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Abstract

Social learning is a potentially powerful learning mechanism
to use in artificial multi-agent systems. However, findings
about how animals use social learning show that it is also pos-
sibly detrimental. By using social learning agents act based
on second-hand information that might not be trustworthy.
This can lead to the spread of maladaptive behavior through-
out populations. Animals employ a number of strategies to
selectively use social learning only when appropriate. This
suggests that artificial agents could learn more successfully if
they are able to strike the appropriate balance between social
and individual learning. In this paper, we propose a simple
mechanism that regulates the extent to which agents rely on
social learning. Our agents can vary the amount of trust they
have in others. The trust is not determined by the performance
of others but depends exclusively on the agents’ own rating
of the demonstrations. The effectiveness of this mechanism is
examined through a series of simulations. We first show that
there are various circumstances under which the performance
of multi-agents systems is indeed seriously hampered when
agents rely on indiscriminate social learning. We then inves-
tigate how agents that incorporate the proposed trust mecha-
nism fare under the same circumstances. Our simulations in-
dicate that the mechanism is quite effective in regulating the
extent to which agents rely on social learning. It causes con-
siderable improvements in the learning rate, and can, under
some circumstances, even improve the eventual performance
of the agents. Finally, some possible extensions of the pro-
posed mechanism are being discussed.

The Ecology Of Social Learning
Throughout the animal kingdom individuals exploit infor-
mation that has been gathered by others. Animals from
invertebrates (reviewed in Leadbeater and Chittka, 2007;
Leadbeater et al., 2006; Fiorito, 2001) to great apes and
humans (e.g. Tomasello, 1999; Whiten et al., 2007; Bon-
nie et al., 2006) exhibit forms of social learning1. The
widespread use of social learning among taxa is caused by
its enormous ecological advantages in many circumstances
(see for example Kendal et al., 2005; Coolen et al., 2005;
Bonnie and Earley, 2007, and references therein). Evolution

1Here, on theoretical grounds, taken to include the use of public
information. See Bonnie and Earley (2007) for a discussion.

favored social learning because it might allow individuals to
be flexible and adaptive learners while avoiding the dangers
associated with individual exploration (Boyd and Richard-
son, 1988; Zentall, 2006). Ecologists typically stress the fact
that individuals benefit from copying behavior from others
because it saves them the costs of asocial learning (Laland,
2004). Indeed, Zentall (2006) remarked that the behavior
of others has often already been shaped by its consequences
and might therefore be assumed to be safe to copy.

Unsurprisingly, social learning comes in many flavors.
Various forms of social learning have been identified (Zen-
tall, 2006) and the underlying mechanisms range from fairly
simple to utterly complex (Noble and Todd, 2002). How-
ever, when studying the dynamics and ecological properties
of social learning one can ignore the differences in imple-
mentations and consider underlying exchange of informa-
tion only (Coussi-Korbell and Fragaszy, 1995). This made
it possible to evaluate the advantages of social learning in
theoretical studies focusing on the game-theoretic aspects.

This line of theoretical research, supported by empirical
findings in animal behavior, has shown that the advantage
of social learning is by no means universal. Social learning
is advantageous only if one takes certain precautions (La-
land, 2004; Galef and Laland, 2005). The fundamental prob-
lem is that social learning can support the spread, acquisi-
tion and the persistence of maladaptive behavior (Giraldeau
et al., 2002). This is because social learners re-use informa-
tion gathered by others but do not collect new information
themselves. Therefore, they are implicitly assuming that the
information they gather from others is reliable. There are
several circumstances under which this assumption does not
hold (see Giraldeau et al., 2002; Laland, 2004; Leadbeater
and Chittka, 2007, for reviews and references). Second hand
information can be, amomg others, incomplete, outdated, bi-
ased or utterly wrong.

Instead of animals relying on social learning whenever
they can, evidence clearly shows that they are somewhat re-
luctant to use social information unless there is a good rea-
son to do so (Galef and Laland 2005, see Laland et al. 2005
for a short discussion of a striking example in sticklebacks).

Artificial Life XI 2008  632 

mailto:vanderelst@emailengine.org


Animals (including humans, see Koenig and Harris 2005)
employ certain selection strategies to control the copying of
behavior. This allows them to use social learning in an in-
telligent fashion, avoiding its potential pitfalls. Because of
this, examples in which social learning leads to maladaptive
behavior are rather scarce in the literature on animal behav-
ior. The most clear examples of social learning supporting
maladaptive behavior are obtained under experimental cir-
cumstances where the, usual adequate, strategies fail (e.g.
Laland and Williams, 1998; Pongrcza et al., 2003). Such
experiments can uncover the strategies adopted by animals.

Laland (2004) found that guppies were induced to take a
longer, less efficient, route to a feeding site if others were
doing this also. In contrast, single guppies learned quickly
to take a shorter route. In the context of the experiment the
socially transferred behavior was clearly maladaptive. How-
ever, in natural circumstances, choosing the same route as
others is a good strategy since it protects against predation
by forming shoals. The guppies’ strategy to conform leads
them to adopt longer routes but this is clearly an advan-
tageous strategy if considered in the ecological context in
which it evolved.

Opposed to the conformity bias observed in guppies,
some experimental results show a selective use of social
learning. Capuchin monkeys do not resort to social learn-
ing if the problems they are challenged with (e.g. opening
a box) are easy to solve. In contrast, when faced with a
difficult task they will copy the behavior of others more fre-
quently (see Laland, 2004, for references and a discussion).
Presumably, monkeys are more willing to use the potentially
flawed social information if asocial learning is costly. This
shows that these animals do not assume a priori that social
information is correct and reliable (and thus worthwhile to
copy). Instead they adopt a trade-off between learning so-
cially and individually taking into account possible costs and
gains. See Laland (2004) for more examples of selective so-
cial learning in animals.

While the literature on animals shows relatively few in-
stances of maladaptive social learning under natural cir-
cumstances, humans, who rely far more on social learn-
ing (Tomasello, 1999) than any other animal, provide many
more examples (Boyd and Richerson, 2006). Obvious can-
didates are the social transfer of tobacco and drug use, re-
ducing fertility and endangering fetus development. But also
other, less dramatic, socially transferred behavior could re-
duce fitness in humans.

Social Learning in Artificial Agents
Recently, different authors have begun to explore the use
of social learning as a way of instruction in artificial multi-
agent systems (e.g. Acerbi et al., 2007; Pini et al., 2007; Bel-
paeme et al., 2007; Noble and Franks, 2002; Alissandrakis
et al., 2004).

In a multi-agent setting, artificial agents could search con-

currently for a solution for a given problem (e.g. how to
pick up food). Once a single agent has found a solution, this
innovation could be copied by others and could propagate
through the population. In this way, social learning could
drastically reduce the total number of learning trials needed
for a population of artificial agents to solve a problem (Pini
et al., 2007). Innovations in groups of animals are known to
spread in the same way (e.g. Bonnie et al., 2006; Bonnie and
Earley, 2007; Leadbeater and Chittka, 2007).

Though this argument rightfully assumes that social learn-
ing has attractive properties, it was also argued above that
this is certainly not true in all circumstances. In fact, as said,
animal behavior data suggest that social learning should
be only engaged in sparsely and with great caution (La-
land, 2004; Galef and Laland, 2005; Leadbeater and Chittka,
2007).

Reasoning by analogy, we can hypothesize that a success-
ful learning strategy for artificial agents should strike a care-
ful balance between different types of learning. This sug-
gests that the learning performance of artificial agents can
be improved by mechanisms that restrict social learning to
circumstances under which it is appropriate.

Experimental Setup
We have investigated the question how agents can balance
social and individual learning by simulating a very simple
world with a number of agents. The agents in this world
have been equipped with a mechanism that regulates the ex-
tent to which they rely on social learning. The fundamental
risk in social learning is to act on untrustworthy information.
Therefore, we equip agents with the possibility to change the
level of trust they have in the demonstrations of others. This
in turn determines their reliance on social learning.

We investigate the learning behavior of the agents by com-
paring their performance in simulations for various condi-
tions. In all conditions we consider two populations of
agents that have the same cognitive architecture. The first
population is born before the second one, and has there-
fore already acquired some level of experience in the sim-
ulated world when the second population is initiated. The
experimental conditions modeled differ in two important re-
spects: (1) the protective trust mechanism employed and (2)
whether both populations must learn the same task, or dif-
ferent tasks.

The Trust Mechanism
All agents have the same cognitive architecture (schemati-
cally represented in figure 1) and operate in a world in which
a limited number of percepts (situations) can arise. Agents
can respond to each percept using one of limited set of ac-
tions. Once this action is performed, the world returns a
reward to the agent. The agents learn both individually and
socially which action to perform in response to each percept.
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Figure 1: The cognitive architecture of the agents in the simulations and their relationship with the environment.

The behavior of our agents can be captured by a few sim-
ple rules. When learning individually this is what happens
(the numbers correspond to the ones in figure 1):

• An Agent is confronted (1) with a randomly chosen per-
cept p.

• The Agent chooses (2) an action a with which to respond
to the percept p based on its policy P. The policy P defines
the probability of an action a given a percept p.

• The world responds (3) to this action with the appropriate
reward as given by the world pay-off function V .

• Based on this returned (3) reward, the estimated pay-off
Qpa for choosing the action given the percept is adapted.

• The Agent updates (4) its policy P, effecting incremental
changes to the probabilities for the various actions given
the percept p, based on the changed estimates of the pay-
offs.

When learning socially, this sequence of events take
place:

• An Agent observes (5) what an other agent perceives
(percept) and how it reacts (action).

• Based on its own estimated pay-offs Q for the given per-
cept, the Agent updates (6) its trust in the observed other.

• The Agent updates (7) its policy P for the given percept
dependent on the trust it has in the other.

So, while learning individually, the agent builds an esti-
mate Qpa of the rewards obtained by executing each of the
actions a when confronted with a percept p. This estimate
determines its action policy.

During social learning, the agent copies the behavior of
other agents whose actions it observes. However, the extent

to which the behavior of others influences the agents’ own
policy, depends on the level of trust. The more an agent
trusts the other, the more given observations will change its
action policy P. Therefore, the trust level, which changes
over time, regulates the extent to which agents rely on social
learning.

Our agents increase the trust they have in others if the
perceived behavior is in line with their own estimates of the
rewards. If an agent perceives another responding to a per-
cept with an action which itself thinks to be rewarding, the
level of trust will rise. So, the more an agent sees others per-
form according to what it itself thinks is a rewarding policy,
the more it will trust and copy them.

Simulations
Methods: Agents & World
In this section we describe the algorithm and settings of the
simulations in detail.

The simulated world contains a fixed number of possible
percepts. Agents can select one of small number of actions
to respond to a given percept.

When an agent is confronted with a certain percept p it
performs an action a. Subsequently, it receives a reward
from the world. This reward is given a value Vpa stored in a
matrix V. The values Vpa characterize the properties of the
interaction between the agents and the world. In the present
simulations, for any given percept p only one of the values
Vp. is set to 1 (see table 1 for examples). The others are set
to -1. The action a for which Vpa = 1 determines which
action an agent should perform when observing the percept
p.

Each artificial agent has the same cognitive architecture
(schematically represented in figure 1). These are the three
central structures:

• a matrix P containing the current action policy,
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• a matrix Q containing the pay-offs as estimated by the
agent,

• a value T reflecting the trust level of the agent in others.

The matrix P gives, for each percept p and action a, the
chance of an agent choosing this action a when confronted
with this percept p (see equation 1). Agents are supposed
to learn the optimal policy P that goes with the rewards as
specified by matrix V. Matrix P is initialized with random
values between 0 and 1 with the constraint that each row
must sum to 1.

The matrix Q contains an estimate of the matrix V that is
progressively constructed by the agent over the course of a
simulation. This matrix is initialized containing only zeros.

The level of trust T of an agent is given by a value be-
tween 0 and 1. At the start of the simulation T is 1 which
signifies that initial trust is total2.

P =




P (a1|p1) . . . P (an|p1)
. . . . . . . . . . . . . . . . . . . . . . . . . .
P (a1|pm) . . . P (an|pm)



 (1)

Q =




Qp1a1 . . . Qp1an

. . . . . . . . . . . . . . . . . . . .
Qpma1 . . . Qpman



 (2)

In these simulations time is represented by an integer. At
each time tick all agents are updated one by one (in a random
order). In each cycle of the model each agent performs a sin-
gle individual learning trial and may perform several social
learning trials. This reflects the assumption that social learn-
ing is cheaper than individual learning. In the presented sim-
ulations, social learning does not restrict an agent’s opportu-
nity to learn individually. This will capture most biological
(see Laland, 2004, for a discussion) and artificial situations
to a certain extent. So, in our simulations, social learning is
modeled as an additional learning method besides individual
learning.

At each tick of the model all agents learn individually.
Each agent is presented with a random percept. The agent
selects one of the possible actions to respond to the percept.
The chance P (a|p) is given by the agent’s matrix P.

After selecting an action p the world returns a reward Vpa.
Based on this reward, the estimated pay-off Qpa is updated.
The update is governed by equation (3). In this equation αQ

is a step size parameter for updating the estimated pay-off
matrix Q.

∆Qpa = αQ(Vpa −Qpa) (3)

After updating the estimated pay-off matrix Q, the pol-
icy P is updated according to equation (4). The parameter

2This is by no means essential for the behavior of the model.
Results similar to the ones reported in the next section, were ob-
tained by setting T , where appropriate, initially to 0.

αI is the individual learning speed. Equation (4) augments
the chance of picking action a given a percept p for which
the estimated pay-off is currently the largest. Of course, it
also decreases the chance of picking any of the other actions.
This form of updating action policies is known in the liter-
ature on reinforcement learning as pursuit learning (Sutton
and Barto, 1998).

{
for a = arg maxa Qpa : ∆P (a|p) = αI(1− P (a|p)),

∀a′ #= a : ∆P (a′|p) = αI(0− P (a′|p)).
(4)

After updating its policy P, an agent stores p and a for
later consultation by other agents during social learning.

After all agents have learned individually, all agents may
perform several social learning trials. Whether they do so
or not depends on the specific settings of the simulation (see
later).

To learn socially, an agent randomly selects an agent to
learn from and consults its latest action and percept. Social
learning is modeled as a two-stage process. First, the ob-
serving agent updates its trust level. It consults the action a′

and the percept p′ stored by the observed other. The trust is
updated based on the agents Q and P matrices according to
equation (5). In this equation αT is the step size for updating
T . The trust values are constrained to lie between 0 and 1.

∆T =

{
−αT if

∑
a[P (a|p)×Qpa] ≤ Qp′a′ ,

αT if
∑

a[P (a|p)×Qpa] > Qp′a′ .
(5)

Second, after updating the trust level, the observing agent
updates its value Ppa according to equation (6) with T de-
noting the trust level the agent has in the observed other. The
parameter αS is the step size governing social learning.

{
for a :∆P (a|p) = αS × T × (1− P (a|p)),
∀a′ #= a :∆P (a′|p) = αS × T × (0− P (a′|p)).

(6)

Selecting an agent to learn from socially is done in the
following way. Each agent randomly selects a single agent
to learn from and social learning is done as specified above.
This is repeated 20 times. An agent can by chance choose
an agent to learn from that it has choosen in a previous
repetition. However, note that the behavior of this agent
might have somewhat changed in the meantime because it
has learned socially as well.

As experimenters we evaluate an agents policy by cal-
culating the expected performance E according to equation
(7).

Ei =
∑

p

∑

a

P (a|p)× Vpa (7)

Note that in the current simulations no influence of the
spatial distribution of the agents was incorporated.
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Actions
Values 1 (V1) Values 2 (V2)

Actions Actions
Percepts 1 2 3 4 1 2 3 4

1 1 -1 -1 -1 -1 -1 -1 1
2 -1 1 -1 -1 -1 -1 1 -1
3 -1 -1 1 -1 -1 1 1 -1
4 -1 -1 -1 1 1 -1 -1 -1

Table 1: The two Vpa matrices in the form of tables used in
the reported simulations.

Experimental Simulations
We ran various simulations to explore the properties of the
model and to investigate whether and under what circum-
stances the trust mechanism protects learners against acquir-
ing faulty information.

In these simulations, the agents are required to learn the
profitable policies in a world where there are 4 possible per-
cepts with 4 possible actions each. For each percept only
one action has a good outcome (Vpa = 1).

Because we also want to experiment with situations where
different populations need to perform different tasks, we
need to define two different types of interaction with the
world. This is done through two different reward matrices
Vpa as given in Table 1.

All simulations are run for 200 time ticks. The simula-
tions consist of two stages. First, an initial population (Pop-
ulation 1) of 21 agents is trained. After 50 ticks, another 21
agents (Population 2) are added to the population.

In each simulation Population 1 and 2 can either learn so-
cially (αS = 0.1), individually (αI = 0.1, αQ = 0.1) or
both (αS = 0.1, αI = 0.1, αQ = 0.1). If a learning strategy
is not being used, the corresponding learning rate α is set to
0. If agents use social learning, they select 20 agents to learn
from. This means that these agents have 20 social learning
opportunities for each individual learning opportunity.

Simulations also differ with respect to the update of the
trust value. Trust values could either be updated (αT = 0.1)
or not (αT = 0).

An overview of the settings of the simulations can be
found in table 2.

Simulation Results
The results of some of our simulations are plotted in figure
2. Figure 2(a) shows how performance changes over time,
while figure 2(b) gives an insight into the development of
trust values (where appropriate).

First, we want to demonstrate that our setting is indeed
one where social learning can be advantageous. To this end
we have simulated a situation where two populations need
to perform the same task. Population 1 only learns individ-
ually, and population 2 also learns socially. The result are

shown in simulation 1 of figure 2(a). As we can see from
these results, when Population 2 is introduced into a popu-
lation of reasonably instructed agents, social learning allows
it to quickly catch up with them. Population 2 learns more
rapidly than Population 1 by using both individual and social
learning and catches up with them in about 20 time ticks.

In Simulation 2 we consider a situation where both pop-
ulations learn individually and socially. This simulation
shows that social learning is not advantageous under all cir-
cumstances. At the beginning of the simulation, the perfor-
mance of Population 1 is actually hampered by the use of
social learning. Population 1 learns slower in simulation 2
(with social learning) than in simulation 1 (without social
learning). The reason for this is off course that, in simula-
tion 2, the social learning process is also copying erroneous
information.

In simulation 3 we considered a situation where popula-
tion 1 and population 2 have to learn different policies. As is
to be expected, here the learning performance is even worse
than in simulation 2. After the introduction of Population
2, the performance of Population 2 is actually decreased be-
cause it copies the flawed demonstrations of Population 1.
Also, in contrast to what happens in simulation 2, Popula-
tion 1 is now unable to regain its original level of perfor-
mance because the more population 2 learns, the higher its
faulty influence. In the end, the behavior of the two pop-
ulations converges to a trade-off between the two optimal
policies which is optimal for neither of them. The cause for
the suboptimal performance in simulations 2 and 3 is that
agents copy others even when these are not performing very
well or even when they demonstrate a faulty policy. This is
exactly what the trust mechanism is supposed to prevent.

The remaining simulations do incorporate different ver-
sions of the proposed trust mechanism. In simulation 4, we
have copied the situation of simulation 2, but now both pop-
ulations have a trust mechanism. As can be seen the mecha-
nism is clearly advantageous to both populations.

To better understand what happens here, we plotted the
dynamic behavior of the trust values in figure 2(b). Ini-
tially, Population 1 is trusting others (of the same popula-
tion). However, agents quickly discover that demonstrations
are not trustworthy. They respond by decreasing their trust
level a bit (from 1.0 to 0.6). This allows agents to attain
a performance level, through individual learning, at which
their demonstrations are accurate enough to be trusted again.
After about 20 ticks, the trust levels of the agents start to rise
again re-enabling social learning to its full extent. A similar
sequence of events is repeated at the introduction of Popula-
tion 2. The trust levels are reduced to about 0.8 after which
they rise again to 1.0. The trust mechanism makes sure that
agents perform well enough before they start relying on so-
cial learning (again). This causes social learning to be used
only if adequate. This significantly increases the learning
speed (compare Population 1 in Simulation 1 and 4).
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Population 1 Population 2
Simulation Ind. Soc. Trust Update V Ind. Soc. Trust Update V

Simulation 1 Yes No No V1 Yes Yes No V1

Simulation 2 Yes Yes No V1 Yes Yes No V1

Simulation 3 Yes Yes No V1 Yes Yes No V2

Simulation 4 Yes Yes Yes V1 Yes Yes Yes V1

Simulation 5 Yes Yes Yes V1 Yes Yes Yes V2

Simulation 6 Yes Yes Yes V1 Yes Yes Yes V1

Simulation 7 Yes Yes Yes* V1 Yes Yes Yes* V2

Table 2: The parameter settings in the seven simulations. When social or individual learning is used by a population in a given
simulation the corresponding learning rate α is set to 0.1. V1 & V2 are given in table 1. *: agents store a separate trust value T
for each population.
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Figure 2: The results of the simulations across 50 runs. Subfigure (a): The mean performance level in simulations 1-7. The
vertical line denotes the time tick at which Population 2 is introduced in the model. The lower horizontal line gives the expected
performance of an agent with a randomized P matrix (being -2). The upper horizontal line gives the maximum performance
an agent can attain (being 4). Subfigure (b): The mean trust level in simulations 4-7. The vertical line denotes the time tick at
which Population 2 is introduced in the model.
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In simulation 5, we recreate the situation of simulation
3, but now with a trust mechanism. As one can see, the
trust mechanism is not capable of completely solving the
problems arising in simulation 3: the final performance of
the agents in simulation 5 is slightly better than in 3, but still
sub-optimal.

In the plot of the trust levels in figure 2(b), it can be seen
that the trust levels converge to 0.5. This is caused by having
half of the agents demonstrating a faulty policy and half a
correct one. The agents cannot improve their performance
because they cannot discriminate between trustworthy and
untrustworthy agents.

Simulations 6 and 7 are identical to 4 and 5 but for the
introduction of a separate trust value for each population.
Every agent is equipped with two T values. This means that
each agent can have a different level of trust in the members
of Population 1 versus the members of Population 2.

Maintaining seperate trust values for the two populations
has only a negligible effect in a situation in which both
agents have to learn the same task (simulation 4). In sim-
ulation 6 the dip in the performance associated with the in-
troduction of Population 2 is somewhat shallower than in
simulation 4. Otherwise the results of simulation 4 and 6 are
fairly similar. However, being able to discriminate between
different types of agents allows the agents in simulation 7 to
perform much better than in simulation 5. Now, both popu-
lations are able to achieve a perfect score.

Discussion
The results indicate that the proposed trust mechanism is ca-
pable of regulating the extent to which agents rely on social
learning. Equipping our agents with the mechanism boosts
their performance in situations where social learning is po-
tentially disadvantageous (i.e situations in which demonstra-
tions are untrustworthy).

Interestingly, the trust mechanism, as it is proposed in
this paper, is a biologically plausible strategy. Humans, but
also animals (e.g. Cheney and Seyfarth, 1988), learn more
if they trust the source of information (See Carpenter and
Call, 2007, for additional references). Koenig and Harris
(2005) report experiments in which children from the age of
4 learned the names of novel objects from people who have
shown to be trustworthy earlier in the experiment. They do
not endorse names supplied by people who earlier misnamed
known objects (e.g. naming a ball as a shoe). So, while
adapting trust is a strategy that is, as yet, not widely studied
in animal behavior, some empirical findings support that it
is indeed being used. Further research might discover more
instances in which trust is a important factor in human and
animal social learning.

It is important to note explicitly that the presented trust
mechanism differs from social learning strategies that seek
to copy high performant demonstrators. For example,
Schlag (1998) proposed that social learning agents (animals)

should copy others if they are performing better than they are
themselves (copy-if-better). However, this requires agents to
be able to assess the performance of others, which might not
be easy to do (Laland, 2004), especially for artificial agents.
The form of trust introduced in the current paper does not re-
quire agents to evaluate the performance of others. Instead,
agents trust others if they act in the same way as they would
given the same percept. Simulation 7 serves as a demon-
stration of the difference between acting based on trust or
the performance of others. In the second phase of the sim-
ulation (after tick 50), Population 1 is clearly performing
better than Population 2. Nevertheless, Population 2 quickly
looses its initial trust in Population 1 and stops copying its
behavior. In contrast, Population 2 has more trust in itself. If
performance would dictate social learning, all agents should
be copying Population 1.

Finally, we think that much of the strength of the proposed
mechanism lies in the fact that it can be extended in various
interesting ways. We list two of the extensions we consider
the most interesting.

First, a fundamental feature of the proposed trust mecha-
nism is that it generalizes over all percept-action pairs. This
is to say, an agent that learns to trust another by observ-
ing its response to a given percept p, also trusts the others
response to all other percepts p′. This behavior is in con-
cordance with the findings in children reported by Koenig
and Harris (2005). Indeed, it is hard to see what would be
the function of a trust mechanism that does not generalizes
across stimuli. In the current simulations, this property of
the model is not fully exploited. Generalizing across stimuli
might enable agents, just like their biological counterparts,
to learn socially about significant but rare stimuli. Some
stimuli might not occur frequently enough for agents to learn
individually from these instances. However, by observing
how other agents, that are judged trustworthy, react to the
stimuli, agents could assemble enough learning trials to as-
sociate a proper response with these stimuli. One possible
extension of the presented work could explore the behavior
and the value of the model under such circumstances

Another interesting extension, already hinted at in simu-
lation 7, would be to increase the number of trust values that
agents maintain. In the extreme case, an agent could have
a trust value associated with each other agent in the popu-
lation. Trust levels associated with individual agents would
enable agents to form trust networks directing the flow of in-
formation that is spread through social learning (See Coussi-
Korbell and Fragaszy, 1995, for a seminal paper on directed
social learning). Also, agents could learn which individuals’
behavior is worthwhile to copy (see Dautenhahn and Ne-
haniv, 2007).

In conclusion, we presented an extendable mechanism
that allows agents to regulate their reliance on social learn-
ing. The mechanism to boost the performance of agents in
multi-agent settings that incorporate social learning. Impor-
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tantly, the mechanism does not require agents to be able to
judge whether the actions of observed demonstrators have a
favorable outcome.
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