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Abst rac t 

Diagnostic tasks involve identifying faulty com­
ponents from observations of symptomatic device 
behavior. This paper presents a general diagnos­
tic theory that uses the perspective of diagnosis 
as identifying consistent modes of behavior, cor­
rect or faulty. Our theory draws on the intu­
itions behind recent diagnostic theories to iden­
tify faulty components wi thout necessarily know­
ing how they fai l . To derive additional diagnos­
tic discrimination we use the models for behav­
ioral modes together wi th probabilistic informa­
tion about the likelihood of each mode of behav­
ior. 

1 In t roduc t ion 
When you have eliminated the impossible, what­
ever remains, however improbable, must be the 
t ru th . — Sherlock Holmes. The Sign of the Four. 

The objective of our research is to develop a general 
theory of diagnosis that captures a human diagnostician's 
predominant modes of reasoning. This theory is intended 
to serve as the conceptual foundation for computational 
systems that diagnose devices. 

Early approaches [1 , 4] to diagnosis used fault models 
to identify failure modes of faulty components that ex­
plain the observations made. The abil ity to predict fail­
ing components' behaviors provided powerful diagnostic 
discrimination. However, these techniques depend on the 
assumption that all failure modes are known a priori — 
an assumption that is sometimes warranted but is never 
guaranteed. The unacceptable result of not satisfying this 
assumption — faulty diagnoses — has led researchers to 
abandon this powerful approach. 

The model-based diagnostic approach adopted by most 
recent researchers [3, 6, 10] provides a framework for di­
agnosing a device from correct behavior only. This ap­
proach is based on the observation that it is not necessary 
to determine how a component is fail ing to know that it 
is faulty — a component is faulty if its correct behavior 
(i.e., as specified by its manufacturer) is inconsistent wi th 
the observations. Since only correct behavior needs to be 
modeled, any knowledge about the behavior of component 
fault modes is ignored. This provides a fundamental ad­
vantage over earlier techniques requiring a priori knowl­
edge of all fault modes. Unforeseen failure modes pose 
no difficulty. However, what is lost is the additional diag­
nostic discrimination derived from knowing the likely ways 
a component fails, and the ability to determine whether 

these failure modes are consistent w i th the observations. 
Thus, unlikely possibilities are entertained as seriously as 
likely ones. For example, as far as most model-based di­
agnostic approaches are concerned, a light bulb is equally 
likely to burn out as to become permanently l i t (even if 
electrically disconnected). 

Human diagnosticians, however, take great advantage of 
behavioral models of known failure modes, together wi th 
the likelihood that these modes wi l l occur. Knowledge of 
fault modes is used to pinpoint faulty components faster, 
and to help determine specific repairs that must be made 
to the faulty components. 

We view the central task of diagnosis as identifying the 
behavioral modes (correct or faulty) of all the components. 
Whether a mode is faulty or not is irrelevant. Our syn­
thesis hypothesizes that it is not the notion of fault, but 
behavioral mode that is fundamental to diagnosis. Each 
component has a set of possible behavioral modes including 
an unknown mode which makes no predictions, and there­
fore can never conflict w i th the evidence. The unknown 
mode is included to allow for the possibility, albeit small, of 
unforeseen behavioral modes. This unknown mode is cru­
cial because early diagnostic algorithms, when confronted 
with an unforeseen fault mode, either start making use­
less probes or simply give up. Our approach pinpoints the 
failing component as behaving in an unknown mode. 

The introduction of fault models potentially introduces 
significant computational overhead for the diagnostic al­
gorithms. Diagnosing multiple faults is inherently a com-
binatoric process. Introducing fault models exacerbates 
the process, by introducing mult iple modes and possible 
behaviors to consider. To control the combinatorics we 
introduce computational techniques which focus reasoning 
on more probable possibilities first. These techniques, in 
effect, focus diagnostic reasoning only on those component 
behavioral modes that are more probable given the evi­
dence. This set grows and shrinks as evidence is collected. 

By using the new perspective of diagnosis as identify­
ing probable behavioral modes, we are able to extend our 
earlier work on model-based diagnosis (the General Diag­
nostic Engine (GDE) [6]) to reason about modes of be­
havior. The resulting system we call Sherlock. GDE pro­
vides a general domain-independent architecture for diag­
nosing any number of simultaneous faults in a device given 
solely a description of its structure (e.g., electrical circuit 
schematic) and specifications of correct component behav­
iors (e.g., that resistors obey Ohm's law). Given a set 
of observations, GDE constructs hypotheses (called diag­
noses) identifies the faulty components and suggests points 
where additional measurements (called probes) should be 
made to localize the diagnosis w i th as few measurements 
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as possible. 
We have implemented our approach by extending GDE 

to Sherlock, and have tested it on a variety of digital cir­
cuits — f rom simple three inverter circuits, to ALUs con­
sisting of 400 gates w i t h 4 behavioral modes each. Sher­
lock exploits knowledge of failure modes to pinpoint faults 
more equally and identi fy in what mode components are 
funct ioning. Sherlock is described more ful ly in [7]. 

2 Re la ted w o r k 

Exploi t ing the use of faul t models has recently become 
an active research area [11, 12, 13, 16]. In particular, 
Holtzblatt 's [12] generalization of G D E incorporates the 
notion of behavioral modes in a similar spir i t to Sherlock. 
But Hol tzblat t 's G M O D S system is missing many key fea­
tures of Sherlock such as accommodating unexpected fail­
ures, incorporat ing probabil ist ic information to rank diag­
noses and guide probing, incorporat ing most-probable-first 
heuristics to l im i t the computat ional complexity which 
arises for larger devices, and combining evidence gathered 
from mult ip le observations of a device. As GMODS does 
not use probabil ist ic informat ion it relies on an expensive 
hyperresolution rule to rule out fault modes and cannot 
focus reasoning on more probable diagnoses. Struss [16] 
argues against the use of probabil ist ic information and the 
use of an unknown mode. Instead he employs a resolu­
tion rule and controls reasoning to introduce appropriate 
fault modes only when necessary. Through the use of an 
alternative architecture which redefines the notion of fault, 
Rairnon [13] achieves some of the advantages of knowledge 
of fault modes wi thout having to incorporate them. Ham-
scher [11] incorporates fault models w i th his generalization 
of G D E called X D E . 

3 Diagnosis w i t h modes 

The perspective of diagnosis as identi fying probable be­
havioral modes is best appreciated through an example. 
Consider the simple three inverter circuit shown below. 
Suppose that the input ( / ) is set to zero, and that , al­

though the ou tpu t (O) should be one if funct ioning cor­
rectly, it is measured to be zero. W i thou t knowledge of 
fault modes, all three inverters are equally likely to be 
faulted. If we knew that inverters (almost) always failed 
with output s tuck-at -1, then we could infer that inverter B 
was likely to be faul ted. Thus knowledge of failure modes 
can provide significant diagnostic informat ion. 

Knowledge of fai lure modes is also important to decide 
what measurement to make next. If all faults were equally 
^kely, measuring X orY provides equal information. How­
ever, suppose we know that inverters A and B almost al­
ways fai l by having their output stuck-at-1, and that in­

verter C almost always fails by having its output stuck-
at-0 (because it is designed differently to drive an external 
load). Given that knowledge, it is unlikely that inverter 
A is fai l ing, as its most common fault does not explain 
the symptom. If operating correctly, A's ou tput should be 
one, so A being stuck-at-1 would not explain the incor­
rect value being observed at the device's output . However, 
the likely failures of inverters B and C are consistent w i th 
the symptom since either explains the deviation f rom ex­
pected behavior. Hence the diagnostician should measure 
at Y next to determine which of the two inverters is fai l ing. 

The objective of the the diagnosis dictates the granu­
larity of Sherlock's analysis. Sometimes the objective is to 
identify which components are fai l ing and how. Sometimes 
the task is simply to identify the fai l ing components so that 
they can be replaced. Sometimes the task is to identify al l 
the behavioral modes (good and bad). Sometimes diag­
nosis considers mult iple test vectors, and sometimes there 
is only one. To accommodate these possibilities Sherlock 
mubi be told which modes it must discriminate among. 

It is important to note that even if it is diagnosti-
cally unimportant to distinguish between some behavioral 
modes, knowledge of behavioral modes st i l l helps Sherlock. 
Suppose a component has two faulty modes, M\ of high 
probabil ity, and Mi of low probabil i ty, which we are not in­
terested in discriminating between. If a measurement elim­
inates M\ f rom consideration then the (posterior) proba­
bi l i ty that the component is faulty becomes low. 

4 Framework 

This section presents the overall framework including defi­
nitions for basic terminology and equations for computing 
the relevant probabilistic information. Section 5 presents 
heuristics for avoiding the combinatorial explosion result­
ing from moving from GDE to Sherlock. 

The key conceptual extension to GDE is the introduc­
tion of behavioral modes. The extension is very easy as 
GDE can be viewed as having two behavioral modes (the 
good one and the faulty one w i th unspecified behavior) per 
component. In Sherlock there are simply more behavioral 
modes per component. 

The structure of the device to be diagnosed specifies the 
components and their interconnections. Components are 
described as being in one of a set of dist inct modes, where 
each mode captures a physical manifestation of the com­
ponent (e.g., a valve being open, closed, clogged or leaky). 
The behavior of each component is characterized by de­
scribing its behavior in each of its dist inct modes. We 
require that a component can be in only one mode at a 
t ime. W. also require that a faulty component must re­
main in the same mode for all test vectors ( in the excep­
tional case where a fault cannot be modeled this way, its 
behavior is captured by the unknown mode). Other than 
these there are very few restrictions on behavior models: a 
model can make incomplete predictions, the set of modes 
can be incomplete, and the predictions of different modes 
can overlap. 

A component's modes consists of a set describing the 
component's proper behavior (e.g., the valve being on or 
off), and a set describing faulty behavior (e.g., the valve 
being clogged or leaky). When there is only one mode for 
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proper behavior we abbreviate it as G (for "good") . For­
mally, a behavioral mode is a predicate on components, 
which is true of a device exactly when the device is in 
that behavioral mode. Every component has an unknown 
mode, U w i th no behavioral model, representing all ( fai l ­
ure) modes whose behaviors are unknown. 

In our example, we consider four behavioral modes of a 
digi tal inverter: good (abbreviated G) , output stuck-at-1 
(abbreviated 51 ) , output stuck-at-0 (abbreviated 50 ) , and 
an unknown failure mode (abbreviated U). The axioms for 
the behavior of the inverter are: 
INVERTER(x) — [ 

The unknown behavioral mode U(x) has no model. 
Given the model l ibrary and the device structure Sher­

lock directly constructs a set of axioms 5 D , called the 
system description [14]. 

An observation is a set of l iterals describing the out­
comes of measurements (e.g., {/ = 0 , X = 1 ,0 = 0} ) for a 
test vector which has been applied to the device. The evi­
dence consists of a set of observations (e.g., { { / = 0, X — 
1,0 = 0 } , { I = 1 ,0 = 0 } } ) . 1 This definit ion of allows 
us to incorporate accumulated evidence f rom different test 
vectors. 

A candidate assigns a behavioral mode to every com­
ponent of the device. Intui t ively, a diagnosis is a can­
didate that is consistent w i th the evidence, however, we 
distinguish between a diagnosis for a part icular observa­
tion and a diagnosis for all the evidence. A diagnosis for 
an observation is a candidate that is consistent w i th the 
observation — formally, that the union of the system de­
script ion, the candidate, and the observation is logically 
consistent2. Formally a candidate is a set of l i terals, e.g., 
{G(A), G(B), U(C)}. To distinguish sets representing can­
didates we wr i te [G{A),G(B),U(C)]. Note that in G D E a 
candidate is represented by the set of fai l ing components, 
while in Sherlock a candidate is represented by a set that 
assigns a behavioral mode to every component. Thus, the 
Sherlock candidate [ G ( A ) , G ( B ) , U(C)] corresponds to the 
G D E candidate [C]. 

In combining informat ion f rom different observations 
we need to treat good and bad modes differently. By 
defini t ion, a component manifests the same failure mode 
throughout all observations. However, if a component is in 
a good mode (e.g., valve is on) in one observation there is 
no reason to believe it should be in the same good mode for 
another test vector. If components have only a single good 
mode, combining informat ion f rom mult ip le test vectors is 
straight-for ward. Namely, a diagnosis for the evidence is a 
set of literals such that for every observation, the union of 

pThe process of generating good test vectors is outside the 
present scope of our theory. 

2Note that by this definition some candidates may be elimi­
nated as diagnoses on the basis of no observations whatsoever. 
For example, consider hypothetical models for two inverters in 
series where the first inverter had a mode output-stuck-at-1 
and the second had a mode input-stuck-at-0. Note also that 
the candidate in which every component is operating in its un­
known mode is always a candidate unless the combination of the 
system description and any observation by itself is inconsistent. 
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the system descript ion, the candidate, and the observation 
is logically consistent. For brevi ty we operate w i th in one 
observation, in the remainder of this paper, unless other­
wise indicated. However, it is impor tant to bear in mind 
that many of the design decisions under ly ing Sherlock only 
make sense when mul t ip le observations are taken into con­
sideration. 

Like G D E , we make the basic assumption that compo­
nents fai l independently (which is sometimes unfounded) 
and that the prior probabil i t ies of f inding a component 
in a part icular mode are provided. Recall tha t , although 
the behaviors of the different modes may sometimes over­
lap, we require that each mode captures a dist inct physical 
state or condit ion of the component. Thus, the probabi l­
ities of al l the modes of a component always sum to one. 
Under these assumptions, the prior probabi l i ty that a par­
t icular candidate C1 is the actual one is: 

where p(m) denotes the prior probabi l i ty of behavior mode 
m being manifested (i.e., a part icular component being in 
a part icular mode). 

As candidates are el iminated, the probabil i t ies of the 
remaining diagnoses must increase. (On occasion a candi­
date is el iminated purely as a result of the device's topol­
ogy in which case the probabi l i ty is adjusted by a renor-
malization.) Usually candidates are el iminated as a result 
of measurements. Bayes rule allows us to calculate the 
condit ional probabi l i ty of the candidates given that point 
x, is measured to be vik (unless otherwise indicated, all 
probabil i t ies are condit ional on evidence previously accu­
mulated. See [6] for more details): 

The denominator, p (x , = vik), is jus t a normal izat ion. 
p(C1) was computed as a result of the previous measure­
ment (or is the pr ior) . Final ly, p (x t = vik|C) is determined 
as follows: 

C\ given the evidence so far 

:, w i th C\ and the evidence 

3. If x, = vik is neither predicted by nor inconsistent 
w i th C\ and the evidence then we make the presuppo­
sit ion (sometimes inval id) that every possible value for 
x, is equally likely. Hence, where 
m is the number of possible values x, might have (in 
a conventional d ig i ta l circuit m = 2). Intu i t ively, this 
provides a bias for candidates which predict a mea­
surement over those that don' t . 

Throughout the diagnostic session, the probabi l i ty of 
any part icular observation x, = vik is bounded below by 
the sum of the current probabil i t ies of the candidates that 
entail it and bounded above by one minus the sum of the 
current probabil i t ies of the candidates that are inconsistent 
w i th i t . See [6] for the estimate used. Similarly, the prob­
abi l i ty that a component is in a part icular mode is given 
by the sum of the current probabil i t ies of the candidates 
in which i t appears. 



4.1 V a r i e t i e s o f d i a g n o s t i c t asks 

In order to determine what next measurement is likely to 
provide the most in format ion, Sherlock must determine the 
likelihood of hypothet ical measurement outcomes and its 
consequences on the candidate space. The different diag­
nostic objectives dictate differing scoring functions. Sher­
lock is asked to discriminate among some modes and not 
others; by supply ing Sherlock w i th sets of discrimination 
specifications — (a set of modes that are not to be dis­
cr iminated). The discr iminat ion specification parti t ions 
the diagnoses into a set of d-part i t ions. The goal of diag­
nosis is to identi fy the probable d-part i t ions and to suggest 
measurements which best pinpoint the actual one. For ex­
ample, it may only be impor tant to discriminate between 
good and faulty behavior. In this case, the most prob­
able d-part i t ion identifies which components have to be 
replaced. In the simple case where the objective is to 
discriminate among all behavioral modes, then every d-
part i t ion is jus t a singleton set consisting of a single diag­
nosis. Note that , in general, the different diagnoses wi th in 
a single d-part i t ion make different predictions. Although 
it may be un impor tant to discriminate among them as far 
as the overall diagnostic objective is concerned, it is im­
portant to keep them separate to correctly compute the 
probabil it ies of measurement outcomes. 

The specific approach used to select measurements is 
a minimum entropy technique — pick that measurement 
to make next that wi l l y ie ld, on average, the min imum 
entropy H (or conversely that measurement which extracts 
maximum informat ion) : 

Where p(D1) is the probabi l i ty of a d-part i t ion given ev­
idence. Th is , in t u r n , requires comput ing the candidate 
probabil it ies given a hypothet ical outcome. Fortunately 
this is computable fair ly directly using Bayes rule (see [6] 
for details). The expected entropy resulting f rom measur­
ing x, is: 

where vik are the possible measurement outcomes and 
H(xi = Vik) is the entropy of the resulting set of d-
part i t ions. In format ion theory tells us that , given cer­
tain assumptions, the measurement chosen by this scor­
ing funct ion w i l l on average enable Sherlock to make the 
fewest number of measurements to identify the actual d-
par t i t ion to a certain level of confidence. This approach 
(see examples in [6]) almost always suggests the opt imum 
measurement common sense would suggest. The subse­
quent examples restate entropy as a cost funct ion: ideal 
measurements have 0 cost, and useless measurements have 
cost 1. 

If there are mul t ip le test vectors, far greater care must 
be taken. Suppose the objective is to identify the faulty 
components and how they are faul ted. In this case Sher­
lock need only discr iminate among faulty modes. The d-
part i t ions for the overall objective are the intersection of 
those obtained f rom each of the mul t ip le test vectors. In 
computing He(x , ) we must take care to use these global 

d-part i t ion, but only use the relevant candidates for de­
termining p(x = Vik) for a test vector. Thus, Sherlock 
identifies not only the best place to measure but also the 
best test vector (given the test vector set w i th which it has 
been supplied) under which to make the measurement. 

4.2 A l g o r i t h m s c o m m m o n t o G D E a n d She r l ock 

Sherlock, like GDE, exploits an assumption-based t ru th 
maintenance system (ATMS)[5] . Every l i teral stat ing that 
some component is in some behavioral mode is represented 
by an ATMS assumption. A l i teral indicat ing measure­
ment outcome (e.g., IN (A) = 0) is represented by an 
ATMS premise3. The underlying Sherlock algorithms are 
similar to those of G D E except components can have mul­
tiple modes. 

Sherlock computes the diagnoses by first constructing a 
set of conflicts. A conflict is a set of component behavioral 
modes which is inconsistent wi th the system description 
and some observation (i.e., a conflict is represented by an 
ATMS nogood). A conflict contains at most one behavioral 
mode per component. As in GDE, we represent the set of 
conflicts compactly in terms of the min imal conflicts, since 
conflicts are ordered by set-inclusion: every superset of a 
conflict is necessarily a conflict as well. 

Intui t ively, a minimal conflict identifies a small kernel 
set of component behavioral modes which violates some 
observation. It is easily shown that a candidate is a diag­
nosis iff it does not contain any minimal conflict. Thus, the 
complete set of diagnoses is computable from the minimal 
conflicts alone. Thus, Sherlock attempts to determine the 
minimal conflicts (in ATMS terminology these are mini­
mal nogoods) as these provide the maximum diagnostic 
information. 

Sherlock is typically used wi th a sound but incomplete 
prediction facility. Al though soundness guarantees the 
conflicts Sherlock discovers are indeed conflicts, incom­
pleteness sometimes makes it impossible to identify the 
minimal conflicts and consequently fails to rule out candi­
dates as diagnoses. In the rest of this paper by minimal 
conflicts we simply mean the set of unsubsumed conflicts 
found by Sherlock, and by diagnosis we mean a candidate 
not ruled out by one of these conflicts. The consequences 
of incompleteness are not catastrophic and usually result 
in only a minimal degradation in diagnostic performance. 
This issue is discussed in more detail in [6]. 

In order to select the next measurement (and under 
which test vector) to make, Sherlock must evaluate the 
effects of a hypothetical measurement. To do so, Sherlock 
must be able to determine what possible outcomes hold 
in which candidates. Sherlock computes the sets of be­
havioral modes which support each possible outcome. If 
an outcome follows from a set of behavior modes, then it 
necessarily follows from any superset. Therefore, Sherlock 
need only record wi th each possible outcome the minimal 
sets of behavior modes upon which it depends. Thus a pos­
sible measurement outcome holds in a candidate if a set of 
behavioral modes support ing the outcome is a subset of 
the candidate. Each set of behavioral modes support ing 
an outcome is represented by an ATMS environment and 

3To implement the search strategy discussed in the next sec­
tion these literals have to be assumptions as well but this is 
outside the scope of this paper. 
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the set of all environments for an outcome is represented 
by an ATMS label. The details for this algorithm can be 
found in [5, 6]. In a later section we work through a simple 
example i l lustrating Sherlock's functioning. 

5 C o n t r o l l i n g t h e comb ina to r i cs 

The presence of behavioral modes has two immediate con­
sequences affecting the algorithms: (1) there are far more 
behavioral modes to reason about, and (2) the concept 
of minimal diagnoses which was so useful to GDE is now 
virtual ly meaningless. For example, if there are n compo­
nents, each wi th k behavioral modes, there are kn candi­
dates which might have to be considered (as opposed to 
GDE's 2 n ) . Together these consequences make Sherlock 
significantly slower than GDE. This potential combina­
torial explosion manifests itself in two ways in Sherlock. 
First, the set of conflicts, as well as the sets of behavioral 
modes underlying possible outcomes (i.e., the ATMS la­
bels, explodes). This causes the prediction phase of Sher­
lock to explode. Second, the number of possible diagnoses 
is exponential, causing candidate generation to explode. 
Thus, the Sherlock architecture adds two tactics beyond 
those used in GDE to keep the combinatorial explosion 
under control. These tactics apply to GDE as well as Sher­
lock. 

The focussing tactics do not affect the set of diagnoses 
produced (or probabilities ratios among them). We first 
present our strategy for the diagnostic objective of identi­
fying all fault modes, and then later show it can be modi­
fied to find the best cf-partitions. The basic idea is to focus 
reasoning to the subset of the diagnoses (called leading di­
agnoses) that satisfy the following conditions: 

• A l l leading diagnoses have higher probabil i ty than all 
non-leading diagnoses. 

• There are no more than ibi (usually k\ — S) leading 
diagnoses. The exception is that all diagnoses having 
probability approximately equal to the Jbxth diagnosis 
are included (to accommodate roundoff difficulties). 

• Candidates with probabil i ty less than ^ t h (usually 
A?2 = 100) of the best diagnosis are not considered. 

• The diagnoses need not include more than k3 (usually 
&3 = -75) of the total probabil i ty mass of the candi­
dates. 

This approach focusses candidate generation to a small 
tractable set of leading diagnoses. 

The primary remaining source of combinatorial explo­
sion is the size of the ATMS labels for Sherlock's predic­
tions. This is dealt wi th using a generalization of the fo­
cussing strategies outl ined in [9] and are similar to some 
suggested in [8]. To handle this both the ATMS and the 
underlying constraint propagator used by Sherlock are re­
stricted to focus their reasoning only on the leading di­
agnoses or tentative leading diagnoses. No prediction is 
made unless its results hold (i.e., one of its environments 
is a subset of some focus environment) in the current fo­
cus. Furthermore, no environment is added to any ATMS 
label unless it holds in some current focus. If the ATMS 
discovers an environment not part of any current diagno­
sis, it does not add it to the prediction's label and instead 
stores it on its "blocked" label. 

Unfortunately, there is a bootstrapping problem. The 
leading diagnoses cannot be accurately identified without 
sufficient minimal conflicts. The reasoning cannot produce 
enough minimal conflicts unless there are leading diagnoses 
to focus on. Another complication is that Sherlock cannot 
correctly evaluate the probabil ity of a candidate via Bayes 
rule unless it is in the focus. 

The following is an outline of the procedure Sherlock 
uses to identify the leading diagnoses and consists of a 
backtracking best-first search coupled wi th focussing tac­
tics just discussed. The normalization factor of Bayes rule 
is left out in the search since it does not change the prob­
abil ity ordering of diagnoses and is the same for all candi­
dates. The search estimates the probabil i ty of a tentative 
diagnosis — a candidate which is consistent wi th the pre­
dictions (more precisely contains no known conflict as a 
subset), but which has not yet been focussed upon — to 
be simply its prior probabil i ty (corrected by the normal­
ization). This is an upper bound of its correct probability. 
Focussing the attention of the predictor on the tentative 
diagnosis might produce a conflict which eliminates it (i.e., 
drives its probabil i ty to zero) or it might be discovered that 
the diagnosis does not predict every measurement outcome 
(in which case its probabil i ty needs to be adjusted down­
wards by Bayes rule). Using these techniques the following 
search guarantees that it finds the same leading diagnoses 
an unfocussed Sherlock would find. 

1. If, according to the criteria, there are sufficient leading 
candidates, stop. Let b be the upper-bound of the 
probabilities of the diagnoses which are reachable from 
the next place to push the best-first search forward. 
The key test is: is 6 less than the leading candidates? 

2. Continue a best-first search for the next highest-
probabil i ty (estimated by its upper bound) candidate 
which accounts for all the minimal conflicts. 

3. Focus the predictor on the candidate (i.e., by unblock­
ing the ATMS labels and permit t ing consumer exe­
cution). This finds any conflicts. It also finds any 
new predictions which follow from this candidate but 
which haven't been discovered earlier. 

4. If the candidate contains a conflict, go to step 1. 

5. Compute the probabil i ty of the candidate according 
to Bayes rule by mult ip ly ing its probabil i ty by -^ 
where n is the number of times the candidate fails to 
predict some measurement outcome. 

6. Go to 1. 

This search may find more than the required number of 
diagnoses because the corrected probabil i ty of a best next 
candidate may be much lower than estimated. Although 
such candidates are diagnoses, they are not necessarily the 
leading ones. 

Thus far we presumed that it is important to discrimi­
nate between all modes and that the d-partitions are the 
simple diagnoses. If it is not important to discriminate 
among certain modes, the preceding algorithms must be 
modified to identify d-partit ions. 

To identify d-partitions efficiently requires some subtle 
changes to the best-first search. Whenever a diagnosis is 
found, all the other candidates potential ly in the same d-
part i t ion must be identified to fill out the d-partit ion and 
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accurately calculate its probability. However, this alone is 
insufficient to ensure that our previous algorithm finds the 
best (/-partitions because the probability of the best diag­
noses wi th in a d-partit ions is only a lower bound on the 
probability of the (/-partition it could be part of. There­
fore, we must modify the search such that each diagnoses 
is scored (only for the purposes of the search) by an up­
per bound of the probabil i ty of the d-partit ion it is part 
of. For each component, the 'probabil i ty ' score assigned 
to each mode is the sum of the prior probabilities of that 
mode and all modes later in the mode ordering among 
which Sherlock is not required to discriminate. As a result 
of this ordering the 'probabi l i ty ' of a diagnosis is an upper-
bound of the d-part i t ion of which it is a member. Once one 
diagnosis of a d-part i t ion is found, the remaining members 
of the d-partit ions are filled out and its probability cor­
rectly computed. (Sherlock incorporates heuristics that 
avoid filling out the (/-partition wi th extremely low prob­
ability diagnoses.) As a result, Sherlock finds the leading 
d-partitions meeting the criteria for simple diagnoses just 
laid out. 

6 A s imple example 
To demonstrate the basic ideas of Sherlock's operation 
with fault modes consider the three inverter example. We 
set the focussing thresholds as indicated earlier and the 
diagnostic objective to identify the mode of every compo­
nent. However, as this example is tractable without using 
any focussing heuristics, we also show the correct values 
(i.e., having computed all the diagnoses) in parentheses. 
Suppose every inverter is modeled as described earlier, 
with A and B tending to fail stuck-at-1 and C tending 
to fail stuck-at-0: 

The unfocussed Sherlock finds 43 = 64 diagnoses (as there 
are no symptoms anything could be happening). Given a 
zero input (I = 0), Sherlock computes the following out­
comes and their supporting environments. The final col­
umn indicates the additional environments an unfocussed 
Sherlock discovers): 

A r t - — — 

The first line states that X = 0 under assumption 50(A) , 
or equivalently that X = 0 in every candidate which in­
cludes S0(A). However, the focussed Sherlock finds no 
label for X = 0 as it does not hold in the single leading 
diagnosis. Intuit ively, the last line states that the output is 
one if either (1) all the components are good (which is the 

leading diagnosis), (2) the first inverter is stuck-at-1 and 
the other two are good, (3) the second inverter is stuck-at-
0, and the final inverter is good, or (4) the last inverter is 
stuck-at-1. 

If we apply the minimum entropy technique we find costs 
($ denotes the cost function, and the focussed Sherlock cost 
is shown first followed by the correct cost in parentheses): 

A l l these costs are high because there is no evidence that a 
fault necessarily exists. The costs are all equal for the fo­
cussed Sherlock because there is only one leading diagnosis 
and therefore nothing can be learned by further measure­
ment. 

Suppose O is measured to be zero. There are four min­
imal conflicts (because each set of the minimal environ­
ments supporting O = 1 is now a conflict): 

Sherlock notices the leading candidate is eliminated and 
continues best-first search to find the following leading di­
agnoses: 

The figures in parentheses indicate the correct probabil­
ities (initially there were 64 diagnoses, now 42 diagnoses 
remain) and Sherlock has identified the leading ones. 

There are four important things to notice about this 
list of leading diagnoses. First, even though the Sher­
lock algorithm is running with ki = 5, it finds 6 can­
didates because it expands its search slightly to make 
sure candidates are not eliminated simply by round off 
errors. Second, the top 6 of the 42 candidates contain 
98.6% of the probability mass. Th i rd , the heuristic es­
timates are quite accurate - they are equal to the cor­
rect values normalized by .986. Fourth, although diagnosis 
[S0(A),G(B),G(C)] has the same prior probability of the 
three candidates [G(A),G(B)yU(C)l [U(A),G(B),G(C)] 
and [G(A),G(C),U(B)] , after the two measurements its 
probability is twice that of the others. This is because the 
three candidates predict no value of the output and hence 
their posterior probability is reduced by one-half by Bayes 
rule. 

Given the leading diagnoses, the resultant probabilities 
of behavior modes are: 
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The table indicates that the major failure modes to con­
sider are C stuck-at-0, and B stuck-at-1 and that all other 
faults are unlikely. 

The resulting ATMS labels are (for this simple example 
focussing no longer has any affect on labels): 

Suppose that we applied a second test vector wi th I=1 
(the first test vector was I = 0), and evaluated the hypo­
thetical measurements: 

Thus we see that measuring Y using the first test vector 
(I = 0) is the best measurement. This is because measur­
ing Y wil l differentiate between the two high probability 
candidates. However, measuring O under the second test 
vector (I = 1) is useful as well. Suppose O = 0 under the 
second test vector. The resulting probabilities are: 

Although measuring O = 0 again does not eliminate any 
diagnosis, it provides further evidence that a component is 
not behaving in some unknown mode, thus slightly raising 
the probabilities of the first three diagnoses. 
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