chameneos
70
71 say "going to sleep"
72 sleep 10
73 say "woke up just in time for exit"
74 say count
75 exit 0
76 .end
77
78 .sub chameneos_code
79 .param pmc data
80 .local pmc interp, task, number, color, colors, at_most_two,

at_most_two_waiters, mutex, sem_priv, cooperation, first_call,
a_color, b_color, other_color

81 .local int old_color, other_color_int, color_int
82 .local string color_name
83
84 interp = getinterp
85 task = interp.'current_task'()
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86 colors = pop task
87 sem_priv = pop task
88 mutex = pop task
89 at_most_two_waiters = pop task
90 at_most_two = pop task
91 first_call = pop task
92 a_color = pop task
93 b_color = pop task
94
95 number = data[0]
96 color = data[1]
97 color_int = color
98 color = new ['Integer']
99 color = color_int

100 cooperation = get_global 'cooperation'
101
102 start:
103 color_name = colors[color]
104 #print 'This is '
105 #print number
106 #print " and I'm "
107 #say color_name
108
109 other_color = cooperation(number, color, sem_priv, mutex,

at_most_two, at_most_two_waiters, first_call, a_color, b_color)
110 other_color_int = other_color
111
112 color_int = color
113
114 if color_int == other_color_int goto start
115
116 color_int = 3 - color_int
117 color_int = color_int - other_color_int
118
119 color = color_int
120
121 goto start
122 .end
123
124 .sub cooperation
125 .param pmc id
126 .param pmc color
127 .param pmc sem_priv
128 .param pmc mutex
129 .param pmc at_most_two
130 .param pmc at_most_two_waiters
131 .param pmc first_call
132 .param pmc a_color
133 .param pmc b_color
134 .local pmc interp, sem_wait, sem_unlock, call_core, call_task
135 .local int other_color
136
137 interp = getinterp
138 sem_wait = get_global 'sem_wait'
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139 sem_unlock = get_global 'sem_unlock'
140
141 call_task = new ['Task']
142 setattribute call_task, 'data', color
143 push call_task, b_color
144 push call_task, a_color
145
146 sem_wait(mutex)
147 if a_color > -1 goto second
148 call_core = get_global 'first_call_core'
149 setattribute call_task, 'code', call_core
150 interp.'schedule_proxied'(call_task, a_color)
151 wait call_task
152
153 sem_unlock(mutex)
154 sem_wait(sem_priv)
155 other_color = b_color
156 sem_unlock(mutex)
157 goto done
158 second:
159 other_color = a_color
160
161 call_core = get_global 'second_call_core'
162 setattribute call_task, 'code', call_core
163 interp.'schedule_proxied'(call_task, b_color)
164 wait call_task
165
166 sem_unlock(sem_priv)
167 done:
168 .return(other_color)
169 .end
170
171 .sub first_call_core
172 .param pmc data
173 .local pmc interp, task, a_color, b_color
174 .local int a_color_int
175 interp = getinterp
176 task = interp.'current_task'()
177
178 a_color = pop task
179 b_color = pop task
180
181 a_color_int = data
182 a_color = a_color_int
183 b_color = -1
184 .end
185
186 .sub second_call_core
187 .param pmc data
188 .local pmc interp, task, b_color, a_color, count
189 .local int b_color_int
190 interp = getinterp
191 task = interp.'current_task'()
192
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193 a_color = pop task
194 b_color = pop task
195
196 b_color_int = data
197 b_color = b_color_int
198 a_color = -1
199 count = get_global 'count'
200 inc count
201 #say count
202 .end
203
204 .sub sem_unlock
205 .param pmc sem
206 .local pmc interp, sem_unlock_task, sem_unlock_core
207
208 interp = getinterp
209 sem_unlock_core = get_global 'sem_unlock_core'
210 sem_unlock_task = new ['Task']
211 setattribute sem_unlock_task, 'code', sem_unlock_core
212 setattribute sem_unlock_task, 'data', sem
213
214 interp.'schedule_proxied'(sem_unlock_task, sem)
215 .end
216
217 .sub sem_wait
218 .param pmc sem
219 .local pmc interp, waiter, sem_wait_task, sem_wait_core
220
221 interp = getinterp
222 sem_wait_core = get_global 'sem_wait_core'
223
224 sem_wait_task = new ['Task']
225 setattribute sem_wait_task, 'code', sem_wait_core
226 setattribute sem_wait_task, 'data', sem
227 interp.'schedule_proxied'(sem_wait_task, sem)
228 wait sem_wait_task
229 returncc
230 .end
231
232 .sub sem_wait_core
233 .param pmc data
234 .local pmc sem
235 sem = data
236 test:
237 disable_preemption
238 if sem > 0 goto lock
239 enable_preemption
240 pass
241 goto test
242 lock:
243 dec sem
244 enable_preemption
245 .end
246
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247 .sub sem_unlock_core
248 .param pmc data
249 .local pmc sem
250 sem = data
251 inc sem
252 .end
253
254 .sub sem_ackquire
255 .param pmc sem
256 .param pmc sem_waiters
257 .local pmc interp, waiter, sem_wait_task, sem_ackquire_core
258
259 interp = getinterp
260 sem_ackquire_core = get_global 'sem_ackquire_core'
261
262 sem_wait_task = new ['Task']
263 setattribute sem_wait_task, 'code', sem_ackquire_core
264 setattribute sem_wait_task, 'data', sem
265 push sem_wait_task, sem_waiters
266 interp.'schedule_proxied'(sem_wait_task, sem)
267 wait sem_wait_task
268 returncc
269 .end
270
271 .sub sem_ackquire_core
272 .param pmc data
273 .local pmc sem, sem_waiters, interp, task, cont
274
275 interp = getinterp
276 task = interp.'current_task'()
277 sem_waiters = pop task
278
279 disable_preemption
280 sem = data
281
282 if sem > 0 goto lock
283 cont = new ['Continuation']
284 set_label cont, lock
285 setattribute task, 'code', cont
286 push sem_waiters, task
287 enable_preemption
288 terminate
289 lock:
290 dec sem
291 enable_preemption
292 .end
293
294 .sub sem_release
295 .param pmc sem
296 .param pmc sem_waiters
297 .local pmc interp, sem_release_task, sem_release_core
298
299 interp = getinterp
300 sem_release_core = get_global 'sem_release_core'
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301 sem_release_task = new ['Task']
302 setattribute sem_release_task, 'code', sem_release_core
303 setattribute sem_release_task, 'data', sem
304 push sem_release_task, sem_waiters
305
306 interp.'schedule_proxied'(sem_release_task, sem)
307 .end
308
309 .sub sem_release_core
310 .param pmc data
311 .local pmc sem, sem_waiters, interp, task, waiter
312 .local int waiters_count
313
314 interp = getinterp
315 task = interp.'current_task'()
316 sem_waiters = pop task
317
318 disable_preemption
319 sem = data
320 inc sem
321 waiters_count = sem_waiters
322 if waiters_count <= 0 goto done
323 waiter = pop sem_waiters
324 schedule_local waiter
325 done:
326 enable_preemption
327 .end
328
329 # Local Variables:
330 # mode: pir
331 # fill-column: 100
332 # End:
333 # vim: expandtab shiftwidth=4 ft=pir:
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