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ABSTRACT 

This paper describes an approach to object loca­
tion based on matching model regions to surface 
image regions. These matches, together with object 
models, provide hypotheses about the 3D location of 
the objects containing the recognized surfaces. When 
a hypothesis is complete, the program describes the 
matched data and model surface boundaries in terms 
of the raw model. These descriptions are used used 
to verify the physical consistency of the hypotheses 
and to explain extra or hypothesize missing features 
caused by obscured components. 

1. Introduction 

The most important recent work in high-level 
vision (ACRONYM [3]) has demonstrated the impor­
tance of embedding object models and an understand­
ing of the scene-to-image transformation In an intelli­
gent vision program. With these components, a pro­
gram can predict how an object will appear given its 
current beliefs about the scene, rather than having to 
rely on image models (or, more likely, a feature space 
representation of these views). Concurrently, much 
low-level vision research has been attempting to pro­
vide a surface-based description of images. 

This paper describes a program (IMAGINE) which 
matches surface regions to object models to recognize 
and locate projections of three dimensional objects in 
two dimensional images. The approach is data driven, 
with three major stages. The first stage matches 
image regions to model surfaces, with the goal of 
estimating the 3D orientation parameters for the Image 
region. This Information Is used to hypothesize 
specific object surfaces. The second stage relates the 
hypotheses according to the structural relationships 
embodied in the object models. The third stage veri­
fies that the hypothesized objects are consistent with 
real world constraints, such as boundary adjacency 
and surface ordering. This process requires calculat­
ing descriptions of the predicted surfaces and associ­
ated data regions. Recognition is considered success­
ful if a set of data is found that adequately accounts 
for all features of a model. In particular, this 
requires the program to reason about object back sur­
faces, tangent surfaces, small features, obscured 
features and non-rigidly attached subcomponents. 

This work was supported by a post-graduate student­
ship from the University of Edinburgh. Thanks also go 
to J.A.M. Howe and R.J. Beattle. 

in short, the program has four goals: 
- to locate instances of specific 3D objects in 2D 

images, 
- to locate Images features corresponding to all 

features of the model, or explain why the image 
features are not present. 

- to verify that the features are consistent with the 
geometrical and topological predictions made by 
the model, and 

- to extract the parameters needed to fully charac­
terize an object's scene position, including any 
associated with flexibly connected objects. 

Coping with obscured features of objects is an 
important point of this work. This has required work 
in two areas; first, in deciding what are relevant 
aspects of obscured objects (ie. what features disap­
pear and what new ones appear), and second, in 
extracting information about those features. This 
second point has required work on extracting 3D posi­
tional Information from surface shapes and descriptions 
of surface and image regions. 

This paper discusses the model and the reason­
ing rules used to analyze the main example image -
that of a robot upper and lower arm assembly. 

2. What does 'recognize* mean in this context 

The meaning of "recognition" is largely dependent 
on the goals of the recognizer, that is. what type of 
output is desired for what type of input. If the only 
brown objects in the environment are tables, then a 
program could find tables by looking for brown 
regions. To some extent, all recognition programs are 
just discrimination programs, of which the table recog­
nizer is a minimal such program. On the other hand, 
even the most sophisticated programs (e.g. ACRONYM 
[3]) are fundamentally the same, they attempt to find a 
set of evidence that is consistent with their model of 
the object and for which there is no contradictory evi­
dence. The distinction is largely one of sophistication 
- richer models, greater embedded knowledge about 
object structure relationships and more detailed match-
ings reduce the possibilities of false recognitions. 

In general, recognition consists of four sub-
actions: 

- location of Interesting data. 
- selection of a model. 
- instantiation and verification of model, and 
- determination of object's location and orientation. 
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in particular, this program: 
- Considers all data interesting. This is mainly 

because the input has been previously seg­
mented into connected surface regions. 

- Considers all models This is mainly because 
model invocation is a research problem not 
addressed in this work. 

- Attempts to fully instantiate the model. A model 
has slots for a set of structurally related sur­
faces and subobjects The program either fills 
the slots or finds evidence to explain why they 
cannot be filled. (This is an important require­
ment for an intelligent vision program.) Surface 
slots are matched to image regions and sub­
structure slots are matched to previously recog­
nized objects. Fully instantiated hypotheses must 
pass a verification process. 

- Locates and orients the objects in three dimen­
sions. The parameters come from estimating 
the transformation that maps a given model sur­
face to a given image region based on the 
shape of the image region, and then inverting 
the transformation from surface to object. 

3. Surfaces 

Tne project has concentrated on using surface 
regions as the primary data primitive. Though there 
are no programs yet that reliably and completely give 
a surface segmentation, it doesn't seem like a too 
distant possibility. Pentland's surface shape algorithm 
[61. various stereo algorithms (eg Grimson [5]). optical 
flow, range finaer systems and structured light systems 
all provide the information needed to construct a sur-
ace map. (Surface depth, shape and orientation are 
all largely equivalent representations.) 

There are many reasons for using surfaces as 
the primitive input data element at this level of 
analysis. First, irrespective of what interpretation is 
made, what is seen is the surface of objects. 
Second, as surface regions are matched to model 
surface regions, the semantics of the relationship is 
simple: in unobscured situations, a six parameter 
geometric transformation plus a projection onto the 
image plane. Third, the segmentation of a surface 
image into regions of uniform surface properties may 
be simpler. To some extent, any region of homo­
geneous image properties is likely to correspond with 
some subset of a uniform surface. (The reverse is 
not always true, as a shadow across a flat surface 
would create two distinct regions.) There are many 
open problems on this topic, such as merging split 
regions, scale of surface descriptions, etc Fourth, 
surface regions lead to more accurate transformation 
parameter estimates (mainly because their size gives 
more accurate measurements). Point to model match­
ing and transformation inversion algorithms (e.g. 
Roberts [7]), while elegant, are sensitive to image 
measurement errors. Worse, the loss of information 
from using just points makes It difficult to determine 
the image to model correspondences correctly. Lastly, 
once surfaces are chosen as the desired primitive. 
other image boundary information Is more useful: 

- reflectance boundaries: surface detail 
- obscuration: object limits, surface depth order 
- shadow: surface location in three dimensions 
- shape: surface relative orientation 

The input used by the program is that of a sur­
face image segmented into regions of either planer or 
simply curved orientation. Hence, the data is simpli­
fied in that we know all boundaries correspond to 
surface or shape discontinuities. Further, the boun­
daries form closed regions. The program could have 
used the surface depth or orientation information as 
part of its inputs, but it was decided to base the work 
just on the region shape. 

4_. Object Models 

This work uses structural three dimensional 
models of the objects it expects to find The reasons 
for this are discussed by Binford [23: a capable 
vision system should know about objects, and how 
objects are seen in images, rather than what types of 
images an object is likely to produce. One difference 
between this work and that of Binford and Brooks 
(ACRONYM [3]) has been the choice of primitives 
used to construct the models They use solid object 
models (generalized cones) as the fundamental building 
block, and then deduce what image boundaries are 
produced. One problem with this is that what is seen 
is surfaces, hence it seems reasonable that the pre­
ferential representation for a vision system would make 
surface-based information explicit. (This argument is 
largely one of conceptual simplicity, in that it should 
be possible to automatically deduce a surface 
representation from a solid representation, though not 
necessarily easily.) Another difficulty with the general­
ized cone is that it seems to be a conceptually sim­
ple representation for only some object classes, 
though any one representation is probably not suffi­
cient for all tasks. 

Surface primitives are constructed by specifying 
the boundary of the region, with the assumption that 
the surface is either planer or has a single axis of 
curvature and fills the region inside the boundary. 

Objects are described in a subcomponent hierar­
chy, with objects being composed of either connected 
surfaces or recursively defined sub-objects. The con­
nections are specified using a six parameter attach­
ment (x.y.z translations, rotation, slant and tilt). These 
attachments can be rigid (all parameters specified in 
the model) or may be flexible. Flexible attachments 
are handled by assigning the parameter a symbolic 
and which is bound value when the corresponding 
subcomponent is added to the object hypothesis. 
Symbolic parameters are only used with attachments. 

Figure 2 shows some of the model used for the 
example in section 9. The full model consists of the 
upper and lower main arms of a Unimatlon PUMA 
robot. The figure here just shows some of the model 
for the upper arm and external linkages. Figure 1 
shows the part models and the coordinate frame loca­
tions. The variable "jntN" is the symbolic parameter 
for the robot's Nth joint angle. In the example, the 
FACE primitives define the surfaces by listing key 
boundary points (30) and whether they are joined by a 
line or simple oriented curve. The ASSEMBLY blocks 
define named structures, in terms of either other 
named structures or surfaces. The "AT ((...).(..»" 
portion describes the XYZ translation, rotation, slant, 
tilt afflxment relationship between the main and sub-
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Figure 2 - Part of model used for the robot 
arm recognition example 

5. Matching model surfaces to image regions 

This process produces the main input used by 
the object recognition and construction process 
described in section 6. Its inputs are the boundary of 
the image region and a description of the surface as 
given by the model. It has the goal of estimating the 
transformation parameters that relates the image to the 
model 

The visual motivation for this process is: the 
shape of an image region gives strong clues to the 
orientation of the surface. In particular, the program 
compares the image region shape to the model sur­
face shape (using the boundaries) and attempts to 
extract measurements that lead simply to the desired 
parameters. The parameters are rotation, slant, tilt 
axis orientation, distance and x-y translation. The 
choice of rotation, slant and tilt as the orientation 
parameters was motivated by what information was 
easily found In an Image of a transformed surface. 
The initial parameter estimation process is based on 
the following observations: 

- rotation and XYZ translation of a surface do not 
alter Its relative cross sectional dimensions, and 
that slant does not alter them drastically, over 
the range of estimated slants (less than 1.3 
radians). 

- the tilt axis lies approximately at the orientation 
of greatest slant distortion. 

- the maximum distortion is an Indication of the 
slant relative to the line of sight. 

- the relative scaling of features between the 
model and image indicates the distance. 

are: 
The heuristics used for the parameter estimation 

rotation - correlation of data and model cross 

sections. The peaks are potential rotation offsets. 
Figure 3 shows typical model and data shapes 
and their corresponding cross section versus 
angie functions. Note that the data function is 
largely just the translated model function. 

Figure 3 - model and data cross sections 

slant and tilt - given an estimated rotation, create 
a ratio of maximum data to maximum model 
cross section widths as a function of cross 
section path angle. (Use of the maximum is a 
heuristic to relate approximately corresponding 
cross sections.) Slant, tilt and distance estimates 
come from the orientation of the minimum ratio, 
the ratio itself and the maximum ratio (figure 4). 

Figure 4 - data to model cross section ratio 

distance - given rotation, slant and tilt, compute a 
ratio of data to model cross sections along the 
data region's major and minor axes. Two dis­
tance estimates are made from the average and 
most common ratios. The final value Is the 
average of these two and the previous esti­
mates. The major motivation for the use of 
three estimators is various sensitivities to obscu­
ration or parameter mis-estimation. 

x.y translation - align data and mode centers of 
mass transformed by the estimated parameters 

An optimization phase is then entered. The 
evaluation function is the weighted distance of the 
predicted model boundary from the observed image 
boundary. Because of the expected accuracy of the 
various parameter estimates, optimization preference is 
given to the worst estimate in order of tilt, distance, 
slant and rotation, with the x-y translation always 
adjusted to best fit at each stage. 

Note that the transformation relating a modeled 
surface to an image region Is not always unique, 
especially when model symmetries, spatial quantization 
and inaccuracies of fitting numerical data are con­
sidered. Consequently, the parameter estimation pro­
cess may produce more than one hypothesis. 



992 R. Fisher 

RULE 5: <object hypothesis> <- <surface hypothesis> 
These heuristics gave reasonable parameter esti-

mates in 94 of 100 test cases recently. Given the 
tolerances in the matching process, the estimates are 
acceptable in the successful cases. Unfortunately cal­
culating these parameters is largely numerical and 
computationally expensive - mainly because of image 
parameter measurement and model-to-data boundary 
comparisons during the optimization phase. 

6. Some rules for recognizing objects 

here, recognition is a construction process. At 
each stage, a hypothesized structure is under con­
sideration. This hypothesis may have several empty 
substructure slots, in which case the program will 
attempt to fill the slots in various ways Or. the slots 
may all be full, in which case the hypothesis will be 
subjected to a verification process. Finally, the struc­
ture may be used to hypothesize another structure 

Currently, the processing of the hypotheses is 
exhaustive, and is controlled by a first-in. first-out 
queue. The selection of which procedure to apply to 
a hypothesis is determined by a set of rules compiled 
from the set of meta-rules discussed below. 

Some of the rules have binary right-hand-sides. 
When the matcher considers applying such a rule to a 
hypothesis, a prediction routine is called. Using the 
object models, this routine predicts where in the 
image the second hypothesis needed for the matching 
might be found (c.f. Freuder's Advice process [4]). 
Then, all hypotheses of the appropriate type from this 
location is paired with the current hypothesis node 
and the analysis routine is invoked for each pairing. 

The general processing philosophy is for the 
rules to produce all hypotheses consistent with their 
definition. with the assumption that incorrect 
hypotheses will not be capable of full consistent 
instantiation. 

About two dozen rules exist at the current time. 
The point of having different rules, rather than a gen­
eral mechanism, is that each can carry out the 
specific type of reasoning needed to solve a particular 
problem. The rules described below are some of 
those used in the example given in section 9: 

RULE 3: <surface hypothesls> <- <lmage reglon> 

This rule selects, among all model surfaces, 
those that meet various pre-screening conditions rela­
tive to the particular image region (mainly minimum 
size relationships). Then, the parameter estimation 
process (section 5) is applied for each surface candi­
date. A surface hypothesis is generated for each 
suitable estimate. 

RULE 1: <oblect hypothesls> <- <ob|ect hypothesls> 
<surface hypothesis> 

This rule adds a new surface to an existing 
structure hypothesis. For the rule to apply, the global 
location of the new hypothesis predicted by the new 
surface has to be consistent with the previous 
hypothesis. The resulting hypothesis has all the previ­
ous information transferred. Including variable bindings. 

This rule produces a structure hypothesis for 
each modeled object that has the particular face as a 
rigidly connected subcomponent. The location of the 
hypothesis is calculated by taking the location of the 
face and Inverting the attachment relationship to the 
main structure (figure 5). 

Figure 5 - surface hypothesis to object hypothesis rule 

RULE 2: <object hypothesis> <-_ <object hypothesis> 

This rule fills slots corresponding to surfaces 
invisible because they lie on the back sides of the 
object. This is done by using the object model to 
predict the surface orientation, given the hypothesis's 
location and orientation. 

RULE 3: <object hypothesls> <- <object hypothesis> 

This rule fills slots that correspond to near 
tangential surfaces on the front side of an object. 
Because of the severe slant distortion of such sur­
faces, parameter estimation is unreliable. Hence, the 
slots are filled with references to image regions that 
lie approximately in the right location and have 
approximately the correct size. 

RULE 4: <verified object> <- <object hypothesis) 

This rule is discussed In detail in section 7. 

RULE 9: <object hypothesis> <- <object hypothesis) 
<bound verified subobjeci> 

This rule adds a new rigidly attached subassem-
bly to the current hypothesis. The location of the 
main assembly predicted by the new subassembly must 
be consistent with the previous hypothesis. 

RULE 10: <object hypothesis) <- <object hypothesis) 
<bound verified subobject) 

This rule adds a new flexibly attached subassem-
bly to the current hypothesis. The location of the 
new subassembly, with the previous hypothesis's loca­
tion and the model attachments, allows the calculation 
of the attachment relation that must exist between the 
structure and subassembly. If this is consistent with 
the explicitly modeled parameters, then the match is 
acceptable. Any remaining symbolic parameters are 
then bound to the corresponding calculated values, in 
the context of the resulting hypothesis. 

7. Verification and Description 

When an object hypothesis is fully Instantiated. 
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the verification rule is applied. This is necessary 
because the hypothesis construction rules are tolerant 
in their checking (e.g. location and orientation param­
eter consistency) and allow a few unlikely fully instan­
tiated hypotheses to be formed. The major discrepan­
cies noted were: use of one image region to support 
several distinct surface hypotheses and the use of 
widely separated image regions to support adjacent 
surface hypotheses. 

Part of the verification phase needs a description 
of the surface-to-image match. Two descriptions are 
created, that of the surface hypothesis as supported by 
the image region data, and that of the image region 
as accounted for by the projected surface hypothesis. 
The descriptions are given by identifying segments of 
the boundary of either the image or projected model 
surface region in correspondence with the description 
of the surface database model (example below). This 
correspondence Is found by: 

1. taking the boundary of the image region and 
calculating a similar boundary for the projected 
surface region (with segments identified by the 
model description labels), 

2. identifying corresponding segments in the two 
boundaries by overlaying them and marking 
unlabeled segments, and 

3. creating a description of the correspondence by 
recording segment identifiers and segment end-
point locations (with some minor editing). 

In the robot image example (section 9). there is 
a partially obscured surface in the robot lower arm 
assembly. In figure 6. we see how the model and 
image data are used to give the two descriptions. 

Figure 6 - description of Image and matched 
surface boundaries 

These descriptions are used partly in the general 
verification process, and partly for the handling of 
obscuration (section 8). 

The total verification process can then be sum­
marized as: 

1. check for ail slots filled 
2. ensure that all surfaces declared as back facing 

still are (necessary because of parameter 
adjustments) 

3. ensure against duplicate use of image regions 
4. re-optlmlze parameter estimates (given better 

averages estimates as the initial inputs) 
5. describe visible surfaces (as above) 
6. for all visible surfaces predicted to have shared 

boundaries (by the model), ensure that the por­
tions of the surface descriptions corresponding 
to the shared boundary are compatible (i.e. 
overlap) 

7. ensure that the object's final predicted boun­
daries coincide well with the observed boun­
daries. This includes the obscuration analysis 
discussed in section 8. 

8. Coping with partially obscured objects 

Any reasonable three dimensional scene analysis 
program has to cope with obscuration: objects always 
have backsides that the model predicts, but are never 
seen. There are two other forms of obscuration: the 
object may have self-obscured front surfaces (from 
either rigidly or flexibly attached subcomponents being 
closer to the viewer) and the object may be obscured 
by external, unrelated objects in the scene. 

In the discussion below, only surfaces are con­
sidered. This is because the analysis has focussed 
on the use of surface descriptions, and because the 
objects can be described (directly, or recursively) in 
terms of their surfaces. Self-obscured surfaces are 
those obscured by other surfaces of the same object. 
External surfaces are those on unrelated objects. 

Knowledge of the models, surfaces and the image 
formation process is the ultimate source of the Infor­
mation needed to solve obscuration problems. Here, 
the initial use of this knowledge is during .surface 
description. Major deviations of the image boundary 
from the predicted model boundary are hypothesized to 
result from obscuring boundaries. The second usage 
is during object construction. If surfaces are only 
slightly obscured, then the model instantiation process 
proceeds normally. If they are greatly obscured, then 
the parameter estimation techniques will not be suc­
cessful. Then, the presence of a likely image region 
is considered adequate at this point. 

The backside surface case is easily handled by 
examining the predicted surface normal. 

Completely obscured surfaces require evidence of 
closer surfaces, to support their hypothesized existence. 
For self-obscured surfaces, the evidence comes from 
the prediction of other object surfaces. Evidence for 
external surfaces must come from elsewhere. This 
case has not been Implemented yet. Possible evi­
dence may come from: other verified object hypotheses 
or low level feature cues (e.g. as in Binford [1]). 

Partially obscured surfaces get the greatest 
analysis. Because they are partially visible, they fill 
slots in the object hypothesis. As mentioned above, 
to do this, the hypothesis formation constraints are 
weakened. Unfortunately, weakening the constraints 
leads to the possibility of Incorrect hypotheses being 
formed. The major burden of coping with this and 
obscuration in general is in the verification process 
(rule 4). In addition to the verifications described in 
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section 7. the routine has four obscuration-specific 
tasks: 

- to ensure that points where the data description 
becomes unlabeled are points where three (or 
more) regions meet (figure 7). These regions 
are: object surface, obscuring surface and back­
ground surface. This is a variation of the TEE 
test for obscuring surfaces, except that it has 
advantages in cases of coincidental alignments, 
in that it is based on surface ordering proper­
ties, rather than boundary topology. 

Figure 7_ 2.three surfaces at unlabeled segments 

to ensure that unlabeled model boundaries are 
consistent with predictions of obscuring surfaces 
(figure 8). In particular, this means that the 
predicted missing boundary (from the model 
description) must lie completely outside the 
associated image region The hypothesis can 
be strengthened in the self-obscured case by 
showing that the missing segment lies within a 
region corresponding to a closer surface. 

Figure 8 2 unlabeled model boundaries 

to verify that unlabeled data description boun­
daries are consistent with obscuring surfaces 
(figure 9). That is, the unlabeled data boundary 
must lie completely within the region predicted 
for the surface. Again, the hypothesis can be 
strengthened in the self-obscured case by show­
ing that the unlabeled boundary lies on the 
boundary of a closer object surface. 

Figure 9 2 unlabeled data boundaries 

- to verify that boundaries of undescribed 
regions coincide with predicted model boundaries 

Figure 10 - segmented surface test 

This type of reasoning complements that proposed by 
Binford [1], in that this uses the depth ordering pro­
perties of surfaces to provide clues for hypothesis 
verification. His approach uses similar reasoning for 
hypothesis formation. 

9 Example 

Figure 11 shows a picture of a model of the 
upper and lower arm assembly of a Unimation PUMA 
robot, with the boundaries of the hand-segmented sur­
face regions. This image was used as the basis for 
the results discussed in this section. The location of 
the model's external coordinate frame origin and the 
value of the joint angle parameter are given below. 
The global coordinate system is centered at the focal 
point, with X horizontal. Y vertical and Z away from 
the viewer. All distances are in centimeters and 
angles are in radians 

Figure 11 2 Hand segmented region boundaries on 
raw image 

This image was hand segmented to give the 
major surface regions in the field of view. The seg-
mented Image, the model shown in figure 1 and the 
meta-rules (e.g section 6) were then used as the 
external inputs Into the program. The output of the 
program is a database of the hypotheses at various 
stages of instantiation. The only fully instantiated 
robot hypothesis was the correct one. For that solu­
tion, the global coordinate and the corresponding joint 
angle parameters were: 
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X:-25 Rotation:0.12 jn t l :0 .83 
Y:124 Slant:0.13 jnt2:0.88 
Z:440 T i l t :5 .56 jnt3:4.54 

it is felt that the numerical solutions given by 
the program are reasonable. (The large tilt angle 
estimate discrepancy occurs because of the essentially 
zero slant estimate.) It Is not apparent, but the results 
at various intermediate stages are often a lot worse. 
The accuracy results from averaging estimates from 
the six visible surfaces of the robot. The predicted 
surface boundaries of the final robot hypothesis node 
superposed over the raw image are shown in figure 
12 (The obscured edge is not removed due to lack 
of a front-surface hidden line remover.) The picture 
shows that the numerical estimates are approximately 
correct. The fitting of model surfaces to data regions 
aligned boundaries well, but when the parameters esti­
mates from the various surfaces are combined, the 
boundary fit deteriorates, which shows In this figure. 

Figure 12 - Edges of located robot on raw image 

10. Conclusions and criticisms 

The results from section 9 show that the pro­
gram successfully identified the robot assembly and 
made reasonable estimates of Its location, orientation 
and joint angle parameters. This can be attributed 
partly to the right choice of input data (I.e. surface 
regions and 3D object models), and partly to the 
types of reasoning done at the various stages of 
analysis. 

The program can be criticized on several points. 
First. Its image surfaces must be largely planer for 
the current parameter estimation techniques to 
succeed. Second, the modeling of surfaces doesn't 
account for the surface shape internal to the region 
boundary. Third, the program doesn't take advantage 
of the fact that surface segmentations will probably 
provide two or three parameter estimates directly 
(slant.tilt.distance). Fourth, its models are non-generic 
(unlike ACRONYM), and there Is no simple mechanism 
(as yet) available for providing them. Fifth, its current 
dependence on hand-segmented images, while neces­
sary at present, makes the program difficult to ade­
quately evaluate. Sixth, the model Invocation process 
currently considers matching all surface regions to all 
reasonable surface models. Because any reasonable 
model base and Image will have many surfaces, a 

more powerful technique is needed. Seven. Its rea­
soning is much more oriented to structural, than to 
visual understanding. The two major uses of image 
data were in the parameter extraction and the struc­
ture verification processes, with the rest of reasoning 
devoted to matching according to the object models. 
Eight, it's reasoning Is largely undirected and thus 
leads to having a heavy computational cost. Finally, 
because it uses an exact parameter matching tech­
nique, with tolerance (threshold) based matching, 
rather than convergence of parameter ranges (c.f. 
ACRONYM), it is subject to complete failures when 
parameter estimates are inaccurate. However, even 
though generous tolerances were needed, the process 
was selective enough to only allow a few hypotheses 
to get close to the verification stage. 

On the other hand, because It uses a more rea­
sonable semantic primitive, surfaces, and because it 
uses constructive, task-specific reasoning, it can more 
completely recognize complex objects. In particular, 
the program successfully: 

- located and identified a 3D object in a 2D image 
- used surface regions and 3D object models to 

guide the process. 
- extracted the 3D positional information. Including 

the joint angles of a flexible assembly. 
- fully instantiated and explained the model of the 

robot assembly, and 
- handled some cases of self-obscuration correctly. 

it is felt that the work described in the paper 
describes advances int the following areas: 

3D parameter estimation from surface image 
region to model region matching. 

- successful recognition of articulated objects, and 
- better understanding of handling obscured sur­

faces. 
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