
Domain-Specific Keyphrase Extract ion 
Eibe Frank and Gordon W. Paynter and I an H. W i t t e n 

Department of Computer Science 
University of Waikato 

Hamilton, New Zealand 

C a r l G u t w i n 
Department of Computer Science 

University of Saskatchewan 
Saskatoon, Canada 

Abs t rac t 

Keyphrases are an important means of doc­
ument summarization, clustering, and topic 
search. Only a small minority of documents 
have author-assigned keyphrases, and manually 
assigning keyphrases to existing documents is 
very laborious. Therefore it is highly desirable 
to automate the keyphrase extraction process. 
This paper shows that a simple procedure for 
keyphrase extraction based on the naive Bayes 
learning scheme performs comparably to the 
state of the art. It goes on to explain how 
this procedure's performance can be boosted by 
automatically tailoring the extraction process 
to the particular document collection at hand. 
Results on a large collection of technical reports 
in computer science show that the quality of 
the extracted keyphrases improves significantly 
when domain-specific information is exploited. 

1 I n t r oduc t i on 
Keyphrases give a high-level description of a document's 
contents that is intended to make it easy for prospec­
tive readers to decide whether or not it is relevant for 
them. But they have other applications too. Because 
keyphrases summarize documents very concisely, they 
can be used as a low-cost measure of similarity between 
documents, making it possible to cluster documents into 
groups by measuring overlap between the keyphrases 
they are assigned. A related application is topic search: 
upon entering a keyphrase into a search engine, all doc­
uments with this particular keyphrase attached are re­
turned to the user. In summary, keyphrases provide a 
powerful means for sifting through large numbers of doc­
uments by focusing on those that are likely to be rele­
vant. 

Unfortunately, only a small fraction of documents have 
keyphrases assigned to than—mostly because authors 
only provide keyphrases when they are explicitly in­
structed to do so—and manually attaching keyphrases 

Cra ig G . Nev i l l -Mann ing 
Department of Computer Science 

Rutgers University 
Piscataway, New Jersey, USA 

to existing documents is a very laborious task. There­
fore, ways of automating this process using artifi­
cial intelligence—more specifically, machine learning 
techniques—are of interest. There are two different ways 
of approaching the problem: keyphrase assignment and 
keyphrase extraction. In keyphrase assignment, also 
known as text categorization [Dumais et al., 1998], it is 
assumed that all potential kephrases appear in a prede­
fined controlled vocabulary—the categories. The learn­
ing problem is to find a mapping from documents to cat­
egories using a set of training documents, which can be 
accomplished by training a classifier for each category, 
using documents that belong to it. as positive examples 
and the rest as negative ones. A new document is then 
processed by each of the classifiers and assigned to those 
categories whose classifiers identify it as a positive exam­
ple. The second approach, keyphrase extraction, which 
we pursue in this paper, does not restrict the set of pos­
sible keyphrases to a selected vocabulary. On the con­
trary, any phrase in a new document can be identified— 
extracted—as a keyphrase. Using a set of training doc­
uments, machine learning is used to determine which 
properties distinguish phrases that are keyphrases from 
ones that are not. 

Turney [1999] describes a system for keyphrase ex­
traction, GenEx, based on a set of parametrized heuris­
tic rules that are fine-tuned using a genetic algorithm. 
The genetic algorithm optimizes the number of cor­
rectly identified keyphrases in the training documents 
by adjusting the rules' parameters. Turney compares 
GenEx to the straightforward application of a stan­
dard madiine learning technique—bagged decision trees 
[Breiman, 1996]—and concludes that it gives superior 
performance. He also shows that GenEx generalizes well 
across collections: when trained on a collection of jour­
nal articles it successfully extracts keyphrases from web 
pages on a different topic. This is an important feature 
because training GenEx on a new collection is computa­
tionally very expensive. 

This paper briefly summarizes the Kea keyphrase ex­
traction algorithm, and goes cm to show that it gen­
eralizes as well as GenEx across collections. In con-

668 MACHINE LEARNING 



trast to GenEx, however, it does not employ a special-
purpose genetic algorithm for training and keyphrase 
extraction: it is based on the well-known naive Bayes 
machine learning technique. Training is therefore much 
quicker. The main finding of this paper is that perfor­
mance can be boosted significantly if Kea is trained on 
documents that are from the same domain as those from 
which keyphrases are to be extracted. This allows us to 
capitalize on speedy training, because deriving domain-
specific models would be less practical wi th the original 
lengthy genetic algorithm approach. 

Section 2 summarizes the Kea algorithm for keyphrase 
extraction, and shows that it performs comparably to 
GenEx if used in the same domain-independent set­
t ing. Section 3 explains a simple enhancement that en­
ables Kea to exploit collection-specific information about 
keyphrases, and shows how this addition boosts perfor­
mance on a large collection of computer science technical 
reports. The main findings of this paper are summarized 
in Section 4. 

2 Keyphrase Extraction using Naive 
Bayes 

Keyphrase extraction is a classification task: each phrase 
in a document is either a keyphrase or not, and the prob­
lem is to correctly classify a phrase into one of these two 
categories. Machine learning provides oif-the-shelf tools 
for this kind of situation. In machine learning termi­
nology, the phrases in a document are "examples" and 
the learning problem is to find a mapping from the exam­
ples to the two classes "keyphrase" and "not-keyphrase". 
Machine learning techniques can automatically generate 
this mapping if they are provided wi th a set of training 
examples, that is, examples wi th class labels assigned to 
them. In our context, these are simply phrases which 
have been identified as either being keyphrases or not. 
Once the learning method has generated the mapping 
given the training data, it can be applied to unlabeled 
data, in other words, it can be used to extract keyphrases 
from new documents. 

2.1 Genera t ing Cand ida te Phrases 

Not all phrases in a document are equally likely to be 
keyphrases a priori In order to facilitate the learn­
ing process, most phrases that appear can be eliminated 
from the set of examples that are presented to the learn­
ing scheme. 

First, the input text is split up according to phrase 
boundaries (punctuation marks, dashes, brackets, and 
numbers). Non-alphanumeric characters (apart from in­
ternal periods) and al l numbers are deleted. Kea takes 
all subsequences of these ini t ial phrases up to length 
three as candidate phrases. It t han eliminates those 
phrases that begin, or end, wi th a stopword- It also 
deletes phrases that consist merely of a proper noun. In 
the next step, al l words are case-folded and stemmed 
using the iterated Lovins stemmer [Lovins, 1968], and 

stemmed phrases that occur only once in the document 
are removed. 

2.2 B u i l d i n g t h e M o d e l 
So far we have shown how candidate phrases are gener­
ated. However, in conventional machine learning terms, 
phrases by themselves are useless—it is their properties, 
or "attributes," that are important. Several plausible 
attributes immediately spring to mind: the number of 
words in a phrase, the number of characters, the position 
of the phrase in the document, etc. However, in our ex-
periments, only two attributes turned out to be useful in 
discriminating between keyphrases and non-keyphrases: 
the score of a phrase, and the distance into the 
document of the phrase's first appearance. In the follow­
ing we explain how these attributes are computed and 
how a naive Bayes model [Domingos and Pazzani, 1997] 
is built from them. 

The score of a phrase is a standard metric 
in information retrieval. It is designed to measure how 
specific a phrase P is to a given document Dz 

The first probability in this equation is estimated by 
counting the number of times the phrase P occurs in 
the document D, and the second one by counting the 
number of documents in the training corpus that contain 
P (excluding D).1 

The distance of a phrase from the beginning of a doc­
ument is calculated as the number of words that precede 
its first appearance, divided by the number of words in 
the document. The resulting feature is a number be­
tween 0 and 1 that represents the proportion of the doc­
ument preceding the phrase's first appearance. 

Both these attributes are real numbers. The naive 
Bayes learning method can process numeric attributes 
by assuming, for example, that they are normally dis-
tr ibuted. However, we obtained better results by dis-
cretizing the attributes prior to applying the learning 
scheme [Domingos and Pazzani, 1997]. This indicates 
that the normal distribution is not appropriate in this 
application. Discretization quantizes a numeric attribute 
into ranges so that the resulting new attribute can be 
treated as a nominal one: each value represents a range 
of values of the original numeric attr ibute. Kea uses 
Fayyad and Irani's [1993] discretization scheme, which 
is based on the Minimum Description Length principle. 
It recursively splits the attr ibute into intervals, at each 
stage minimizing the entropy of the class distribution. 
It stops spli t t ing when the total cost for encoding both 
the discretization and the class distribution cannot be 
reduced further. 

The naive Bayes learning scheme is a simple applica­
tion of Bayes' formula. It assumes that the attributes— 
in this case TFxIDF and distance—are independent 

1The counters are initialized to one to avoid taking the 
logarithm of zero. 

FRANK ET AL 669 



given the class. Making this assumption, the probability 
that a phrase is a key phrase given that it has discretized 
TFxIDF value T and discretized distance D is: 

where Pr[T/key] is the probability that a keyphrase has 
TFxIDF score T, Pr[D\key] the probability that it has 
distance D, Pr[key] the probability that a phrase 
is a keyphrase, and Pr [T,D] a normalization factor that 
makes Pr[key/ T, D] lie between zero and one. Al l these 
probabilities can be estimated reliably by counting the 
number of times the corresponding event occurs in the 
training data.2 

It has been shown that naive Bayes can be a very 
accurate classification method even if the independence 
assumption is not correct [Domingos and Pazzani, 1997]. 
However, it can be argued that the two attributes we use, 
TFxIDF and distance, are close to being independent 
given the class. This implies that naive Bayes is close to 
being the optimum classification method for this appli-
cation, and might be the reason why it performs better 
than all other learning methods that we have investi­
gated. (In particular it performs better than bagged 
decision trees, as we show in Section 2.4.) 

2.3 E x t r a c t i n g Keyphrases 
Kea uses the procedure described above to generate a 
naive Bayes model from a set of training documents for 
which keyphrases are known (typically because the au­
thor provided them). The resulting model can then be 
applied to a new document from which keyphrases are 
to be extracted. 

First, Kea computes TFxIDF scores and distance val­
ues for all phrases in the new document using the pro­
cedure described above, taking the discretization ob­
tained from the training documents. (Both attributes 
can be computed without knowing whether a phrase is 
a keyphrase or not.) The naive Bayes model is then ap­
plied to each phrase, computing the estimated probabil­
ity of it being a keyphrase. The result is a list of phrases 
ranked according to their associated probabilities. As­
suming that the user wants to extract r keyphrases, Kea 
then outputs the r highest ranked phrases. 

There are two special cases that have to be addressed 
in order to achieve optimum performance. First, if two 
phrases have equal probability—which is quite likely to 
happen due to the discretization—they are ranked ac­
cording to their TFxIDF score (in its pre-discretized 
form). Second, if a phrase is a subphrase of another 
phrase, it is only accepted as a keyphrase if it is ranked 
higher; otherwise it is deleted from the list before the r 
top-ranking phrases are output. 

2.4 E x p e r i m e n t a l Resul ts 
We have evaluated Kea on several different document 
collections with author-assigned keyphrases. Our cri-

2The naive Bayes implementation used by Kea initializes 
all counts to one. 

terion for success is the extent to which Kea produces 
the same stemmed phrases as authors do.3 Because this 
method of evaluation is the same as used by Turney 
[1999], we can directly compare Kea's performance to 
his results. 

C o m p a r i s o n t o G e n E x 
We compared Kea and GenEx using two experimental 
settings from Turney's paper-4 The first one involves 
training and testing on journal articles. In this setting, 
55 articles are used for training (6 from the Journal of the 
International Academy of Hospitality Research, 2 from 
The Neuroscientist, 14 from the Journal of Computer-
Aided Molecular Design, and 33 from Behavioral and 
Brain Sciences), and 20 for testing (all from Psycoloquy). 
In the second setting, the same documents are used for 
training but 35 FIPS web pages ate used for testing. 

Table 1 shows the number of correctly identified 
author-provided keyphrases among the five and fifteen 
top-ranking phrases output by the extraction algorithms. 
Four extraction algorithms are represented: GenEx, fifty 
bagged C4.5 decision trees [Quinlan, 1992] as used by 
Turney, Kea, and Kea using fifty bagged C4.5 trees in­
stead of the naive Bayes learning scheme. Results for 
the first two methods are from Turney's paper.5 The 
th i rd scheme is the standard Kea algorithm that we have 
described. In the fourth, bagged C4.5 trees were used 
instead of discretization and naive Bayes, wi th all the 
standard pre- and post-processing done by Kea. This 
variation of Kea is computationally much more expen­
sive (by a factor of at least fifty). 

Turney found bagged C4.5 trees to perform universally 
worse than GenEx, but in only one of the four experi­
mental settings from Table 1, Journal/FIPS wi th cutoff 
of five, was the difference statistically significant. Kea 
sometimes performs worse than GenEx and sometimes 
better; the differences are not statistically significant (at 
the 5% level, according to a t-test). Moreover, Kea-C4.5 
performs much better than Turney's C4.5 in the case 
where the latter does significantly worse than GenEx. 
We conclude that GenEx and Kea perform at about the 
same level, Kea-C4.5 seems slightly worse but the dif­
ference is not statistically significant on these datasets. 
The only statistically significant result is the poor per­
formance that Turney observed in one case wi th C4.5. 

The difference between Turney's findings for bagged 
C4.5 trees and ours deserves some explanation. Tur­
ney uses many more attributes—among them distance-
but he does not use TFxIDF. Moreover, he performs no 
post-processing for C4.5—although he does for GenEx— 

3 Author-assigned keyphrases are, of course, deleted from 
the documents before they are given to Kea. 

4We could not compare Kea on the other document col­
lections used by Turney because we did not have access to 
his corpus of email messages, which contains confidential 
information. 

5To get the number of correctly identified keyphrases, Tur­
ney's "precision" figures were multiplied by the cutoff em-
ployed (five or fifteen). 

670 MACHINE LEARNING 



whereas we remove subphrases if they do not perform 
better than their superphrases. These appear to be the 
main differences between his way of applying C4.5 and 
ours. 

Chang ing t h e A m o u n t o f T r a i n i n g D a t a 
An interesting question is how Kea's performance scales 
wi th the amount of training data available. In order to 
investigate this, we performed experiments wi th a large 
collection of computer science technical reports (CSTR) 
from the New Zealand Digital Library (www.nzdl.org). 
The documents in CSTR are fairly noisy, partly be­
cause the source files have been extracted automati­
cally from PostScript. Also, they contain on average 
fewer keyphrases than the other collections. This makes 
keyphrase extraction in this domain more difficult than 
in the other corpuses. 

There are two potential ways in which the corpus of 
documents that is available can influence Kea's perfor­
mance on fresh data. First, training documents are 
used when computing both the discretization of the at­
tributes, and the corresponding counts for the naive 
Bayes model. It is essential that these documents 
have keyphrases assigned to them because the learning 
method needs labeled examples. Second, the document 
corpus supports the learning process when each phrase's 
"document frequency" is calculated—this is used for de­
riving its TFxIDF score. In this case the documents 
need not be labeled. Our experiments showed that no 
further performance improvement was gained by increas­
ing the number of documents used to compute the doc­
ument frequencies beyond 50. 

To illustrate the effect of training set size, Figure 1 
shows Kea's performance on an independent set of 
500 test documents. It plots the number of "correct" 
keyphrases, for both five and fifteen phrases extracted, 
against the number of documents used for training, from 
1 through 130 files. The error bars give 99% confidence 
intervals derived by training Kea on ten different train­
ing sets of the same size. We used the same independent 
100 documents for calculating the document frequencies 
throughout this particular experiment. It can be seen 
from Figure 1 that if more than twenty documents are 
used for training, l i t t le is gained by increasing the num­
ber further. W i t h 50 documents, there is no further 
performance improvement. 

These results show that Kea's performance is close to 
optimum if about 50 training documents are used; in 
other words, 50 labeled documents are sufficient to push 
performance to the l imit . However, Section 3 demon­

strates that this is not the case if domain-specific infor-
mation is exploited in the learning and extraction pro­
cess. In that case, much larger amounts of labeled train­
ing documents prove beneficial. 

Sub jec t A r e a o f T r a i n i n g Documen ts 
Now we investigate the extent to which models formed 
by Kea transfer from one subject domain to another. 
To this end we use the collection of journal articles de­
scribed above, and two collections of web pages also used 
by Turney (1999], Aliweb, and NASA, al l of which have 
keyphrases assigned. The basic procedure was to train 
on one of the collections and test on another, produc­
ing nine combinations. For each collection we chose 55 
training documents at random and used the rest for test­
ing, 20 for the journal articles, 35 for Aliweb, and 86 for 
NASA. The training documents were used to compute 
the document frequencies; thus the entire keyphrase as­
signment model was based on the training documents 
alone. For the journal articles, as well as the randomly-
chosen test set, we ran experiments wi th the same train­
ing/testing division that Turney [1999] used, the test set 
comprising 20 articles in the journal Psycoloquy. 

Figure 2 shows the average number of correct 
keyphrases returned when five keyphrases are retrieved, 
for twelve cases. The first nine represent every combina­
t ion of training and testing sets drawn from one of the 
three collections, and the last represents the Psycolo­
quy test set w i th the same three training sets (except 

Figure 1: Performance on CSTR corpus for different 
numbers of training files (error bars show 99% confidence 
intervals) 

FRANK ET AL 671] 

Table 1: Experimental results for different extraction algorithms 

http://www.nzdl.org

