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A b s t r a c t 

We take a new look at one of the fundamental proper­
ties of discrete time associative memory and show how it 
can be adapted for natural language processing (NLP). 
Many tasks in NLP could benefit from such associative 
functionality particularly those which are tradit ionally 
regarded as being context driven such as word sense dis­
ambiguation. 

The results describe the typical time to convergence of 
a Hopfield network when trained on patterns represent­
ing sentences from a large corpus. Through numerical 
simulation we estimate the time order of convergence 
and compare this to previous findings for randomly gen­
erated, unbiased and uncorrected patterns. 

1 In t roduc t i on 
Linear associative memories have been well studied in 
fields such as statistical physics [Bruce et a/., 1987][Amit, 
1989][Tanaka and Yamada, 1993], and biophysics [Hop-
field, 1982; 1984] for their abil i ty to store and recall a set 
of patterns robustly, even when the patterns to be re­
called can only be presented to the networks in a highly 
corrupted form. It is this robustness in the face of noise 
and an abil ity to recall stored patterns based on asso­
ciations that makes these memories so potentially valu­
able for natural language processing (NLP), in particular 
tasks which have tradit ionally been regarded as context 
driven such as word sense disambiguation. 

In this paper we take a new look at one of the funda­
mental properties of a discrete time, discrete state Hop-
field network. We explore its time to convergence which 
has previously been investigated for the storage and re­
call of randomly generated patterns. Clearly, any pat­
terns derived from natural language sentences wil l not 
be random, but rather wi l l reflect a complex underlying 
linguistic distr ibution. Evidence from using random, cor­
related and biased patterns suggests that the network's 
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storage l imit wil l change. We want to investigate how 
other properties of the network might also be effected. 

This wi l l be a worthwhile undertaking if we can adapt 
associative memory for NLP and decouple the time or­
der of complexity from the complexity of the linguistic 
structures in the stored data we have gone some way to 
forming a more efficient device for language processing 
than is currently available. 

2 The Model 
The model we are looking at in this paper is a simple one-
layered discrete state Hopfield network [Hopfield, 1982]. 
The network is essentially autoassociative in nature, but 
can be coupled into layers (e.g. [Tanaka and Yamada, 
1993]) to simulate more complex functions, or adapted 
into a Boltzmann machine for better generalisation per­
formance. The results presented in this paper should act 
as a basis for trying to understand these more complex 
systems when presented with non-random biased pattern 
sets. 

The Hopfield network consists of a set of N units Vi 

(i = 1 , . . , N) each of which may take either of two values, 
1 or 0. The activation of each unit is defined by a simple 
threshold function 

(1) 

where U represents a set of thresholds and H is defined 
as 

(2) 

Inputs to unit i come internally from all the other units 
in the network and externally from /, which is a constant 
input in our network set at the start of processing. 

Processing takes place by randomly and asyn­
chronously updating units according to Eqn. (1) unt i l 
Eqn. (3) converges, indicating that a stable state has 
been reached. 
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This is one of Koiran et a/'s [Koiran, 1994] 'interest­
ing questions' for future investigation, and any evidence 
for an upper bound on the convergence time should be 
interesting across a number of fields. 

3 Previous W o r k 
Given the importance of the class of associative network 
models it is surprising to find that most emphasis has 
been placed on the storage capacity and less notice has 
been taken of the convergence time. Consequently there 
seem to be many unanswered questions which merit in­
vestigation. 

Previous analysis of the time order complexity of 
the discrete Hopfield network for randomly generated 
patterns has most recently ([Tanaka and Yamada, 
1993]) given us an upper bound for successful recall of 
0(log(N)), where N is the number of units in the net­
work. There are at least two remaining unknowns: what 
is the time order complexity for a failed recall, and is 
recall time the same for correlated, biased, non-random 
patterns? A secondary question relates to the factor of 
scale in Tanaka and Yamada's simulations which were 
carried out using a range of TV from 100 to 10000. It 
would be nice to confirm their results over a range of 
networks to see if there are any finite size effects, as well 
as for those effects which come from different pattern 
types. 

Let us first define what we mean by recti// time. A re­
call wil l be called successful if the network converges to 
a stable attractor which has a vector representation 
which is the same as a pattern in the training set for 
all bits in the pattern. A partial recall or a failed recall 
wil l be recorded otherwise. Although other researchers 
have used measures such as mean cpu. time to conver­
gence, we have defined recall time to be the number of 
bit flips required for the network to settle into a sta­
ble state. This should provide a hardware independent 
measure. 

In the case of the single layer Hopfield network con­
vergence to a single stable state is guaranteed, whereas 
in the case of multi-layered networks we would expect 
the network to settle into a l imit cycle of length 1 or 2. 
In this paper we will confine our investigation to the sin­
gle layered network, but we are interested in measuring 
what may be termed the 'transient period' from init ial 
network state to stability. 

The great advantage of knowing that a failed recall 
will take much longer than a successful recall is of course 
a saving in processing time and a reduction in pattern 
recognition error. We can simply abandon a recall at­
tempt as a failure if its processing time exceeds our ex­
pectation for a network of a given size. 

In an early paper [Bruce et a/., 1987] report that flow 
times to convergence were found to depend on a number 
of factors the most important of which was the storage 
ratio a. Of secondary importance was the system size N 
and the particular updating schedule. 

4 Tra in ing 
We train the network using the localist Hebb rule of 
Eqn. (4) to obtain the weight matrix T which encodes 
the knowledge about the patterns to be stored. Since 
artificial pattern construction would not give us the rich 
characteristics of natural language, the training patterns 
are generated from a corpus of 'real' texts. In our simu­
lations this was a corpus of English and Japanese texts 
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taken from newspaper editorials. Each of the English 
content words has been sense tagged with a unique la­
bel denoting its sense. This was undertaken by finding 
the Japanese lexical translation of the English words in 
the corresponding Japanese sentence in the corpus. The 
resulting corpus can be considered to be sense tagged. 

From this sense tagged corpus of 16000 sentences we 
extracted a number of subcorpora and used these as 
our training sets. Sentence-to-pattern construction takes 
place as follows: a lexicon of length N is generated for 
each corpus from the constituent words giving each word 
sense a unique index. For each sentence we generate a bit 
vector of length N where an occurrence of a word in the 
sentence is shown by the bit being set to 1 at the position 
the word occupies in the lexicon. The set of n patterns 
thus generated, , is given to Eqn. (4) to generate the 
weight matr ix T. We see that each node in the network 
therefore corresponds to one word in the corpus lexicon -
a localist representation. Looked at another way we are 
generating a high dimensional symbolic feature space in 
which the words which constitute the sentences are the 
features. 

This encoding, while not optimal in terms of storage 
capacity, does allow us to compare our results wi th a 
wealth of results from fields such as statistical physics. 
In terms of representational adequacy for NLP, we see 
that the encoding does not capture either constituency or 
sequential relations between words. What it does cap­
ture is simple cooccurrence in sentences between word 
pairs which is a minimum required in our view for the 
modelling of contextual knowledge of language. If this 
is found to be inadequate the representation could be 
bought closer to the ideal language model by, for exam­
ple, having a non-symmetrical weight matrix in which 
Tij would be interpreted as "i followed by j" and hence 
capturing sequence knowledge. 

A l l of the basic parameters which define the matrices 
generated from each of the subcorpora TR1 to TR7 are 
shown in Table 1. We see that N ranges from 260 to 
7045, which should show us any finite size effects and 
covers substantially the same range used in the simula­
tions of [Tanaka and Yamada, 1993]. We also see that 
the minimum value for the storage ratio a in T R l is 
above the critical level of 0.14 predicted for unbiased 
random patterns. It was seen in [Collier, 1996] that this 
is not necessarily a problem because N is finite, thus 
giving us continuous degradation in storage rather than 
the catastrophic discontinuous effect predicted for infi­
nite N. Moreover, we also know that for biased systems 
of training patterns the value of the critical storage ratio 
ac has been observed to shift from 0.14 upwards to 0.18. 

The bias constant a for each corpus of patterns is cal­
culated from the probability that a bit in a pattern wil l 
be set to 1 as follows 
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is close to its l imi t of — 1, whereas in an unbiased system 
we would expect it to be close to 0. 

Table 1: Subcorpora Characteristics 

5 Simulat ions 
In our simulations we follow the work of [Amit , 1989] and 
try to relate the mean perfect recall of patterns from the 
training set to the mean convergence rate of the network. 
To make the results more interesting we randomly cor­
rupt the test patterns using a level of noise m0 which 
ranges from 0.0 to 1.0 in increments of 0.1, so that the 
probability of a bit in the test pattern being flipped from 
1 to 0 is equal to the noise level. Noise was applied only 
to the 1 bits as most of the information is contained here. 
We can expect convergence times to increase with mo as 
the number of bits which need to be reset increase. 

To calculate the fraction of error in recall we have 
looked at the distance between the actual stable state 
chosen by the network for a pattern < and the 
nominated stable state in autoassociation tests. We 
can measure the fractional Hamming distance between 

(10) 

In order to calculate Fj we therefore measure the frac­
t ion of error free recalls for an ensamble of test patterns 
taken from the training set over a large number of 
trials. 

Convergence times were estimated from the mean 
number of bit flips required for the network to reach 
a stable state. The number of bit flips is the number 
of network updates which result in an output unit 
changing state from 0 to 1 or from 1 to 0. This quantity 
was also calculated over the same trials as noise m0 was 
increased from 0.0 to 1.0 in 0.1 increments. 

F1 and mean convergence times were estimated nu­
merically for 50 test patterns taken from the training 

Figure 1: Mean fraction of patterns recalled wi th no er­
ror Fj against init ial pattern noise mo for 1 bits. 

sets TR1 to TR7 (shown in Table 1) over 10 trials. This 
was then repeated for each level of noise mo- Unlike pre­
vious simulations we cannot easily 'manufacture' train­
ing patterns, so we are limited to the values of a which 
the corpora give us. 

Results for the mean error free fraction Fj given in 
Figure 1 show us that pattern sets with storage ratios 
less than 0.20 have good recall while those above this 
level show continuous degrading recall. As [Collier, 1996] 
reported, this leads us to put the critical storage ratio 
ac somewhere around 0.18. In this respect TR1 to TR3 
have similar perforance and TR4 to TR7 show degrading 
performance as a increases. 

Looking now at mean spin flip to convergence results 
in Figure 2 we see that the training sets which performed 
well in recall ( T R l to TR4) have similar convergence 
times. Clearly TR5 to TR7 take much longer on average 
to converge to a stable state. If we take a closer look 
at T R l to TR4 in Figure 3 we see that in fact T R l to 
TR3 have almost the same convergence times and TR4 is 
slightly greater, confirming again that TR4 has degraded 
performance. 

This result seems to agree wi th [Bruce et a/., 1987]'s 
conclusion that a is a factor in convergence times. We 
can say that our simulations have shown that where 

then convergence times wil l be governed by the 
amount of induced noise, mo, and the number of 1 bits 
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Figure 2: Mean number of bit flips to network conver­
gence flips against ini t ial pattern noise m 0 . T R l : x , 

Figure 3: Mean number of bit flips to network conver­
gence flips against ini t ial pattern noise m 0 . T R l : x , 

i n the pattern, shown b y W h e n c o n ­
vergence wi l l be much greater than this, as observed by 
[Tanaka and Yamada, 1993], and is related to both the 
size of the system N, the difference of the storage ra­
t io from the critical value and the amount of 
induced noise mo. 

6 Conclusion 
Estimating the convergence time order for successful and 
failed recall using single spin flips is an approach which 
is clearly l imited in scope. The results need confirming 
analytically and also for other natural language training 
sets. Nevertheless our results do have something impor­
tant to say about convergence times for linear associative 
networks of the Hopfield type. 

We have seen that the predicted convergence rate of 
0(log(N)) was not observed in our training sets, possi­
bly because of correlations between patterns and bias, 
despite using a similar range of system sizes for N as 
[Tanaka and Yamada, 1993]. The earlier observation by 
[Bruce et a/., 1987] of the convergence rate being linked 
to the storage ratio a was observed and appears to be the 
major factor. When recall fails we have more complex 
behaviour wi th convergence times being governed by a 
number of factors of which system size and the storage 
ratio are clearly dominant. 
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