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Abstract

Interactive dynamic influence diagrams (I-DIDs)
are graphical models for sequential decision mak-
ing in partially observable settings shared by other
agents. Algorithms for solving I-DIDs face the
challenge of an exponentially growing space of
candidate models ascribed to other agents, over
time. Previous approach for exactly solving I-
DIDs groups together models having similar solu-
tions into behaviorally equivalent classes and up-
dates these classes. We present a new method that,
in addition to aggregating behaviorally equivalent
models, further groups models that prescribe iden-
tical actions at a single time step. We show how to
update these augmented classes and prove that our
method is exact. The new approach enables us to
bound the aggregated model space by the cardinal-
ity of other agents’ actions. We evaluate its perfor-
mance and provide empirical results in support.

1 Introduction

Interactive dynamic influence diagrams (I-DIDs) [Doshi et
al., 2009] are graphical models for sequential decision mak-
ing in uncertain settings shared by other agents. I-DIDs may
be viewed as graphical counterparts of I-POMDPs [Gmy-
trasiewicz and Doshi, 2005]. They generalize DIDs [Tatman
and Shachter, 1990], which may be viewed as graphical coun-
terparts of POMDPs, to multiagent settings analogously to
how I-POMDPs generalize POMDPs. Importantly, I-DIDs
have the advantage of decomposing the state space into vari-
ables and relationships between them by exploiting the do-
main structure which allows computational benefits in com-
parison to I-POMDPs [Doshi et al., 2009].

I-DIDs contribute to a growing line of work that includes
multiagent influence diagrams (MAIDs) [Koller and Milch,
2001], and more recently, networks of influence diagrams
(NIDs) [Gal and Pfeffer, 2003]. MAIDs objectively analyze
the game, efficiently computing the Nash equilibrium pro-
file by exploiting the independence structure. NIDs extend
MAIDs to include agents’ uncertainty over the game being
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played and over models of other agents. Both MAIDs and
NIDs provide an analysis of the game from an external view-
point, and adopt Nash equilibrium as the solution concept.
Specifically, MAIDs do not allow us to define a distribution
over non-equilibrium behaviors of other agents. Furthermore,
their applicability is limited to static single play games. Inter-
actions are more complex when they are extended over time,
where predictions about others’ future actions must be made
using models that change as the agents act and observe. I-
DIDs seek to address this gap by offering an intuitive way to
extend sequential decision making to multiagent settings.

As we may expect, I-DIDs acutely suffer from both the
curses of dimensionality and history [Pineau et al., 2006].
This is because the state space in I-DIDs includes the models
of other agents in addition to the traditional physical states.
These models encompass the agents’ beliefs, actions and sen-
sory capabilities, and preferences, and may themselves be
formalized as I-DIDs. The nesting is terminated at the 0th

level where the other agents are modeled using DIDs. As the
agents act, observe, and update beliefs, I-DIDs must track the
evolution of the models over time. Consequently, I-DIDs not
only suffer from the curse of history that afflicts the mod-
eling agent, but more so from that exhibited by the modeled
agents. The exponential growth in the number of models over
time also further contributes to the dimensionality of the state
space. This is complicated by the nested nature of the space.

While we may solve I-DIDs exactly if the number of mod-
els of others is finite, we are unable to scale to large problems
or even longer horizons for small problems. One way to miti-
gate the intractability is to group together behaviorally equiv-
alent models [Rathnas et al., 2006; Pynadath and Marsella,
2007] thereby reducing the cardinality of the model node.
Doshi et al. [2009] proposed an approximation technique for
solving I-DIDs based on clustering models that are likely to
be behaviorally equivalent. Solutions of multiagent problems
up to six horizons were shown using these approaches.

Although exact approaches face significant hurdles in scal-
ing to realistic problems, nevertheless exact solutions play an
important role: they serve as optimal benchmarks for solu-
tions provided by approximation techniques. In this paper, we
improve on the previous approach of exactly solving I-DIDs.
We reduce the model space by grouping behaviorally equiva-
lent models. A behavioral equivalence class contains models
that exhibit identical solutions for all time steps. We further
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compact the space of models in the model node by observing
that behaviorally distinct models may prescribe identical ac-
tions at a single time step. We may then group together these
models into a single equivalence class. In comparison to be-
havioral equivalence, the definition of our equivalence class
is different: it includes those models whose prescribed action
for the particular time step is the same, and we call it action
equivalence. Since there are typically additional models than
the behaviorally equivalent ones that prescribe identical ac-
tions at a time step, an action equivalence class often includes
many more models. Consequently, the model space is parti-
tioned into lesser number of classes than previously [Rathnas
et al., 2006] and is bounded by the number of actions of the
other agent.

We begin by solving the individual models in the initial
model node to obtain the policy trees. These trees are merged
bottom-up to obtain a policy graph. As a result, behav-
iorally equivalent models, which have identical policy trees,
are merged. We further group models at each time step whose
prescribed actions at that step are identical. We show how we
may compute the probability with which an equivalence class
is updated to another class in the next time step. These proba-
bilities constitute the new conditional probability distribution
of the model node. We discuss computational savings and
theoretically show that the approach preserves optimality. We
demonstrate the performance of our approach on two problem
domains and show significant time savings in comparison to
previous approaches.

2 Background: Interactive DID

We briefly describe interactive influence diagrams (I-IDs) for
two-agent interactions followed by their extensions to dy-
namic settings, I-DIDs, and refer the reader to [Doshi et al.,
2009] for more details.

2.1 Syntax

In addition to the usual chance, decision, and utility nodes, I-
IDs include a new type of node called the model node (hexag-
onal node, Mj,l−1, in Fig. 1(a)). The probability distribution
over the chance node, S, and the model node together rep-
resents agent i’s belief over its interactive state space. In
addition to the model node, I-IDs differ from IDs by having
a chance node, Aj , that represents the distribution over other
agent’s actions, and a dashed link, called a policy link.

The model node contains as its values the alternative com-
putational models ascribed by i to the other agent. We denote
the set of these models by Mj,l−1. A model in the model
node may itself be an I-ID or ID, and the recursion termi-
nates when a model is an ID or a simple probability distribu-
tion over the actions. Formally, we denote a model of j as,

mj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is the level l − 1 belief,

and θ̂j is the agent’s frame encompassing the action, observa-
tion, and utility nodes. We observe that the model node and
the dashed policy link that connects it to the chance node, Aj ,
could be represented as shown in Fig. 1(b). The decision node
of each level l − 1 I-ID is transformed into a chance node.
Specifically, if OPT is the set of optimal actions obtained
by solving the I-ID (or ID), then Pr(aj ∈ A1

j ) = 1
|OPT |
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Figure 1: (a) A generic level l > 0 I-ID for agent i situated with

one other agent j. The hexagon is the model node (Mj,l−1) and the

dashed arrow is the policy link. (b) Representing the model node

and policy link using chance nodes and dependencies between them.

The decision nodes of the lower-level I-IDs or IDs (m1
j,l−1, m2

j,l−1)

are mapped to the corresponding chance nodes (A1
j , A2

j ), which is

indicated by the dotted arrows.

if aj ∈ OPT , 0 otherwise. The conditional probability ta-
ble (CPT) of the chance node, Aj , is a multiplexer, that as-

sumes the distribution of each of the action nodes (A1
j , A

2
j )

depending on the value of Mod[Mj ]. The distribution over
Mod[Mj ], is i’s belief over j’s models given the state.
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Figure 2: A generic two time-slice level l I-DID for agent i. Notice

the dotted model update link that denotes the update of the models

of j and of the distribution over the models, over time.

I-DIDs extend I-IDs to allow sequential decision making
over several time steps. We depict a general two time-slice I-
DID in Fig. 2. In addition to the model nodes and the dashed
policy link, what differentiates an I-DID from a DID is the
model update link shown as a dotted arrow in Fig. 2. We
briefly explain the semantics of the model update next.

The update of the model node over time involves two steps:
First, given the models at time t, we identify the updated
set of models that reside in the model node at time t + 1.
Because the agents act and receive observations, their mod-
els are updated to reflect their changed beliefs. Since the
set of optimal actions for a model could include all the ac-
tions, and the agent may receive any one of |Ωj | possible
observations, the updated set at time step t + 1 will have
up to |Mt

j,l−1||Aj ||Ωj | models. Here, |Mt
j,l−1| is the num-

ber of models at time step t, |Aj | and |Ωj | are the largest
spaces of actions and observations respectively, among all
the models. The CPT of Mod[M t+1

j,l−1] encodes the function,
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Figure 3: The semantics of the model update link. Notice the

growth in the number of models in the model node at t + 1 in bold.

τ(bt
j,l−1, a

t
j , o

t+1
j , bt+1

j,l−1) which is 1 if the belief bt
j,l−1 in the

model mt
j,l−1 using the action at

j and observation ot+1
j up-

dates to bt+1
j,l−1 in a model mt+1

j,l−1; otherwise it is 0. Second,

we compute the new distribution over the updated models,
given the original distribution and the probability of the agent
performing the action and receiving the observation that led
to the updated model. The dotted model update link in the
I-DID may be implemented using standard dependency links
and chance nodes, as in Fig. 3, transforming it into a flat DID.

2.2 Solution

Solution of an I-DID (and I-ID) proceeds in a bottom-up man-
ner, and is implemented recursively. We start by solving the
level 0 models, which may be traditional IDs. Their solutions
provide probability distributions which are entered in the cor-
responding action nodes found in the model node of the level
1 I-DID. The solution method uses the standard look-ahead
technique, projecting the agent’s action and observation se-
quences forward from the current belief state, and finding the
possible beliefs that i could have in the next time step. Be-
cause agent i has a belief over j’s models as well, the look-
ahead includes finding out the possible models that j could
have in the future. Each of j’s level 0 models represented
using a standard DID in the first time step must be solved to
obtain its optimal set of actions. These actions are combined
with the set of possible observations that j could make in that
model, resulting in an updated set of candidate models (that
include the updated beliefs) that could describe the behavior
of j. Beliefs over these updated set of candidate models are
calculated using the standard inference methods through the
dependency links between the model nodes.

3 Aggregating Models Using Action

Equivalence

As mentioned before, we seek to group at each step those
models that prescribe identical actions at that time step. We
describe our approach below.

3.1 Policy Graph and Behavioral Equivalence

Solutions of individual I-DIDs and DIDs that represent the
models of other agents may be merged to obtain a policy
graph. First, note that solutions of the models could be repre-
sented as policy trees. Each node in the policy tree represents
an action to be performed by the agent and edges represent

the agent’s observations. The policy trees may be merged
bottom-up to obtain a policy graph, as we demonstrate in
Fig. 4 using the well-known tiger problem [Kaelbling et al.,
1998]. Analogous to a policy graph in POMDPs, each node
in the graph is associated with a set of models for which the
corresponding action is optimal.
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Figure 4: (a) Example policy trees obtained by solving three mod-

els of j for the tiger problem. We may merge the three L nodes to

obtain the policy graph in (b). Because no policy trees of two steps

are identical, no more merging is possible.

Implicit in the procedure of merging policy trees is the fact
that if pairs of policy trees are identical – resulting from be-
haviorally equivalent models – they are merged into a single
representative tree. The following proposition gives the com-
plexity of merging the policy trees to obtain the policy graph.

Proposition 1 (Complexity of tree merge). Worst-case com-
plexity of the procedure for merging policy trees to form a

policy graph is O((|Ωj |
T−1)|M

0
j,l−1|) where T is the horizon.

Proof. Complexity of the policy tree merge procedure is pro-
portional to the number of comparisons that are made be-
tween parts of policy trees to ascertain their similarity. As
the procedure follows a bottom-up approach, the maximum
number of comparisons are made between leaf nodes and the
worst case occurs when none of the leaf nodes of the differ-
ent policy trees can be merged. Note that this precludes the
merger of upper parts of the policy trees as well. Each policy
tree may contain up to |Ωj |

T−1 leaf nodes, where T is the
horizon. The case when none of the leaf nodes merge must
occur when the models are behaviorally distinct. Hence, at

most O((|Ωj |
T−1)|M

0
j,l−1|) comparisons are performed.

Intuitively, merging policy trees is analogous to grouping
behaviorally equivalent models, whose entire policy trees are
similar. The utility of grouping behaviorally equivalent mod-
els toward reducing the model space is well known [Rathnas
et al., 2006; Pynadath and Marsella, 2007].

3.2 Action Equivalence

Definition

Notice from Fig. 4(b) that the policy graph contains multiple
nodes labeled with the same action at time steps t = 0 and
t = 1. The associated models while prescribing actions that
are identical at a particular time step, differ in the entire be-
havior. We call these models actionally equivalent. Action

1998



���� �!" 

���� �!" 

���

��� ���

�

��

�

��

�

��

�

�

��

�� ��

�� ��

��

��

�

�

�

�

�

�� ��

��

�

��

�

��

�

��

�

�

��

�� ��

�� ��

��

��

�

�

�

�

�

�� ��

��

���� ��� ����

���� ���� ���� ���	���


���� ���� ����

�

�����
	

�

��

�

������


�����

�

�����
	

�� ��

��������������

��

��

�� ���

�

�� ���

�

������� �������

������


Figure 5: (a) We may group models that prescribe identical ac-

tions into classes as indicated by the dashed boxes. (b) Annotations

are example probabilities for the models associated with the nodes.

(c) Probabilities on the edges represent the probability of transition

between classes given action and observation.

equivalence further partitions the model space, Mt
j,l−1, into

classes, as we show in Fig. 5(a). If more than one action is
optimal for a model, we may break ties randomly.

From Fig. 5(a), the partition of the model set,
Mt

j,l−1, induced by action equivalence at time step 0 is

{Mt=0,1
j,l−1 ,Mt=0,2

j,l−1 }, where Mt=0,1
j,l−1 is the class of models

in the model space whose prescribed action at t = 0 is L,

and Mt=0,2
j,l−1 is the class of models whose prescribed action

at t = 0 is OL. Note that these classes include the behav-
iorally equivalent models as well. Thus, all models in a class
prescribe an identical action at that time step. Furthermore at
t = 1, the partition consists of 3 action equivalence classes
and, at t = 2, the partition also consists of 3 classes.

Revised CPT of Mod Node

As we mentioned previously, the node Mod[M t+1
j,l−1] in the

model node M t+1
j,l−1, has as its values the different models as-

cribed to agent j at time t + 1. The CPT of Mod[M t+1
j,l−1]

implements the function τ(bt
j,l−1, a

t
j , o

t+1
j , bt+1

j,l−1), which is

1 if bt
j,l−1 in the model mt

j,l−1 updates to bt+1
j,l−1 in model

mt+1
j,l−1 using the action-observation combination, otherwise

it is 0. However, now that the models have been aggregated
into action equivalence classes, this CPT is no longer valid.

As we see from Fig. 5(a), updating an equivalence class
given an action-observation combination may lead into mul-
tiple classes at the next time step. For example, updating

Mt=0,1
j,l−1 (left class at t = 0) with action L and observa-

tion GR leads into the left class with action OL and the
middle class with action L at t = 1. Similarly, updating

Mt=0,1
j,l−1 with action L and observation GL leads into the mid-

dle class with action L and the singleton class with action OR
at t = 1. Consequently, the update function, τ , and therefore
the CPT of Mod[M t+1

j,l−1], is no longer deterministic (an indi-

cator function) but is probabilistic.
The probability, Pr(Mt+1,p

j,l−1 | Mt,q

j,l−1, at
j , ot+1

j ), is zero triv-

ially if at
j is not the optimal action for class Mt,q

j,l−1. Other-

wise, we show how we may derive the probability of class,

Mt+1,p
j,l−1 , given Mt,q

j,l−1 and an action-observation combina-

tion:
Pr(Mt+1,p

j,l−1 |M
t,q
j,l−1, a

t
j , o

t+1
j )

=
∑

m
t+1

j,l−1
∈Mt+1,p

j,l−1

Pr(mt+1
j,l−1|M

t,q
j,l−1, a

t
j , o

t+1
j )

=

P

m
t+1

j,l−1
∈M

t+1,p
j,l−1

Pr(mt+1

j,l−1
,Mt,q

j,l−1
,at

j ,o
t+1

j
)

Pr(Mt,q

j,l−1
,at

j ,o
t+1

j )

=

P

M
t+1,p
j,l−1

,M
t,q
j,l−1

Pr(mt+1

j,l−1
|mt

j,l−1,at
j ,o

t+1

j
)Pr(mt

j,l−1|a
t
j,o

t+1

j
)

P
M

t,q
j,l−1

Pr(mt
j,l−1

|at
j
,o

t+1

j
)

Pr(mt+1
j,l−1|m

t
j,l−1, a

t
j, o

t+1
j ) is equivalent to the τ function

and Pr(mt
j,l−1|a

t
j, o

t+1
j ) simplifies to Pr(mt

j,l−1) after a few

simple steps. Hence, we get:

Pr(Mt+1,p
j,l−1 |M

t,q
j,l−1, a

t
j, o

t+1
j ) =

P

m
t+1

j,l−1
∈M

t+1,p
j,l−1

,mt
j,l−1

∈M
t,q
j,l−1

bi(m
t
j,l−1)τ(bt

j,l−1,at
j ,o

t+1

j
,b

t+1

j,l−1
)

P
mt

j,l−1
∈M

t,q
j,l−1

bi(mt
j,l−1

)

(1)
where bi(m

t
j,l−1) is i’s belief over the model of j at t , bt

j,l−1

is the belief in the model mt
j,l−1, and bt+1

j,l−1 is in model

mt+1
j,l−1. Intuitively, Eq. 1 gives the proportion of the total

probability mass assigned to individual models in the class,

Mt,q
j,l−1, that update to models in the class, Mt+1,p

j,l−1 .

What remains now is how we compute bi(m
t
j,l−1) in Eq. 1.

If t = 0, this is straightforward and may be obtained as:
bi(m

0
j,l−1) =

∑
s Pr(m0

j,l−1|s)Pr(s), where Pr(m0
j,l−1|s)

is given in the CPT of the Mod node at time 0. For subse-
quent time steps, this is a challenge since we have aggregated
the individual models into action equivalence classes at time t
and have obtained the probability of each class. We may over-
come this obstacle by computing the distribution over the in-
dividual updated models as in the original I-DID as well and
caching it. This is done, of course, before we begin comput-
ing the probabilities of equivalence classes. A marginal of
the previously cached values over all physical states for the
particular model results in the required probability.

We illustrate the application of Eq. 1 to the policy graph of
Fig. 5(a) below:
Example For simplicity, let the left action equivalence class,

Mt=0,1
j,l−1 , comprise of two models, m1

j,l−1 and m2
j,l−1, both

of which prescribe action L. Let i’s marginal belief over
these two models be 0.35 and 0.3, respectively (see Fig. 5(b)).

Updating Mt=0,1
j,l−1 using the action-observation combination

(L, GR) leads into two classes, Mt=1,1
j,l−1 and Mt=1,2

j,l−1 with

the probabilities 0.54 and 0.46, respectively (see Fig. 5(c)).
This is because the model m1

j,l−1 which updates to the model

in Mt=1,1
j,l−1 using (L, GR) has the probability proportion

0.35
0.35+0.3 = 0.54. Model m2

j,l−1 which updates to a model in

Mt=1,2
j,l−1 has the probability proportion 0.3

0.35+0.3 = 0.46. Sim-

ilarly, updating Mt=0,1
j,l−1 using the action-observation combi-
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nation of (L, GL) leads into Mt=1,2
j,l−1 and Mt=1,3

j,l−1 with the

probabilities 0.54 and 0.46 respectively.
We point out that the likelihood of performing the action

and receiving the observation do not play a role in these prob-
ability computations, which are used to populate the revised
CPTs of the Mod nodes. Instead, they are used while solv-
ing the I-DID for inferring the updated distribution over the
aggregated model space at each time step.

In summary, we implement our exact method by revis-
ing the model update phase in the procedure for solving I-
DIDs [Doshi et al., 2009]. We aggregate actionally equiva-
lent models and represent their probabilistic update using the
new CPT for the node Mod[M t+1

j,l−1].

4 Computational Savings and Optimality

The complexity of exactly solving a level l I-DID is, in part,
due to solving the lower-level models of the other agent, and
given the solutions, due to the exponentially growing space
of models. In particular, at some time step t, there could be
at most |M0

j,l−1|(|Aj ||Ωj |)
t many models, where M0

j,l−1 is

the set of initial models of the other agent. Although |M0
j,l−1|

models are solved, considering action equivalence bounds the
model space to at most |Aj | distinct classes. Thus, the cardi-
nality of the interactive state space in the I-DID is bounded
by |S||Aj | elements at any time step. This is a significant
reduction in the size of the state space. In doing so, we ad-
ditionally incur the computational cost of merging the policy

trees, which is O((|Ωj |
T−1)|M

0
j,l−1|) (from Proposition 1).

We point out that our approach is applied recursively to solve
I-DIDs at all levels down to 1.

Analogous to [Rathnas et al., 2006], which showed that
considerations of behavioral equivalence do not upset the so-
lution of I-DIDs, we show that aggregating actionally equiv-
alent models preserves the optimality. Since the aggregation
affects j’s model space only, we prove that the predictive dis-
tribution over j’s actions remains unchanged at any time step.

Proposition 2 (Optimality). The predictive distribution over
j’s actions on aggregating the model space due to action
equivalence is preserved.

Proof. We prove by showing that for some action, at+1
j ,

Pr(at+1
j ) remains unchanged when Mt+1

j,l−1 is replaced by

a partition. Let Mt+1,p
j,l−1 be the set of models whose optimal

action is at+1
j with probability 1:

Pr(at+1
j ) =

P
m

t+1

j,l−1
∈M

t+1,p

j,l−1

Pr(at+1
j |mt+1

j,l−1)Pr(mt+1
j,l−1)

=
P

m
t+1

j,l−1
∈M

t+1,p

j,l−1

Pr(mt+1
j,l−1)

=
P

q

P
m

t+1

j,l−1
∈M

t+1,p
j,l−1

,mt
j,l−1

∈M
t,q
j,l−1

Pr(mt+1
j,l−1|m

t
j,l−1, a

t
j ,

ot+1
j ) × Pr(mt

j,l−1, a
t
j , o

t+1
j )

Here, we do not show the sum over all at
j and ot+1

j for clarity. Notice

that Pr(mt+1
j,l−1|m

t
j,l−1, a

t
j , o

t+1
j ) is equivalent to τ (·).
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j )Pr(Mt,q
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j )

Pr(mt
j,l−1, a

t
j , o

t+1
j ) simplifies to Pr(mt

j,l−1) and analogously for

Pr(Mt,q

j,l−1, a
t
j , o

t+1
j ).

Pr(at+1
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P
q
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M
t+1,p
j,l−1

,M
t,q
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τ(bt
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,at
j ,o
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j
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t+1

j,l−1
)
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M
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bi(m
t
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)
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t
j,l−1)Pr(Mt,q
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Using Eq. 1 we get:

Pr(at+1
j ) =

X

q

Pr(Mt+1,p

j,l−1 |M
t,q

j,l−1, a
t
j , o

t+1
j )Pr(Mt,q

j,l−1)

Recall that Mt+1,p
j,l−1 is the set whose optimal action is at+1

j .

Thus, the last line (with summations not shown) is used to
obtain Pr(at+1

j ) given the action equivalence classes.

5 Experimental Results

We evaluate our improvement to the exact approach using ac-
tion equivalence (Exact-AE) in the context of both the multia-
gent tiger [Nair et al., 2003; Gmytrasiewicz and Doshi, 2005]

and a multiagent version of the machine maintenance (MM)
problem [Smallwood and Sondik, 1973]. We compare its per-
formance with the previous exact method that uses behavioral
equivalence (Exact-BE) [Rathnas et al., 2006] and the exact
approach with no refinement (Exact) [Doshi et al., 2009]. We
show that Exact-AE solves the I-DIDs more efficiently than
its counterparts by comparing the time taken in achieving a
level of expected reward. We experimented with both level 1
and level 2 I-DIDs.

In Figs. 6(a) and (b), we show the reward gathered by ex-
ecuting the policy trees obtained from exactly solving the I-
DIDs for level 1. The time consumed is a function of the
initial number of models and the horizon of the I-DID, both
of which are varied beginning with |M0| = 50. We observe
that the approaches which aggregate the model space perform
significantly better than the traditional exact approach. In par-
ticular, these approaches obtain the same reward in much less
time because they are able to solve the same I-DID more
quickly. However, the time difference between Exact-AE
and Exact-BE is not significant, although Exact-AE maintains
significantly less number of model classes at each horizon as
is evident from Figs. 6(b). This is because solution of level 0
models in our problem domains is fast and Exact-AE incurs
the overhead of computing the update probabilities.

The reduced time needed to obtain a level of reward is more
evident for level 2 I-DIDs, as we see in Figs. 6(c). Level 2 I-
DIDs for both the problem domains show a significant speed
up in solving them when models are aggregated using action
equivalence in comparison to behavioral equivalence. Here,
the approaches are recursively applied to the lower level I-
DIDs that represent models of j, as well.

Finally, as we show in Table 1, we were able to exactly
solve level 2 I-DIDs over more than 10 horizons using Exact-
AE (|M0|=25), improving significantly over the previous ap-
proach which could comparably solve only up to 6 horizons.

6 Discussion

I-DIDs provide a general formalism for sequential decision
making in the presence of other agents. The increased com-
plexity of I-DIDs is predominantly due to the exponential
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Figure 6: Performance profiles for the multiagent tiger and MM problems generated by executing the solutions obtained using different

exact approaches. (a,b) Profiles for level 1 I-DIDs. Notice that Exact-AE maintains less classes at larger horizons in comparison to Exact-BE

and never more than |Aj |. (c) Solving level 2 I-DIDs reveals the efficiency facilitated by aggregation using action equivalence.

Level 2 T Time (s)
Exact-AE Exact-BE Exact

Tiger 3 12.35 20.43 49.29
6 37.56 89.14 *

11 331.41 * *
MM 3 17.29 33.15 64.13

5 54.63 120.31 *
10 423.12 * *

Table 1: Aggregation using action equivalence scales significantly

better to larger horizons. All experiments are run on a WinXP plat-

form with a dual processor Xeon 2.0GHz and 2GB memory.

growth in the number of candidate models of others, over
time. These models may themselves be represented as I-DIDs
or DIDs. We introduced the concept of action equivalence
which induces a partition of the model space. The resultant
number of classes is often significantly less in comparison to
those obtained by considerations of behavioral equivalence.
The empirical performance demonstrates the computational
savings provided by this approach and its significant improve-
ment over the previous exact technique. We note that action
equivalence could be seen as a less stringent criteria for model
aggregation compared to behavioral equivalence, leading to
more models in a class and less classes.
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