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A bs t rac t and-egg problem can be solved by using a cooperative computation in 
a parallel network. The computation performs a parallel, iterative 
search which settles on both the reference frame and the shape 
description at the same time. 

One way to achieve viewpoint-invariant shape recognition is to impose 
a canonical, object-based frame of reference on a shape and to 
describe the positions, sizes and orientations of the shape's features 
relative to the imposed frame. This compulation can be implemented 
in a parallel network of neuron-like processors, but the network has a 
tendency to make errors of a peculiar kind: When presented with 
several shapes it sometimes perceives one shape in tlie position of 
another. The parameters can be carefully tuned to avoid these 
"illusory conjunctions" in normal circumstances, but they reappear if 
the visual input is replaced by a random mask before the network has 
settled down. Treisman and Schmidt (1982) have shown that people 
make similar errors. 

1. Introduction 
People can recognize objects from a wide range of viewpoints, even if 
they have never seen them from these precise viewpoints before. 
There is psychological evidence (Rock, 1973; Marr and Nishihara, 
1978) that people do this by imposing an appropriate frame of 
reference on the object to be recognized. They then redescribe the 
retinotopic features of the object relative to the imposed frame and 
thus they get an object-based description that docs not depend on 
viewpoint. For example, given a square tilted at 45°, a person can 
impose an object-based frame tilted at 45°. Relative to this frame, the 
object has horizontal edges at top and bottom and vertical sides, so it is 
a square. Alternatively, a vertical frame can be imposed and all the 
edges will then be seen as diagonal and the object will be recognized 
as a diamond. The fact that we can see the same shape in either way is 
good evidence that we impose object-based frames in order to separate 
out the effects of viewpoint from the intrinsic shape of the object. 

In general, it is difficult to choose the appropriate frame to impose on 
a collection of retinotopic features even if we have already solved the 
problem of segmenting out a set of features that all belong to a single 
object We would like to use the frame that leads to a familiar object 
description, but the frame is required in order to access object 
descriptions so it is hard to see how object descriptions can give top-
down guidance in picking the frame. When we see an upside-down 
capital R, for example, wc recognize it by imposing an upside-down 
frame of reference, but how do wc know to use this frame before we 
have recognized it as an R? Hinton (1981a) suggests that this chicken-

This paper describes a computer simulation which supports that 
suggestion and it shows that the network makes a peculiar kind of 
error when it is presented with several shapes which arc then removed 
before the network has had time to settle on a percept of any one of 
them. The error consists of rccogni/ing one shape in the position of 
another. The network was not designed to produce such errors. 
Rather, they appear to be an inevitable consequence of this method of 
shape recognition and it actually requires considerable fine-tuning to 
stop them from occurring in normal circumstances (i.e. when the input 
is not removed prematurely). 

1.1 Illusory Conjunctions 
Treisman and Schmidt presented subjects with cards containing a row 
of three colored letters surrounded by two black digits. The cards were 
presented for about 100ms and were then replaced by a mask of 
random features. The task was to first report the two black digits by 
saying a two digit number and then to report the positions and colore 
of as many letters as possible. Subjects often made errors which 
consisted of the shape of one letter in the position of another. They 
were sometimes very confident in these errors, claiming to actually see 
the illusory conjunction rather than simply guessing. Also there was 
no distance effect. If a letter changed position it was as likely to move 
two places away as one. These results are counter-intuitive. Why 
should people get a clear percept of a combination of shape and 
location that isn't in the stimulus, and why is there no distance effect? 

1.2 An Overview of the Network 
The network used in the simulation contains four different kinds of 
units. At the highest level there are single units that stand for specific 
letters. These are connected to units that stand for object-based 
features — strokes or junctions whose position and orientation are 
described relative to the appropriate object-based frame. Each object-
based feature is connected to all the retinotopic features that could 
depict it. Each of these connections is gated by a "mapping unit" that 
represents a particular choice of object-based frame (see figure 1.1). 

When a single mapping unit is active it opens up connections that pair 
each retinotopic feature with exactly one object-based feature. So if 

This research was supported by a grant from the System Development Foundation. 
2Letters could also take on the cola of other letter?; in the display Wc shall not 

mention color again, but it fits the model wc present provided there is a central location 
for representing the coloi of the object currently being perceived 
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the frame of reference is known in advance the rctinotopic features 
can he made to activate the appropriate object-based features by 
simply turning on the right mapping unit and inhibiting all the others. 

Hach pairing of an activated object-based feature and an activated 
rctinotopic feature sends activation to the corresponding mapping 
unit, so if the shape is known in advance it is easy to find the reference 
frame by simply activating the object-based features of the shape. If 
the shape contains f features there will be f correct pairings of an 
activated object-based feature with an activated rctinotopic feature. 
These f pairings will all send activation to the same mapping unit and 
it will therefore be able to win a competition among the mapping units 
even though some of its rivals receive input from other spurious 
pairings of activated object-based and rctinotopic features. 

When neither the reference frame nor the shape are known in 
advance, the network will still settle to a consistent state when 
presented with a single familiar letter. Initially many different 
mapping units will be active and the activity in the object-based units 
will represent the superposition of many different ways of mapping 
the retinotopic features. However, combinations of object-based 
features that correspond to familiar letters will receive top-down 
support from the letter units and so they will be enhanced. Once this 
happens, the mappings that led to these features will be enhanced 
because the input to a mapping unit depends on the product of 
activity levels in the object-based and rctinotopic units. This mutual 
enhancement is a non-linear cooperative process that eventually leads 
to one set of object-based features and one mapping unit becoming 
dominant. 

A different, but equivalent, view of the network is that the retinotopic 
units gate the connections between the mapping units and the object-
based units. Kach reunotopic feature is consistent with various 
possible conjunctions of a mapping with an object-based feature and 
so it allows all such pairs to support each other. The network settles 
into a state which allows as many of these pairs as possible to be active, 
subject to the constraint that only one mapping unit must be active in 
the final state. This view is helpful in understanding illusory 
conjunctions. It is the retinotopic features which determine the 
consistency between object-based features and mappings. If they are 
removed before the network has finished settling, there is nothing to 
prevent the object-based units and the mapping units from settling to 
inconsistent states. 

2. The Simulation 
To test the claim that a parallel model of shape recognition can 
explain the psychological evidence on illusory conjunctions, a 
simulation of such a model was performed on a Symbolics 3600 lisp 
machine. A network of continuous valued, neuron-like units was 
presented with the rctinotopic features of several letters, and the 
activation levels of the units were repeatedly updated starting from 
balanced initial values and using a deterministic, synchronous 
relaxation algorithm until a letter had been located and identified. 
When allowed to run to completion, the network never made any 
errors. However, when a random mask replaced the image before the 
network was finished, illusory conjunctions occurred. 

The Image 

Retinotopic Units Object-based Units 

Figu re 1.1: This shows four types of unit and how they are connected. 
Only the units and connections relevant for one particular input are shown. 
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2.1 Structure of the Network 
The units of the net are organized into four sets that are called planes 
to emphasize their spatial interpretation. The retinotopic plane 
contains units that represent retinotopic features that could be 
extracted by low-level visual processing. The mapping plane contains 
units that represent pairings of rotations and translations which are 
used to map the retinotopic image into a standard orientation on the 
object plane so that the image can be identified. The mappings used 
in this simulation do not perform scaling, so the letters presented on 
the retinotopic plane must all be of the same size. Units on the 
retinotopic, mapping, and object planes are connected by the special 
three-way links that arc describe above. Each letter unit is connected 
to the features on the object plane which define the shape of the letter. 

2.1.1 The Retinotopic Plane 
The features on the retinotopic plane are based on an imaginary 13 by 
13 array. The two types of features that are represented by units on 
the plane arc strokes and junctions. A stroke is defined to be a 
horizontal or vertical line segment whose length is 2. 3. 4, or 5 pixels. 
There arc 1092 units of this type on the retinotopic plane. Junctions 
occur at the endpoints of segments. A corner occurs when two strokes 
meet at a 90 degree angle at their endpoints. A T-joint occurs when 
the endpoint of one stroke meets the interior of another stroke at a 90 
degree angle. Any endpoint that is not a corner or a T-joint generates 
a free-end feature. Every junction unit also has an orientation of up, 
down, right, or left, so that the T-joint on the left side of an E is 
different from the T-joint on the top of an I. There are a total of 2028 
junction units on the retinotopic plane. It is redundant to have both 
stroke units and junction units, since the information in either set can 
be derived from the other, This redundancy is crucial when the 
network needs to map several letters onto the object plane at the same 
time without confusing them. The junctions contain information 
about which stroke goes with which other stroke and similarly the 
strokes contain information about which junctions go together. Every 

unit in the network has a real-valued activation level between zero and 
one, but the units on the retinotopic plane arc always clamped to zero 
or one in this simulation. 

Figure 2-1 shows the display used to illustrate the state of the network. 
Retinotopic units arc drawn on a 13 by 13 array of squares that 
suggests the image from which the features could have been extracted. 
Stroke units are drawn as stippled rectangles with the same length, 
orientation, and position as the strokes which they represent. Corner 
units arc drawn as white triangles in the corners of the squares. T-
joint units arc shown by white triangles at the sides of the squares. 
Free-end units are drawn as small white squares on the ends of the 
strokes. The orientation of each junction unit is represented by the 
orientation of its symbol in the obvious way. 

2.1.2 The Object Plane 
The object plane is basically just a smaller version of the retinotopic 
plane. It uses 100 stroke units and 300 junction units to encode all 
possible features in its 5 by 5 array of object-based locations. In figure 
2-1, the object plane is drawn the same size as the retinotopic plane, 
even though it contains fewer units. This provides the space required 
to clearly represent the activation level of each unit by the size of its 
symbol. The area of a junction symbol is exactly proportional to 
activation of its unit, but for stroke units, the correspondence is only 
approximate. 

2.1.3 The Mapping Plane 
The mapping plane contains units that represent rules for matching 
features on the retinotopic plane with features on the object plane. 
The 324 units on the mapping plane are the cross product of nine 
x-translations, nine y-translations, and four rotations. These mappings 
specify all the ways that the object plane can be associated with a 5 by 
5 subset of the retinotopic plane. In figure 2-1, the mappings arc 
drawn as small black triangles in a 9 by 9 array of squares which 
corresponds to the central portion of the retinotopic plane. The 

Figure 2-1: The Network 
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square in which a triangle is drawn shows the point which will be 
mapped to the center of the object plane. The rotation which a 
mapping performs is indicated by the orientation of its triangle. Try 
looking at Figure 2-1 to compare the positions of the vertical T and the 
sideways F with the two active mappings that associate them with their 
canonical images on the object plane. The activation levels of 
mapping units are indicated by the area of the triangles which 
represent them. 

2.1.4 The Letter Plane 
The six units on this plane represent the letters E, F, L, I, T, 
and H. Bach unit's activation level is shown by the area of the black 
square in its box. 

2.1.5 Links 
The first type of link in the network is a simple two-way link between 
a letter unit and a feature unit on the object plane. The existence of 
such a link means that the feature is part of the definition of the letter. 
There are 47 of these links in the current model. The second type of 
link is a three-way link between a rctinotopic feature, a mapping, and 
an object feature. There are 129,600 of these links, which means that 
some sort of optimization technique is needed to reduce the space and 
time requirements of the simulation. Although it is conceptually 
attractive to view the links as channels between the rctinotopic plane 
and the object plane which are gated by mappings, one may think of 
them as channels between mappings and object-based features which 
are are gated by rctinotopic features. In fact, the clamping on the 
rctinotopic plane means that there channels arc cither completely 
open or completely closed, so it is possible in a simulation to scan the 
rctinotopic plane for features that are on, arrd then wire up only the 
corresponding links between the mapping plane and the object plane. 
This reduces the network to about 3,000 two-way links that can be 
implemented in the same way as the links between letters and object 
features. 

2.2 Relaxation 
The detcrminisuc relaxation algorithm employed in this simulation 
proceeds in synchronous cycles which have three phases. At the 
beginning of each cycle, the units exchange activation via their links. 
Next, a competition phase cuts the units' activation down by factors 
which depend on their size. Finally, all activations arc scaled up by 
constant factors which are computed separately for each plane so that 
the total activation in the plane is normalized to a predetermined 
quantity. In more intuitive terms, each unit is a competitor of the 
other units on its plane but is an ally of the units to which it is 
connected. 

In the following sections, units arc designated by lower-case Greek 
letters near the beginning of the alphabet. Their activation levels are 
represented by the corresponding Latin letters. These activations are 
functions of time, which is measured in iterations and indicated by 
subscripts on the activations. 

2.2.1 Propagation of Activation 
Let a, denote the activation level of unit a at time i. Then the 

activation of at time i+1 is given by 

(2.1) 

where is the set of all units which arc linked to is the 
weight of the link between and and is a constant that is 
associated with plane. The purpose of is to adjust the rate at 
which activation levels change. Setting close to 1.0 causes the units 
to evolve slowly and feel little influence from their links. It turns out 
that T also affects the competitive behavior of a plane. A winner-take-
all selection cannot occur unless is set high enough to preclude an 
equilibrium state where the fresh activation that each unit gets from its 
links balances out the effect of competition on that uni t 

With these facts in mind, it is easy to make rough estimates of 
appropriate T values for the model. The letter and mapping planes 
should evolve slowly so they will have time to communicate their 
hypotheses, and should settle down to a state where only one unit has 
been selected on each plane. The high values of which were 
originally chosen worked moderately well, but some experimentation 
was required to locate the values of 0.995 for the letter plane and 0.98 
for the mapping plane that always worked correctly. The object plane, 
on the other hand, should have fast reaction time but weak 
competition so that the other planes can exchange information quickly 
and keep many options open. In fact, a number of features should 
remain alive even in the final state. The first guess of = 0.5 has 
worked for every version of the model ever tested, so the network is 
clearly not very sensitive to the exact value of this parameter. 

2.2.2 Competition within Planes 
Without competition, the network rapidly settles into an uninteresting 
equilibrium state where a large number of units are on and the 
activation boosts that arc being transmitted over the links balance each 
other out. In order to force progress towards a solution, it is necessary 
to exert pressure on the units which will cause weakly supported ones 
to die out. The method of competition used in this simulation 
consisted of taking the activation level of each unit and raising it to 
some power greater than one. Since the activations arc between zero 
and one, this forces them to shrink by an amount that is a function of 
their size, with small activations getting beaten down more than large 
ones. Furthermore, the discrimination against weak units increases as 
the exponent increases, which provides the simulator with the ability 
to control the intensity of competition. The precision of the 
competition control mechanism and the smoothness of activation 
decay under the influence of the competition algorithm were the keys 
to achieving interesting behavior from the network while using 
monotonic competition schedules. The exact schedules which proved 
to be acceptable arc discussed in section 2.4. 

2.2.3 Normalization 
The final step in an iteration is to normalize the activation levels in 
each plane so that they add up to a target sum. This total corresponds 
to the number of units that ought to be on in a solution state. For the 
mapping and letter planes, the target sum is clearly 1. For the object 
plane, it is harder to say what the total should be, since the number of 
units that ought to be on at the end depends on the letter that is being 
recognized. To solve this problem, a new target sum is computed 
before every iteration by having the letter units vote for how much 
activation they would like to see on the object plane. 

Once a target sum has been chosen for a plane, the normalization is 
performed by adding up the activations of all the units on the plane, 
and then multiplying each activation by the ratio of the target sum to 
the actual sum. 
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2.2.4 Initial State 
Each relaxation of the network begins in a balanced initial state where 
the units on a given plane have equal activations that add up to the 
target sum defined in section 2.2.3. 

2.2.5 Orientation Bias 
The network described so far is unrealistic because it gives no 
preference to letters in their upright orientation. This can be corrected 
by modifying equation (2.1) to read 

(2.2) 

where v is a factor that equals 1.0 for a unit o on the letter or object 
plane. For a on the mapping plane, v equals 0.2 if the unit being 
updated is rotated from the vertical and the mapping with the same 
translation but no rotation has nonzero activation. Otherwise, v 
equals 1.0 for the mapping plane also. The purpose of v is to deflate 
rotated mappings that are directly competing with nonrotated 
mappings. However, this rule is not strong enough to kill off 
mappings by itself, because the deflating effect of v quickly comes 
into equilibrium with the positive boost coming over the links. The 
only effect is to de-emphasi/c rotated mappings in the presence of 
upright mappings so that the latter can win through ordinary 
competition. 

2.3 Assignment of Weights 
Each link possesses a weight which can be thought of as an 
amplification factor for signals sent over that link. Weights arc needed 
to balance the network so that the simple relaxation technique is able 
to find an appropriate final state for every input. The main problem is 
that the unit with the most links often wins the competition even when 
other units are receiving more support per link. For example, the 
letter unit for E will always beat the unit for L just because E has more 
features and therefore more links. The solution to this problem is to 
compute a link's weight using a function that takes into account the 
connectivity of both of the link's endpoints. 

2.3.1 The Weighting Fun<ctlon 
The weight of the link between units and is given by 

(2.3) 

where is a weighting factor that compensates for the number of 
connections a has with units on B's plane. Specifically, 

(2.4) 

where is the set of units which arc linked to and is the 
plane on which a is located. For a concrete example, let a be the 
letter unit which represents E and be a feature unit which is linked 
to a. Since E has links to 4 stroke units and 6 junction units, the 
denominator of equation (2.4) is 10. The numerator is the average 
number of links to the object plane from units on the letter plane, 
namely is the weighting factor 
for E. The unit for L only has links with 2 stroke units and 3 junction 

units, so its weighting factor is Thus the 
weighting factors for units on the letter plane cancel out inbalances 
caused by the different number of features found in the various 
letters. 

The mirror image factors for o on the object plane anc on the 
letter plane take care of a more subtle problem. Letter units can 
support each other by sending activation indirectly through units 
representing shared features. Unfortunately, the six letters fall into 
the cliques based on shared feature counts. 
Without these weighting factors, the survival of a letter unit depends 
on the size of its clique. Finally, when and are on the object and 
mapping planes, since every object unit is linked to every 
mapping unit and vice versa. 

2.3.2 Tuning the Weights 
Equation (2.3) provides a good approximation to the weights required 
to balance the network. However, some hand tuning needs to be 
performed to ensure proper handling of superimposed images on the 
object plane. This extra tuning can be implemented by amending the 
definition of to read 

(2.5) 

where is an adjustment function that is associated with the ordered 
pair 

The mam challenge in balancing the letters is keeping subset 
relationships untangled. For example, the features of F arc basically a 
subset of the features of E. so it is difficult to find a set of weights for 
which E is not identified as F and F is not identified as E. The 
problem becomes much worse when more than one letter is being 
mapped onto the object plane at the same time, because F + L looks 
like and so on. Since the features being 
mapped onto the object plane contain redundant information and 
equation (2.3) balances things out about right, a one-dimensional 
adjustment based on discriminating between large letters and small 
letters is sufficient to solve these difficulties. A function which 
performs this discrimination is for unit a on the 
letter plane and unit on the object plane. Since k is added to the 
weighting factor for each link to a letter unit, it provides a boost which 
is a function of the letter's size. A k value of 0.1 prevents confusion 
with up to three letters on the retina. 

The next adjustment function is necessary because the clique effect 
described in section 2.3.1 is much less pronounced than the other 
imbalances between letters. The weighting factor which primarily 
addresses this effect should therefore be de-emphasized by setting 

for units a on the object plane and on the letter 
plane. 

2.4 Competition Schedules 
The behavior of the network while it is settling down into a solution 
state is primarily determined by the rules for varying the amount of 
competition through time. By changing these rules, a variety of 
behaviors can be induced, most of which arc pathological when there 
arc multiple letters in the input The network tends to get wedged into 
either an uninteresting equilibrium state where too many units arc 
active, or an inconsistent final state where the winners on the various 
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planes do not correspond with each other or the input. The next two 
sections describe a strategy for managing the settling process and the 

effect of replacing the input with a backward mask before the network 
has finished settling. 

2.4.1 A Successful Search Strategy 
The ideal method of running the simulation would be to gradually 
increase the competition on all of the planes, so that a variety of 
options would remain open as long as possible, with a consensus 
eventually emerging as to what was seen where. The final selection of 
a letter unit and a mapping unit would occur simultaneously. Figure 
2-1 shows why this approach doesn't quite work. The simulation has 
progressed to the point where the correct pair of mappings and the 
correct pair of letters arc winning. However, due to slight inbalances 
in the amount of support the various units are giving to each other, the 
letter unit for T is winning its competition, while on the mapping 
plane the unit transmitting F is ahead. If the simulation were to 
proceed with the same gradual competition on both planes, the units 
which arc currently ahead would win, resulting in a spontaneous 
illusory conjunction. Although the weights could be adjusted to 
balance the activations in this example, the new weights would make 
the problem worse for some other pair of letters. 

A belter solution to the problem is to allow one plane to decide first 
and then transmit its choice to the other plane so that it can choose the 
corresponding option. During a relaxation based on this strategy, the 
competition increases gradually at first, as in the ideal simulation 
described above. A small number of likely mappings emerge as likely 
candidates, and the images which they specify are superimposed on 
the object plane. The letter units also evolve slowly, relying on the 
redundant features which encode the letters to sort out the combined 
image they see on the object plane. After the network has run for a 
while in this consensus-building phase, the competition is turned up 
on the letter plane to force a choice. Figure 2-2 shows the state of the 
network shortly after this letter selection process has begun. The unit 
for L is leading because all of its features are strongly on, whereas 

some of the features for E are less activated. (Without the weight 
tuning described in §2.3.2, E would be winning at this point because it 
is linked to units containing more total activation.) After the unit for 
L has won, the image on the object plane will look much more like an 
L than an E, and the correct mapping will win after about 40 more 
iterations. 

Although the scenario just described sounds quite reasonable, it is 
very difficult to adjust the competition schedules so that the network 
never makes mistakes. A workable solution depends on getting the 
rate of mapping competition exactly right, and is bounded by the 
following problems. In figure 2-2 it is apparent that the mapping for E 
is far ahead of the mapping for L, even though the letter unit for L is 
going to win. If the mapping competition docs not occur slowly 
enough, the mapping unit for L will be so far behind at this point that 
it will have no hope of catching up. If, however, the mapping 
competition occurs too slowly, the spurious mappings3 visible in 
figure 2-2 will sufficiently distort the relative activations of the various 
features on the object plane to cause either outright misidentification 
of the letters, or the kind of letter blending mentioned in section 2.3.2. 

A competition schedule that works is shown in figure 2-3, which is a 
plot of the competition control parameters for the three active planes 
as functions of time. These parameters are the exponents used in the 
competition scheme described in §2.2.2. The behavior of the network 
is sensitive to the exact shape of the parameter curves, and simple 
piecewise-linear functions were not sufficient to eliminate all errors. It 
is important to note that the primary type of error which occurs is 
illusory conjunction, and that all of this tuning effort is necessary to 
eliminate them, not to introduce them. The final result of the 
adjusuncnt process was a network that would correctly select and 
identify a letter from any set of one, two, or three upright letters 
encoded on the retinotopic plane. 

3 These mappings are actually partial symmetries of the letters, which explains why 
the figure resembles an X-ray diffraction pattern 

OBJECT 

Figure 2-2: A Normal Simulation 
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Figure 2-3: Competition as a Function of Time 

2.4.2 Backward Masking 
In the absence of interference, the network always works correctly. 
On the other hand, if the input is replaced by noise at some point in 
the relaxation process, a variety of errors can occur, depending on 
when the disruption occurs. If a backward mask replaces the input 
very early, the network will end up in a random suite completely 
unrelated to its original input If the mask is introduced in the middle 
of the simulation when the selection process is already underway, the 
relaxation will either finish correctly or produce an illusory 
conjunction, depending on how the noise interacts with the unstable 
activations in the network. For an example of a simulation that 
produced an illusory conjunction, look at figure 2-4, which belongs to 
the same sequence as figure 2-2. The letter unit for L has gone on to 
win, and there is a fairly clear image of an L on the object plane, but 
the mapping units no longer have any meaningful information on the 
rctinotopic plane with which they could correlate that image. 

Consequently, the leftmost mapping unit proceeds to win in this case, 
which would produce the perception of an L on the left to any sort of 
binding mechanism which looks at the letter and mapping planes to 
determine what was perceived. It is interesting to note that in this case 
it is the absence of meaningful information on the rctinotopic plane, 
and not the noise per se that causes the error. Human subjects need a 
random mask to produce this type of error because information 
persists in their lower vision centers unless it is actively overwritten. 

3. Discussion 
The model we have described is incomplete in many ways. It ignores 
the problem of integrating perception across many fixations, though 
the scheme can be extended to allow this (Hinton, 1981b). It also uses 
a two-dimensional domain instead of a three-dimensional one, though 
the extension to 3-D would be feasible if the scheme could be made 
more efficient At present, the network requires too much hardware. 
Even if we restrict ourselves to rigid transformations, our scheme 
requires N2 gated connections to map N rctinotopic features through 
N possible mappings into N object-based features. 

One way to save hardware is to take advantage of the structure of the 
set of possible mappings. The scheme we presented would work for 
any set of one-to-one mappings. But the allowable spaual 
transformations are much more restricted than this. For example, 
small changes in the mapping cause small changes in the parameters 
of the object-based feature to which a given rctinotopic feature maps. 
This means that it is possible to use "coarse coding" (Hinton, 1981b) 
to cconomi/c on units. Coarse coding uses activity in a unit to 
represent a whole collection of similar alternatives and it represents 
each specific alternative by the joint activity of many such units. It 

OBJECT 

Figure 2-4: A Simulation Disrupted by a Random Mask 
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relies on local linearity: If B lies between A and C, then the 
representation of B must have the average of the effects of the 
representations of A and C. On a local scale, this holds for spatial 
features and their transformations. 

An even stronger property of the set of rigid transformations is that 
each of them can be expressed as a matrix which operates on a vector 
containing the retinotopic parameters of one feature to produce a 
vector containing the object-based parameters of the transformed 
feature. Arbitrary one-to-one mappings cannot be expressed in this 
way. It should be possible to make great economies by representing 
features and mappings as collections of parameters rather than as 
single active units, though we know of no connectionist scheme which 
fully exploits this possibility. 

Another way of economizing on gated connections is to introduce 
several sequential stages into the network (Ballard, 1985; Ballard and 
Sabbah, 1983). Each stage handles one aspect of the overall 
transformation. A typical decomposition is to let one stage handle 
translation and the next stage handle rotation and scaling. If there arc 
six degrees of freedom in the total transformation and each degree of 
freedom has d discriminate values, this two stage method reduces the 
number of gated connections per rctinotopic feature from d6 to 2 x d . 
However, it also slows down the relaxation process and makes it much 
harder to ensure that it converges to a sensible solution. 

A possible criticism of the simulation is that we have not proved that 
the network converges, and we have not given any systematic 
procedure for tuning the connection strengths. Hopfield (1982, 1984) 
and Hummel and Zucker (1983) have shown that in networks with 
symmetrical connections (like ours), there is an "energy" function 
which governs the behavior of the network. If each unit computes the 
derivative of the energy function and updates its state accordingly, the 
network is guaranteed to find an energy minimum. Our relaxation 
procedure has similarities to the model in Hopfield (1984). The use of 
a variable power law to suppress weak activations plays the same role 
as the variable gain in Hopfield's model. A further elaboration is to 
use a stochastic decision rule (Hinton & Sejnowski, 1983; Geman and 
Geman, 1984). This allows networks to escape from local energy 
minima and it also leads to a simple local algorithm for tuning the 
weights (Ackley, Hinton and Sejnowski, 1985). We have deliberately 
avoided using these more sophisticated relaxation techniques in this 
simulation because they introduce extra complexity which simply 
obscures the relationship between parallel cooperative models of 
shape perception and illusory conjunctions. 

The use of coarse coding or multiple sequential stages or stochastic 
relaxation would not remove the tendency of these networks to 
produce illusory conjunctions, and so it would not affect our central 
result: Illusory conjunctions are a natural consequence of using 
relaxation to search for consistent states of a parallel network in which 
connections between rctinotopic and object-based features are gated 
by mapping units that explicitly represent the viewpoint 
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