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Abstract

In this paper, we analyze the performance
of a semiparametric principal component
analysis named Copula Component Analysis
(COCA) (Han & Liu, 2012) when the data
are dependent. The semiparametric model
assumes that, after unspecified marginally
monotone transformations, the distributions
are multivariate Gaussian. We study the sce-
nario where the observations are drawn from
non-i.i.d. processes (m-dependency or a more
general φ-mixing case). We show that COCA
can allow weak dependence. In particular,
we provide the generalization bounds of con-
vergence for both support recovery and pa-
rameter estimation of COCA for the depen-
dent data. We provide explicit sufficient con-
ditions on the degree of dependence, under
which the parametric rate can be maintained.
To our knowledge, this is the first work an-
alyzing the theoretical performance of PCA
for the dependent data in high dimensional
settings. Our results strictly generalize the
analysis in Han & Liu (2012) and the tech-
niques we used have the separate interest for
analyzing a variety of other multivariate sta-
tistical methods.

1. Introduction

In much of studies on Principal Component Analysis
(PCA) it is assumed that the n observations x1, . . . ,xn

of a random vector X ∈ Rd are independent. More-
over, in high dimensions, it is commonly assumed that
X follows a multivariate Gaussian or sub-Gaussian
distribution such that the estimators are consistent.
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In this paper we focus on a semiparametric method
built on the nonparanormal model. A continuous
random vector X := (X1, . . . , Xd)T follows a non-
paranormal distribution if there exists a set of uni-
variate monotone functions f := {fj}d

j=1 such that
f(X) := (f1(X1), . . . , fd(Xd))T follows a Gaussian
distribution. In this paper we show that the proposed
method can loosen both the data independence and
Gaussian/sub-Gaussian assumptions.

Let Σ be the covariance matrix of X. PCA aims at
recovering the top m leading vectors u1, . . . ,um of Σ.
The usual procedures are to estimate the top m lead-
ing eigenvectors û1, . . . , ûm of the sample covariance
matrix S. However, there are two drawbacks: (i) when
d > n, Johnstone & Lu (2009) show that PCA is incon-
sistent. More specifically, let u1 and û1 be the leading
eigenvectors of Σ and S. For two vectors v1,v2 ∈ Rd,
we denote the angle between v1 and v2 by ∠(v1,v2).
Johnstone & Lu (2009) prove that ∠(u1, û1) does not
converge to 0. (ii) The performances of the estimators
rely on independence of the n observations. Their per-
formance is unknown if dependence is present among
x1, . . . ,xn.

A remedy for the inconsistency problem when d > n
is to assume that u1 = (u11, . . . , u1d)T is sparse, i.e.,

card(supp(u1)) := card({j : u1j 6= 0}) = s < n,

where card(·) represents the cardinality of a given set.
Different sparse PCA procedures have been developed
to exploit the sparsity structure: greedy algorithms
(d’Aspremont et al., 2008), lasso-type methods includ-
ing SCoTLASS (Jolliffe et al., 2003), SPCA (Zou et al.,
2006) and sPCA-rSVD (Shen & Huang, 2008), a num-
ber of power methods (Journée et al., 2010; Yuan &
Zhang, 2011; Ma, 2011), the biconvex algorithm PMD
(Witten et al., 2009) and the semidefinite relaxation
DSPCA (d’Aspremont et al., 2004).

For data dependence, in low dimensions, Skinner et al.
(1986) study the behavior of PCA when the selection
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of a sample of observations depends on a vector of la-
tent covariates as, for example, in stratified sampling.
Their analysis is based on the normality assumption
and that the knowledge of the survey design is known.
There are even fewer literatures in high dimensions for
the dependent data. Loh & Wainwright (2011) study
the high dimensional regression for Gaussian random
vectors following a stationary vector regressive pro-
cess. Very recently, Fan et al. (2012) analyze the pe-
nalized least square estimators, taking a weakly de-
pendence structure, called α-mixing, of the noisy term
into consideration.

There are several drawbacks of PCA (or sparse PCA):
(i) It is not scale-invariant, i.e., changing the measure-
ment scale of variables makes the estimates different;
(ii) Most estimating procedures require the data to
be either Gaussian or sub-Gaussian so that the sam-
ple covariance matrix S converges to Σ in a fast rate;
(iii) It cannot handle dependent data. Compared with
PCA and sparse PCA, Han & Liu (2012) exploit a
nonparametric Kendall’s tau based regularization pro-
cedure, named Copula Component Analysis (COCA),
for parameter estimation. They show that COCA is
scale-invariant, able to deal with continuous data with
arbitrary margins. In this paper, we further generalize
their results, showing that COCA can allow weak data
dependence. In particular, we provide the generaliza-
tion bounds of convergence for both support recovery
and parameter estimation for dependent data using
our method. We provide explicit sufficient conditions
on the the degree of dependence, under which the same
parametric rate can be achieved. To our knowledge,
this is the first work of analyzing the theoretical perfor-
mance of PCA for dependent data in high dimensional
settings.

The rest of the paper is organized as follows. In the
next section, we briefly review the nonparanormal fam-
ily (Liu et al., 2009; 2012) and the data dependence
structure. In Section 3, we introduce the models and
rank-based estimators proposed by Han & Liu (2012).
We provide our main theoretical analysis of the rank-
based estimators for the dependent data in Section 4.
In Section 5, we employ the on synthetic data to illus-
trate the robustness of COCA to data dependence.

2. Background

We start with notations: Let M = [Mjk] ∈ Rd×d and
v = (v1, ..., vd)T ∈ Rd. Let v’s subvector with entries
indexed by I be denoted by vI . Let M’s submatrix
with rows indexed by I and columns indexed by J be
denoted by MIJ . Let MI∗ and M∗J be the submatrix
of M with rows in I, and the submatrix of M with

columns in J . For 0 < q < ∞, we define the `q and
`∞ vector norms as

||v||q :=
( d∑

i=1

|vi|q
)1/q

and ||v||∞ := max
1≤i≤d

|vi|,

and we define ||v||0 := card(supp(v)) · ||v||2. We define
the matrix `max norm as the elementwise maximum
value: ||M||max := max{|Mij |}. Let Λj(M) be the
j-th largest eigenvalue of M. In particular,

Λmin(M) := Λd(M) and Λmax(M) := Λ1(M)

are the smallest and largest eigenvalues of M. The
vectorized matrix of M, denoted by vec(M), is defined
as:

vec(M) := (MT
∗1, . . . ,M

T
∗d)

T .

Let Sd−1 := {v ∈ Rd : ||v||2 = 1} be the d-dimensional
`2 sphere. For any two vectors a,b ∈ Rd and any
two squared matrices A,B ∈ Rd×d, denote the inner
product of a and b, A and B by

〈a,b〉 := aT b and 〈A,B〉 := Tr(AT B).

The sign d= denotes that the two sides of the equality
have the same distributions. For a sequence of random
vector {Xt}∞t=−∞ and two integers L < U , we denote
XU

L := {Xt}U
t=L. The notation P(·) represents the

probability if it is a set inside the brackets and the
law (distribution) if it is a random vector inside the
brackets.

2.1. The Nonparanormal

We first provide the definition of the nonparanormal
following Liu et al. (2012).

Definition 2.1 (The nonparanormal). Let f =
{fj}d

j=1 be a set of monotone univariate functions.
We say that a d dimensional random variable X =
(X1, . . . , Xd)T follows a nonparanormal distribution
NPNd(Σ, f), if

f(X):=(f1(X1), . . . , fd(Xd))T∼Nd(0,Σ), diag(Σ)=1.

We call Σ the latent correlation matrix.

We next proceed to the invariance property of the
rank-based estimator Kendall’s tau in the nonpara-
normal family. Let X = (X1, . . . , Xd)T be a random
vector. Let X̃j and X̃k be two independent copies of
Xj and Xk. The population version of the Kendall’s
tau statistic is:

τ(Xj , Xk) := Corr
(
sign(Xj − X̃j), sign(Xk − X̃k)

)
.
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Let x1, . . . ,xn ∈ Rd be n observed data points. The
sample version Kendall’s tau statistic is defined as:

τ̂jk(x1, . . . ,xn) :=
2

n(n− 1)

∑
1≤i<i′≤n

sign(xij − xi′j)

· (xik − xi′k), (2.1)

which is monotone transformation-invariant correla-
tion between the empirical realizations of two random
variables Xj and Xk. For x1, . . . ,xn independent, it
is easy to verify that Eτ̂jk(x1, . . . ,xn) = τ(Xj , Xk).
We denote R̂ = [R̂jk] ∈ Rd×d with

R̂jk = sin(
π

2
τ̂jk(x1, . . . ,xn))

the Kendall’s tau matrix.

Another interpretation of the Kendall’s tau statistic is
that it is an association measure based on the notion
of concordance. We call two pairs of real numbers
(s, t) and (u, v) concordant if (s − t)(u − v) > 0 and
disconcordant if (s − t)(u − v) < 0. Kruskal (1958)
show that

τ(Xj , Xk) =P
(
(Xj − X̃j)(Xk − X̃k) > 0

)
− P

(
(Xj − X̃j)(Xk − X̃k) < 0

)
. (2.2)

The following theorem, coming from Kruskal (1958),
states the invariance property of the relationship be-
tween the population Kendall’s tau statistic τ(Xj , Xk)
and the latent correlation coefficient Σjk in the non-
paranormal family.

Theorem 2.2. Let X := (X1, . . . , Xd)T ∼
NPNd(Σ, f). We denote τ(Xj , Xk) to be the
population Kendall’s tau statistic between Xj and Xk.
Then Σjk = sin

(
π
2 τ(Xj , Xk)

)
.

Proof. To prove Theorem 2.2, we actually have

τ(Xj , Xk) = P
(
(Xj − X̃j)(Xk − X̃k) > 0

)
− P

(
(Xj − X̃j)(Xk − X̃k) < 0

)
= P

(
(fj(Xj)− fj(X̃j))(fk(Xk)− fk(X̃k)) > 0

)
− P

(
(fj(Xj)− fj(X̃j))(fk(Xk)− fk(X̃k)) < 0

)
=

2
π

arcsin(Σjk).

The last equality is coming from Kruskal (1958)’s re-
sult for Gaussian distribution.

2.2. Mixing Conditions

In this section we provide definitions of several mod-
els of non-independent data. In particular, we will
introduce the notions of strong mixing conditions: φ-
mixing and η-mixing. These will be utilized later in
analyzing the performance of the proposed method for
the dependent data. We first introduce the stationary
m-dependence sequences as follows.

Definition 2.3 (m-dependence). A stationary se-
quence X1, . . . ,Xn is said to be m-dependence if and
only if (i) Xi

d= X for i ∈ {1, . . . , n} and some ran-
dom vector X ∈ Rd; (ii) For any s, t ∈ {1, . . . , n}, Xs

is independent of Xt whenever |s− t| > m.

m-dependency is of particular interest in several fields.
For example, in genetics and epidemiology, data might
contain samples of families and there are correlation
between members of the same family. Moreover, m-
dependence can be seen as a simplified version of a
time series, where Xs and Xt will often be highly de-
pendent if |s− t| is small, with decreasing dependence
as |s− t| increases.

Next we proceed to some more general weak depen-
dency conditions. In particular, we build the depen-
dence structure on the mixing sequences. To this end,
we first introduce the φ measure of dependence as fol-
lows.

Definition 2.4 (φ measure of dependence). Let
(Ω,F , P) be the probability space and A,B ⊂ F be two
σ-fields. We define the φ measures of dependence as:

φ(A,B) := sup
A∈A,B∈B,P(A)>0

|P(B |A)− P(B)|. (2.3)

We then describe the strong mixing conditions. Let
X = {Xt}∞t=−∞ be a sequence of random vectors. For
−∞ ≤ L ≤ U ≤ ∞, define the σ-field FU

L to be FU
L :=

σ(Xi, L ≤ i ≤ U). For two probability measures µ1, µ2

on the measurable space (Ω,F), the total variation
distance between µ1 and µ2 is defined as:

||µ1 − µ2||TV := sup
A∈F

|µ1(A)− µ2(A)|. (2.4)

With the above notations, the φ and η dependence
coefficients are defined as:

Definition 2.5. Let X = {Xi}∞i=0 be a sequence
of random vectors defined in the probability space
(Ω,F , P) and Xj

i be the subsequence. For 0 ≤ L ≤
U ≤ ∞, remind that FU

L := σ(Xi, L ≤ i ≤ U). The φ
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and η dependence coefficients are defined as:

φ(m) := sup
j∈Z

φ(Fj
0 ,F∞j+m);

ηij := ess sup
y,x,x′

||P(Xn
j |Xi−1

1 = y,Xi = x)

− P(Xn
j |Xi−1

1 = y,Xi = x′)||TV .

The following lemma connects ηij to φ(m). This is
coming from Kontorovich & Ramanan (2008) for dis-
crete case and a stronger version applicable to contin-
uous case can be traced back to Samson (2000). This
lemma will play an important role later in analyzing
our proposed method. For self-containedness, we in-
clude a proof here.

Lemma 2.6 (Samson (2000)). With the above no-
tations, we have ηij ≤ 2φ(j − i).

Proof. By definition, we have

||P(Xn
j |Xi−1

1 =y,Xi = x)−P(Xn
j |Xi−1

1 =y,Xi = x′)||TV

≤ ||P(Xn
j |Xi−1

1 = y,Xi = x)− P(Xn
j )||TV

+ ||P(Xn
j |Xi−1

1 = y,Xi = x′)− P(Xn
j )||TV

≤ 2φ(j − i).

Therefore, by the continuity of the probability, we have
ηij ≤ 2φ(j − i). This completes the proof.

3. Methods

In this section, we briefly review the statistical models
of Copula Component Analysis (COCA) proposed by
Han & Liu (2012). The aim of COCA is to recover the
principal components of the latent Gaussian distribu-
tion in the nonparanormal family.

3.1. Scale-invariant PCA

PCA is not scale invariant, meaning that variables
measured in different scales will result in different es-
timators (Jolliffe, 2005). To attack this problem, PCA
conducted on the sample correlation matrix S0 instead
of the sample covariance matrix S is commonly used.
We call the procedure of conducting PCA on S0 the
scale-invariant PCA. It is realized that a large portion
of works claiming doing PCA are actually doing the
scale-invariant PCA. It is under debate whether PCA
or the scale-invariant PCA are preferred in different
circumstances and we refer to Jolliffe (2005) for more
discussions on it. In the population level, the scale-
invariant PCA aims at recovering the leading eigen-
vectors of the correlation matrix, which has the same
sparsity pattern as the leading eigenvectors of the co-
variance matrix.

3.2. Models

One of the intuition of PCA is coming from the Gaus-
sian distribution. In geometric, the principal compo-
nents define the major axes of the contours of con-
stant probability for the multivariate Gaussian (Jol-
liffe, 2005). However, such a nice interpretation does
not exist anymore when the distributions are away
from the Gaussian. Balasubramanian & Schwartz
(2002) construct examples such that PCA loses in the
sense of preserving the structure of the data to the
most. However, under the nonparanormal model and
considering the monotone transformation f as a type
of data contamination, the geometric intuition of PCA
comes back.

In particular, for a positive definite matrix Σ with
diag(Σ) = 1, let λ1 ≥ λ2 ≥, . . . ,≥ λd be eigenvalues
of Σ and θ1, . . . ,θd be the corresponding eigenvectors.
For 0 ≤ q ≤ 1, the `q ball Bq(Rq) is defined as:

when q = 0, B0(R0):={v ∈ Rd : card(supp(v)) ≤ R0};
when 0 < q ≤ 1, Bq(Rq) := {v ∈ Rd : ||v||qq ≤ Rq}.

Accordingly, the model M(q, Rq,Σ, f) is considered:

M(q, Rq,Σ, f) =
{
X : X ∼ NPNd(Σ, f),

θ1 ∈ Sd−1 ∩ Bq(Rq)
}
. (3.1)

The `q ball induces a (weak) sparsity pattern when
0 ≤ q ≤ 1 and has been analyzed in linear regression
(Raskutti et al., 2011) and sparse PCA (Vu & Lei,
2012). Moreover, the data are assumed to come from a
nonparanormal distribution, which is a strict extension
to the Gaussian distribution.

Inspired by the model M(q, Rq,Σ, f), we consider the
following global estimator θ̃1, which maximizes the fol-
lowing equation with the constraint that θ̃1 ∈ Bq(Rq)
for some 0 ≤ q ≤ 1:

θ̃1 = argmax
v∈Rd

vT R̂v,

subject to v ∈ Sd−1 ∩ Bq(Rq). (3.2)

Here R̂ is the estimated Kendall’s tau matrix. The cor-
responding estimator θ̃1 can be considered as a non-
linear dimensional reduction procedure and has the
potential to gain more flexibility compared with PCA,
as shown in the analysis of Han & Liu (2012).

4. Theoretical Properties

In this section we provide the theoretical properties of
the proposed COCA estimator θ̃1 as obtained in Equa-
tion (3.2) for the dependent data. To our knowledge,
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this is the first work analyzing the theoretical perfor-
mance of PCA for the dependent data in high dimen-
sions. To provide some insights, we first deliver the
rate of θ̃1 converging to θ1 when the data points are
independent from each other. This theorem is coming
from Han & Liu (2012).

Theorem 4.1 (Independence). Let θ̃1 be the global
optimum in Equation (3.2) and X ∈ M(q, Rq,Σ, f).
Let x1, . . . ,xn be an independent sequence of realiza-
tions of X and R̂ := [sin(π

2 τ̂jk(x1, . . . ,xn))] be defined
as in Equation (2.1). For any two vectors v1 ∈ Sd−1

and v2 ∈ Sd−1, let | sin∠(v1,v2)| =
√

1− (vT
1 v2)2.

Then we have, with probability at least 1− 1/d2,

sin2∠(θ̃1,θ1) ≤ γqR
2
q

(
2π2

(λ1 − λ2)2
· log d

n

) 2−q
2

, (4.1)

where γq = 2 ·I(q = 1)+4 ·I(q = 0)+(1+
√

3)2 ·I(0 <
q < 1) and λj = Λj(Σ) for j = 1, 2.

Proof. The key idea of the proof is to utilize the `max

norm convergence result of R̂ to Σ. See Han & Liu
(2012) for a detailed proof.

It can be observed that the convergence rate of θ̃1 to
θ1 will be faster when θ1 lies in a more sparse ball. It
makes sense because the effect of “the curse of dimen-
sionality” will be decreasing when the parameters are
more and more sparse. Generally, when Rq and λ1, λ2

do not scale with (n, d), the rate is OP

(
( log d

n )1−q/2
)
,

which is the parametric rate Vu & Lei (2012) obtain.
In the following, we show that Theorem 4.1 can be
applied to derive a support recovery result.

Corollary 4.2 (Independence). With the settings
and notations in Theorem 4.1 held, let

Θ := supp(θ1) and Θ̂ := supp(θ̃1).

If we further have

min
j∈Θ

|θ1j | ≥
2
√

2R0π

λ1 − λ2

√
log d

n
,

then we have P(Θ̂ = Θ) ≥ 1− d−2.

We then generalize Theorem 4.1 to the non-
independent cases. Here the notions of m-dependence
and φ-mixing sequences as defined in Section 2.2
are exploited. We first provide an upper bound for
the estimator θ̃1 when the data points form an m-
dependence sequence.

Theorem 4.3 (m-dependence). Let X ∈
M(q, Rq,Σ, f) and {Xt}n

t=1 be a m-dependence

stationary sequence with Xt
d= X. Let θ̃1 be

the global optimum in Equation (3.2), where
R̂ := [sin(π

2 τ̂jk(X1, . . . ,Xn))] is defined as in
Equation (2.1). Let the parameter

γm,n :=2(m + 1)2(1−m/n) + m(m + 1)(2m + 1)/(3n)

represent the effect of dependence on the rate
of convergence. Then we have, for any n ≥
4m2/(γm,n log d), with probability at least 1− 1/d2

sin2∠(θ̃1,θ1) ≤ γqR
2
q

(
4π2γm,n

(λ1 − λ2)2
· log d

n

) 2−q
2

, (4.2)

where γq = 2 ·I(q = 1)+4 ·I(q = 0)+(1+
√

3)2 ·I(0 <
q < 1) and λj = Λj(Σ) for j = 1, 2.

Proof. The key is to estimate the convergence rate of
R̂ to Σ in the m-dependence setting. The detailed
proof is presented in Han & Liu (2013).

Remark 4.4. It can be observed in Equation (4.2)
that θ̃1 converges to θ1 in a rate related to both (n, d)
and m. Generally, when Rq and λ1, λ2 do not scale

with (n, d), the rate is OP

(
(m2 log d

n )1−q/2
)
. When m

is fixed, the rate is optimal.

Using Theorem 4.3, we provide the support recovery
result using a similar technique as the proof of Corol-
lary 4.2.

Corollary 4.5 (m-dependency). With the settings
and notations in Theorem 4.3 held, let

Θ := supp(θ1) and Θ̂ := supp(θ̃1)

. If we further have

min
j∈Θ

|θ1j | ≥
4R0πγm,n

λ1 − λ2

√
log d

n
,

then we have P(Θ̂ = Θ) ≥ 1− d−2.

We next proceed to bound the angle between θ̃1 and
θ1 in a more general setting of data dependence. Here
the dependence is quantified by φ measure as defined
in Definitions 2.4 and 2.5.

Theorem 4.6 (φ-mixing). Let X ∈ M(q, Rq,Σ, f)

and {Xt}n
t=1 be a stationary sequence with Xt

d= X.
We assume that {Xt}n

t=1 satisfies that for any j 6= k ∈
{1, . . . , d} and m ∈ N,

sup
i∈Z

φ
(
σ((X1){j,k}, . . . , (Xi){j,k}),

σ((Xi+m){j,k}, . . . , (Xn){j,k})
)
≤ φ(m).
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Here {φ(i)}n−1
i=1 is a sequence of positive numbers. Let

θ̃1 be the global optimum in Equation (3.2), where
R̂ := [sin(π

2 τ̂jk(X1, . . . ,Xn))] is defined as in Equa-
tion (2.1). Let

γφ :=

(
1 + 2

n−1∑
i=1

φ(i)

)2

(4.3)

represent the effect of dependence on the rate of con-
vergence. Then we have, supposing

n ≥

[∑n−1
i=1

(
n−i
n−1φ(i)

)]2
γφ log d

,

with probability at least 1− 1/d2,

sin2∠(θ̃1,θ1) ≤ γqR
2
q

(
16π2γφ

(λ1 − λ2)2
· log d

n

) 2−q
2

, (4.4)

where γq = 2 ·I(q = 1)+4 ·I(q = 0)+(1+
√

3)2 ·I(0 <
q < 1) and λj = Λj(Σ) for j = 1, 2.

Proof. The main proof is to quantify the bias term,
and then utilize Lemma 2.6 to build a bridge between
the results in Section 5.1 in Kontorovich (2007) and
the desired concentration inequality we need. Detailed
proof is presented in Han & Liu (2013).

Remark 4.7. Sequences satisfying m-dependence is
a subset of φ-mixing sequences. However, Theorem
4.3 provides a faster convergence rate than the re-
sult in Theorem 4.6. Moreover, the proof techniques
in Theorem 4.3 has interesting points itself. It can
be observed that when φ(i) decreases fast (i.e., weak-
dependence), the rate is near-optimal. For example,
supposing that Rq and λ1, λ2 do not scale with (n, d),

when φ(i) = O(i−2), the rate is OP

((
log d

n

)1−q/2
)

,

which is optimal. When φ(i) = O(i−1), the rate is

OP

((
log2 n log d

n

)1−q/2
)

.

Again, a support recovery result can be provided using
a similar technique as the proof of Corollaries 4.2 and
4.5.
Corollary 4.8 (φ-mixing). With the settings and
notations in Theorem 4.3 held, let

Θ := supp(θ1) and Θ̂ := supp(θ̃1)

. If we further have

min
j∈Θ

|θ1j | ≥
8R0πγφ

λ1 − λ2

√
log d

n
,

then we have P(Θ̂ = Θ) ≥ 1− d−2.

5. Experiments

In this section we investigate the robustness of COCA
to data dependence on the synthetic data. We use the
truncated power method proposed by Yuan & Zhang
(2011) to approximate the global estimator θ̃1 ob-
tained in Equation (3.2). Two procedures are con-
sidered here:
Pearson: the classic sparse PCA using the Pearson
sample correlation matrix;
Kendall: the proposed rank-based scale-invariant PCA
method using the Kendall’s tau correlation matrix.

In the simulation study we sample n data points
x1, . . . ,xn from a certain random vector X ∈ Rd with
some type of data dependence. Here we set d = 100.
We follow a similar generating scheme as in Han &
Liu (2012). A covariance matrix Σ is firstly synthe-
sized through the eigenvalue decomposition, where the
first two eigenvalues are given and the corresponding
eigenvectors are pre-specified to be sparse.

In detail, we let ω1 ≥ ω2 ≥ . . . ≥ ωd be the d eigenval-
ues of Σ and u1, u2, . . . , ud be the corresponding eigen-
vectors. Suppose that the first two dominant eigenvec-
tors of Σ, u1 and u2, are sparse in the sense that only
the first s = 10 entries of u1 and the second s = 10
entries of u2 nonzero, i.e.,

u1j=
{ 1√

10
1 ≤ j ≤ 10

0 otherwise
and u2j=

{ 1√
10

11 ≤ j ≤ 20
0 otherwise

and ω1 = 5, ω2 = 2, ω3 = . . . = ωd = 1. The remain-
ing eigenvectors are chosen arbitrarily. The correlation
matrix Σ0 is accordingly generated and the leading
eigenvector of Σ0 is sparse. We aim at recovering the
leading eigenvector θ1.

To sample data from the nonparanormal, we also
need the transformation functions: f = {fj}d

j=1.
Here the following transformation function is consid-
ered: There exist five univariate monotone functions
h1, h2, . . . , h5 : R → R and

h = {h1, h2, h3, h4, h5, h1, h2, h3, h4, h5, . . .},

where

h1(x) := x, h2(x) := sign(x)|x|1/2, h3(x) := x3,

h4(x) := Φ(x), h5(x) := exp(x).

Here Φ is defined to be the cumulative distribution
functions of the standard Gaussian. We then gener-
ate n = 100 data points y1, . . . ,yn such that yi ∼
Nd(0,Σ) where Σ is defined as above. To evaluate the
robustness of different methods for dependent data, we
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Figure 1. ROC curves for the Gaussian (Scheme 1) and non-Gaussian (Scheme 2) data (above and below) using the
truncated power algorithm are presented. Here the data dependence degrees are at different levels (ρ = 0.2, 0.4, 0.6). n is
fixed to be 100 and d = 100.

suppose that z1, . . . ,zn follow a stationary vector au-
toregressive process as defined in Loh & Wainwright
(2011). In detail, we assume that z1 = y1 and for
some real number 0 ≤ ρ ≤ 1

zt+1 = ρ · zt +
√

1− ρ2yt+1, for t = 1, . . . , n− 1.

Here we have that zi ∼ Nd(0,Σ) forms a dependent
random sequence. Finally, we have the data points
x1, . . . ,xn:
[Scheme 1] {xi}n

i=1 = {zi}n
i=1, with xi ∼ Nd(0,Σ);

[Scheme 2] {xi}n
i=1 = {h(zi)}n

i=1 where h :=
{h1, h2, h3, h4, h5, . . .}, with xi follows a non-Gaussian
nonparanormal distribution.
The final data matrix we obtained is X =
(x1, . . . ,xn)T ∈ Rn×d. The truncated power algo-
rithm is then employed on X to computer the esti-
mated leading eigenvector θ̃1.

To evaluate the empirical variable selection property
of different methods, we define

S := {1 ≤ j ≤ d : θ1j 6= 0}, (5.1)

Ŝδ := {1 ≤ j ≤ d : θ̃1j 6= 0}, (5.2)

to be the support sets of the true leading eigenvector
θ1 and the estimated leading eigenvector θ̃1 using the

tuning parameter δ. In this way, the False Positive
Number (FPN) and False Negative Number (FNN) of
δ are defined as:

FPN(δ) := the number of features in Ŝδ not in S,

FNN(δ) := the number of features in S not in Ŝδ.

Then we can further define the False Positive
Rate(FPR) and False Negative Rate (FNR) corre-
sponding to the tuning parameter δ to be

FPR(δ) := FPN(δ)/(d− s),FNR(δ) := FNN(δ)/s.

Under the Scheme 1 and Scheme 2 with different levels
of dependence (ρ = 0, 0.2, 0.4, 0.6, 0.8), we repeatedly
generate the data matrix X for 1,000 times and com-
pute the averaged False Positive Rates and False Neg-
ative Rates using a path of tuning parameters δ. The
feature selection performances of different methods are
then evaluated by plotting (FPR(δ), 1−FNR(δ)). The
corresponding ROC curves are presented in Figure 1.

There are several observations we can see from Figure
1: (i) With the increase of the data dependence level,
both methods’ performance decreases. (ii) Compared
with the Gaussian case (Scheme 1), the difference be-
tween Pearson and Kendall are larger when the data
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Table 1. Quantitative comparison on the dataset under the generating Scheme 1 and Scheme 2. The means of the oracle
false positive and false negative rates with their standard deviations in parentheses are presented. Here n = 100, d = 100
and the dependence degree ρ is increasing from 0 to 0.8.

Gaussian(Scheme 1) non-Gaussian (Scheme 2)

Pearson Kendall Pearson Kendall

ρ FPR(%) FNR FPR FNR FPR FNR FPR FNR

0.0 1.1(0.80) 0.0(0.00) 1.2(0.52) 0.0(0.00) 17.2(3.60) 7.3(3.72) 1.2(0.52) 0.0(0.00)
0.2 1.8(0.89) 0.0(0.14) 1.3(0.69) 0.0(0.00) 17.4(3.42) 7.6(3.66) 1.3(0.69) 0.0(0.00)
0.4 4.4(1.30) 0.2(0.47) 2.7(1.06) 0.0(0.20) 18.5(3.56) 10.5(4.52) 2.7(1.06) 0.0(0.20)
0.6 10.3(2.19) 2.8(1.77) 8.0(1.92) 1.7(1.39) 20.8(4.40) 16.9(5.70) 8.0(1.92) 1.7(1.39)
0.8 20.2(4.30) 20.8(5.87) 18.8(4.17) 18.7(5.52) 24.4(4.93) 27.7(6.38) 18.8(4.17) 18.7(5.52)

are generated from Scheme 2. This coincides with the
observations in Han & Liu (2012). (iii) When the data
dependence degree ρ increases, Kendall performs better
than Pearson in both the Gaussian and Nonparanor-
mal cases, meaning that Kendall is more robust to the
data dependence than Pearson.

To explore the empirical performances of difference
methods using the truncated power method more, we
define an oracle tuning parameter δ∗ to be the δ with
the lowest FPR(δ) + FNR(δ):

δ∗ := argmin
δ

( FPR(δ) + FNR(δ) ). (5.3)

In this way, an estimator θ̃1 using the oracle tuning
parameter δ∗ can be calculated and we compute the
oracle false positive and false negative rates as:

FPR∗ = FPR(δ∗) and FNR∗ = FNR(δ∗). (5.4)

We present the means and standard deviations of
(FPR∗,FNR∗) in Table 1.

There are several observations we can see from Ta-
ble 1: (i) When ρ is increasing, both methods’ oracle
positive and negative rates decrease. (ii) In the per-
fect Gaussian case (Scheme 1) where the data points
are independent of each other (ρ = 0), there is no
statistically significant difference between Kendall and
Pearson. (iii) There exist statistically significant dif-
ferences between Kendall and Pearson in Scheme 2, no
matter how large the degree of data dependence (ρ)
is. (iv) There is a statistically significant difference be-
tween Pearson and Kendall for the Gaussian case when
ρ = 0.4, and Kendall performs constantly better than
Pearson when ρ > 0. In all, Kendall is more robust to
the data dependence than Pearson.

6. Conclusion

In this paper we analyze both theoretical and empiri-
cal performance of a newly proposed high dimensional
semiparametric principal component analysis, named
Copula Component Analysis (COCA), when the data
are dependent. We provide explicit upper bounds of
convergence for COCA estimators when the observa-
tions are drawn from several different types of non-
i.i.d. processes. Our results show that COCA can
allow weak dependence. To our knowledge, this is
the first work analyzing the theoretical performance
of PCA for the dependent data in high dimensions.
Our result strictly generalize the analysis in Han & Liu
(2012) and the techniques we used have the separate
interest for analyzing a variety of other multivariate
statistical methods.
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