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Abstract

Linear causal models known as structural equation
models (SEMs) are widely used for data analysis
in the social sciences, economics, and artificial in-
telligence, in which random variables are assumed
to be continuous and normally distributed. This
paper deals with one fundamental problem in the
applications of SEMs – parameter identification.
The paper uses the graphical models approach and
provides a procedure for solving the identification
problem in a special class of SEMs.

1 Introduction

Linear causal models known as structural equation models
(SEMs) are widely used for causal reasoning in the social
sciences, economics, and artificial intelligence (AI) [Bollen,
1989; Pearl, 2000; Spirtes et al., 2001]. In a SEM, the causal
relationships among a set of variables are assumed to be linear
and expressed by linear equations. As an example, consider
the following model from [Pearl, 2000] that concerns with
the relations between smoking (X) and lung cancer (Y ), me-
diated by the amount of tar (Z) deposited in a person’s lungs:

X = ε1

Z = aX + ε2

Y = bZ + ε3

Cov(ε1, ε2) = Cov(ε2, ε3) = 0

Cov(ε1, ε3) �= 0

The model makes the causal assumptions that the amount of
tar Z deposited in the lungs depends on the level of smoking
X (and external factors omitted from the model represented
by εi assumed to have normal distribution) and that the pro-
duction of lung cancer Y depends on the amount of tar in
the lungs but smoking has no effect on lung cancer except as
mediated through tar deposits. The external factors that have
influence on smoking and cancer may be correlated (covari-
ances Cov(ε1, ε3) �= 0). The parameters a and b quantify the
strength of linear cause-effect relationships.

SEMs are typically used for confirmatory data analysis in
the social sciences and economics, consisting of four steps
[Kenny et al., 1998]: (1) hypothesizing a model, (2) identifi-
cation analysis – to decide if there is a unique valuation for

the parameters that make the model compatible with the ob-
served data, (3) parameter estimation, and (4) evaluation of
fit – to see how well the proposed model fits the data. In this
paper, we will focus on the identification problem.

The identification problem has been under extensive study
by econometricians and social scientists [Fisher, 1966; Bow-
den and Turkington, 1984; Bekker et al., 1994; Rigdon,
1995]. In recent years the problem has been addressed us-
ing the graphical models techniques in the AI community
[Pearl, 1998; Spirtes et al., 1998; Tian, 2004]. A num-
ber of sufficient graphical criteria for identification have
been developed, in [Brito and Pearl, 2002c; 2002b; 2002a;
2006] based on Wright’s equations [Wright, 1934], and in
[Tian, 2007a] using partial regression equations [Tian, 2005].
Most of these results are sufficient criteria which are applica-
ble only when certain conditions are met.

Despite all this effort, the problem still remains open. In
other words, we do not have a necessary and sufficient crite-
rion for identification in arbitrary SEMs. One advancement
in this direction is a necessary and sufficient procedure for
identification in a special class of SEMs presented in [Tian,
2007b]. In this paper, we solve the identifiability problem in
a class of SEMs strictly larger than those in [Tian, 2007b].
We present a procedure that will systematically determine
whether each parameter in the model is identifiable or not
and, if the answer is positive, the procedure will express the
parameter in terms of observed covariances.

We begin with a formal introduction to SEMs and the iden-
tification problem, and introduce the partial regression equa-
tions method in [Tian, 2005] before presenting our results.
For space reasons, the proofs are not included which can be
found in the extended version of the paper.

2 Linear SEMs and Identification

A linear SEM over a set of random variables V =
{V1, . . . , Vn} is given by a set of structural equations of the
form

Vj =
∑

i

cjiVi + εj , j = 1, . . . , n, (1)

where the summation is over the variables in V judged to
be immediate causes of Vj . cji, called a path coefficient,
quantifies the direct causal influence of Vi on Vj . εj’s rep-
resent “error” terms and are assumed to have normal distri-
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Figure 1: Path diagram illustrating the effect of smoking on
lung cancer.

bution. In this paper we consider recursive models and as-
sume that the summation in Eq. (1) is for i < j, that is,
cji = 0 for i ≥ j. The set of variables (and the corre-
sponding structural equations) are considered to be ordered
as V1 < V2 < . . . < Vn. We denote the covariances be-
tween observed variables σij = Cov(Vi, Vj), and between
error terms ψij = Cov(εi, εj). We denote the following ma-
trices, Σ = [σij ], Ψ = [ψij ], and C = [cij ]. Without loss of
generality, the model is assumed to be standardized such that
each variable Vj has zero mean and variance 1.

The structural assumptions encoded in a model are the
zero path coefficients cji and zero error covariances ψij .
The model structure can be represented by a directed acyclic
graph (DAG) G with (dashed) bidirected edges, called a
causal diagram (or path diagram), as follows: the nodes of G
are the variables V1, . . . , Vn; there is a directed edge from Vi

to Vj in G if Vi appears in the structural equation for Vj , that
is, cji �= 0; there is a bidirected edge between Vi and Vj if the
error terms εi and εj have non-zero correlation (ψij �= 0). For
example, the smoking-and-lung-cancer SEM is represented
by the causal diagram in Figure 1, in which each directed
edge is annotated by the corresponding path coefficient.

The parameters of the model are the non-zero entries in
the matrices C and Ψ. Fixing the model structure and given
parameters C and Ψ, the covariance matrix Σ is given by (see,
for example, [Bollen, 1989])

Σ = (I − C)−1Ψ[(I − C)−1]t, (2)

where “t” represents transpose. Conversely, in the identifica-
tion problem, given the structure of a model, one attempts to
solve for C in terms of the given observed covariance matrix
Σ. If Eq. (2) gives a unique solution to some path coeffi-
cient cji, independent of the (unobserved) error correlations
Ψ, the path coefficient cji is said to be identified; otherwise,
cji is said to be nonidentifiable. In other words, the identifica-
tion problem is that whether a path coefficient is determined
uniquely from the covariance matrix Σ given the causal di-
agram. If every parameter of the model is identified, then
the model is identified. Note that the identifiability conditions
we seek involve the structure of the model alone, not par-
ticular numerical values of parameters, that is, we insist on
having identification almost everywhere, allowing for patho-
logical exceptions (see, for example, [Brito and Pearl, 2002a]

for formal definition of identification almost everywhere).

3 Partial Regression Equations

In this paper, we will solve the identification problem using
the partial regression equations method presented in [Tian,
2005] which will be introduced next.

For a set S ⊆ V , let βij.S denote the partial regression
coefficient which represents the coefficient of Vj in the linear
regression of Vi on Vj and S. Note that partial regression co-
efficients can be expressed in terms of the covariance matrix
Σ and that the order of the subscripts in βij.S is essential. Let
Sjk denote a set

Sjk = {V1, . . . , Vj−1} \ {Vk}. (3)

[Tian, 2005] derived an expression for the partial regression
coefficient βjk.Sjk

, for each pair of variables Vk < Vj , in
terms of the model parameters (path coefficients and error
covariances) given by

βjk.Sjk
= cjk + αjk −

∑

k+1≤l≤j−1

βlk.Slk
αjl,

j = 2, . . . , n, k = 1, . . . , j − 1, (4)

where αjk’s are defined recursively in terms of the error co-
variances as

αjk =
Cov(εj , ε

′
k)

Cov(ε′k, ε′k)
, (5)

where

ε′1 = ε1 (6)

and

ε′j = εj −

j−1∑

k=1

αjkε′k, j = 2, . . . , n. (7)

For convenience, we will often use the shorthand notation
βjk. to denote βjk.Sjk

.
The set of equations given by (4) are called the partial

regression equations. As an example, the partial regression
equations for the model shown in Figure 1 are given by

βZX = a (8)

βY Z.X = b (9)

βY X.Z = αY X . (10)

We immediately obtain that the path coefficients a and b are
identified.

In general, given the model structure (represented by zero
path coefficients and zero error correlations), some of the cjk

and αjk will be set to zero in Eq. (4), and we can solve the
identifiability problem by solving Eq. (4) for cjk in terms of
the partial regression coefficients. This provides a principled
method for solving the identifiability problem. A path coeffi-
cient cij is identified if and only if the set of partial regression
equations (4) give a unique solution to cij , independent of er-
ror correlations.

The partial regression equations are linear with respect to
cjk’s and αjk’s, but may not be linear with respect to ψij ’s.
The main difficulty in solving these equations lies in that
αjk’s are nonlinear functions of ψij ’s and may not be inde-
pendent with each other. In this paper, we will study a class
of SEMs in which we can treat αjk’s as independent free pa-
rameters and thus for this class of SEMs the partial regression
equations become linear equations.
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Figure 2: Different structures of SEMs.

4 ρ-structure-free SEMs

[Tian, 2007b] studied so-called P-structure-free models
which require that for any i < k < j the two bidirected edges
Vj ↔ Vi and Vk ↔ Vi can not both appear in the causal
diagram (Fig. 2(a) and (b) both contain P-structures). In this
paper, we relax this restriction and allow the simultaneous ap-
pearances of the two bidirected edges Vj ↔ Vi and Vk ↔ Vi

as far as there also exists a bidirected edge between Vj and
Vk.

Definition 1 (ρ-structure) We will say that a SEM (or causal
diagram) contains a ρ-structure if for some i < k < j, there
is a bidirected edge between Vj and Vi, and a bidirected edge
between Vi and Vk , but there is no bidirected edge between Vj

and Vk (see Fig. 2a). Equivalently, in terms of model param-
eters, we say that a SEM contains a ρ-structure if for some
i < k < j, ψji �= 0 and ψki �= 0 but ψjk = 0.

We will say that a SEM (or causal diagram) is ρ-structure-
free if it does not contain any ρ-structures. It is clear that
P-structure-free SEMs are a strict subset of ρ-structure-free
SEMs as any P-structure-free SEM is also ρ-structure-free
but there exist models such as the one in Fig. 2(b) that is ρ-
structure-free but is not P-structure-free.

In this paper we will study ρ-structure-free SEMs and show
how to identify this class of models. First we show that in a ρ-
structure-free SEM, αjk’s can be treated as independent free
parameters of the model.

Lemma 1 In a ρ-structure-free SEM if ψjk = 0 then αjk =
0. Graphically speaking, if there is no bidirected edge be-
tween Vj and Vk, then αjk = 0.

It is straightforward to show that αjk’s can be treated as in-
dependent parameters in place of ψjk’s. Therefore, in ρ-
structure-free SEMs, the set of partial regression equations
(4) become linear in terms of the variables cjk and αjk . And
the identification problem is reduced to that of solving (4) for
cjk in terms of the partial regression coefficients βjk., which
leads to the following proposition.

Proposition 1 In a ρ-structure-free SEM, a path coefficient
cjk is identified if and only if the set of linear equations (4)
give a unique solution to cjk that is independent of αjk’s.

1i
V

kV
li

V jV

1i
V

kV
li

V jV

Figure 3: Two possible types of effective paths from Vk to Vj .

The difficulty of solving these linear equations lies in that the
coefficients of these equations, the partial regression coeffi-
cients, are not independent parameters. The partial regres-
sion coefficients are related to each other in a complicated
way, and it is difficult to decide the rank of the set of lin-
ear equations since it is not easy to determine whether cer-
tain expressions of partial regression coefficients will cancel
out each other and become identically zero. To overcome this
difficulty, next we show that the partial regression coefficients
that appear in (4) can be expressed in terms of the free param-
eters cjk and αjk . First, we define some graphical notations.

A path between two nodes X and Y in a causal diagram
consists of a sequence of consecutive edges of any type (di-
rected or bidirected). A non-endpoint node Z on a path is
called a collider if two arrowheads on the path meet at Z , i.e.
→ Z ←, ↔ Z ↔, ↔ Z ←, → Z ↔; all other non-endpoint
nodes on a path are non-colliders, i.e. ← Z →, ← Z ←,
→ Z →, ↔ Z →, ← Z ↔.

Definition 2 (Effective Path) Let k < j. A path
(Vk, Vi1 , . . . , Vil

, Vj) from Vk to Vj is said to be an effec-
tive path if every intermediate node on the path is a collider,
and k < i1 < . . . < il < j (see Figure 3).

We assume that the edges in the causal diagram are associ-
ated with the model parameters as follows:

• each directed edge Vj ← Vk is associated with the path
coefficient cjk .

• each bidirected edge Vj ↔ Vk where k < j is associated
with the parameter αjk .

For a path p, let T (p) represent the product of the parameters
along path p. For example, let p be the path V1 → V2 →
V3 ↔ V5 in Figure 4(b). Then T (p) = c21c32α53.

Lemma 2 In a ρ-structure-free SEM,

βjk. =
∑

p:effective paths

(−1)|p|−1T (p), (11)

in which the summation is over all the effective paths from Vk

to Vj and |p| represents the number of edges on p.

As a corollary of Lemma 2 we have that βjk. = 0 if there is
no effective paths from Vk to Vj .

Next, we show how to solve the set of partial regression
equations (4) in a ρ-structure-free SEM.

5 Identifying ρ-structure-free SEMs

According to Eq. (4), to decide the identifiability of a path
coefficient cjk , we need to solve the j−1 equations in (4) for
k = 1, . . . , j − 1 simultaneously with cjl and αjl for l < j as
variables. And cjk is identified if and only if the set of j − 1
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Figure 4: Example SEMs.

equations give a unique solution to cjk in terms of βil.’s. For
convenience, we will name the equation for βjk. after Vk (for
a fixed j) as follows:

(Vk) : βjk. = cjk + αjk −
∑

k+1≤l≤j−1

βlk.αjl. (12)

Assuming that there is a directed edge Vk → Vj in the causal
diagram, the path coefficient cjk only appears once in this
j − 1 equations, that is, in the equation (Vk). Let PAj be the
set of parents of Vj (that is, the set of variables Vk such that
cjk �= 0). Let E(S) denote the set of equations (Vk) such
that Vk ∈ S. Each equation (Vk) in E(PAj) can be solved
for the path coefficient cjk by simply rewriting the equation
to obtain

(Vk) : cjk = βjk. − αjk +
∑

k+1≤l≤j−1

βlk.αjl, Vk ∈ PAj .

(13)

Therefore cjk is identifiable if none of the αji appears in this
equation or all the αji appearing in the equation are identifi-
able. The problem of identifying cjk is reduced to the prob-
lem of identifying αji’s.

Let V <
j = {V1, . . . , Vj−1} denote the set of variables or-

dered ahead of Vj . Let PAj = V <
j \ PAj . To identify αji’s

we need to solve the set of equations in E(PAj) with αji’s
as unknowns, rewritten in the following:

(Vk) : βjk. = αjk −
∑

k+1≤l≤j−1

βlk.αjl, Vk ∈ PAj .

(14)

Let SPj (the set of spouses of Vj ) be the set of variables Vk

that connects with Vj by a bidirected edge Vk ↔ Vj (that
is, ψjk �= 0). Then the number of unknowns is given by the
number of variables in SPj , denoted by |SPj |. In general we

may have more equations than unknowns (|PAj | ≥ |SPj |),

or more unknowns than equations (|PAj | ≤ |SPj |). And
these equations may not be linearly independent with each
other.

For example, assume that we are interested in identifying
the path coefficients c53 and c54 in the model in Figure 4(a).
The set of equations E(PAj) in (13) become

(V3) : c53 = β53.124 − α53 (15)

(V4) : c54 = β54.123 − α54. (16)

And the set of equations E(PAj) become

(V1) : β51.234 = −β31.2α53 − β41.23α54 (17)

(V2) : β52.134 = −β32.1α53 − β42.13α54. (18)

(V1) and (V2) may be solved simultaneously to identify α53

and α54 (almost everywhere), and therefore c53 and c54 are
identified. On the other hand, in the model in Figure 4(b), the
set of equations E(PAj) become

(V1) : β51.234 = 0 (19)

(V2) : β52.134 = −β32.1α53 − β42.13α54. (20)

We obtain that α53 and α54 are not identified.
In general, to solve the set of linear equations E(PAj)

in (14), we look for linearly independent equations. Next
we show that this can be achieved by solving a maximum
flow problem. We acknowledge that the idea of using the
maximum flow technique was proposed by [Brito and Pearl,
2002b] and also used in [Tian, 2007a]. Still, constructing a
relevant flow network poses a nontrivial problem.

5.1 Flow network

A flow network F = (V, E) is a directed graph in which each
edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 (see,
for example, [Cormen et al., 1990]). We distinguish two ver-
tices in a flow network: a source s and a sink t. A flow in F
is a real-valued function f : V × V → R that satisfies the
capacity constraints f(u, v) ≤ c(u, v) and the flow conserva-
tion property (the amount of flow entering any vertex must be
the same as the amount of flow leaving the vertex) among oth-
ers. The value of a flow f is defined as |f | =

∑
v∈V f(s, v),

that is, the total net flow out of the source. In the maximum
flow problem, we are given a flow network F , with source
s and sink t, and we wish to find a flow of maximum value
from s to t.

To facilitate identifying a set of linearly independent equa-
tions in E(PAj), we construct a flow network Fj as follows.
The nodes of Fj consists of:

• for every node Vi < Vj , add two nodes V −i and V +

i into
Fj .

• a source node s.

• a sink node t.

The edges of Fj are:

• for every node Vi < Vj , add edge V −i → V +

i .

• for every edge Vi → Vl, add edge V −i → V +

l .

• for every edge Vi ↔ Vl, i < l, add edge V +

i → V +

l .

• for every node Vi ∈ SPj (those with αVjVi
�= 0), add

edge V +

i → t.

• for every node Vi ∈ PAj (those with cji = 0), add

s → V −i .

We assign a capacity 1 to every edge in Fj . We also assign a
node capacity of 1 to every node (except s and t) in Fj (this
can be achieved by splitting every node into two and connect-
ing them by an edge of capacity 1 [Even, 1979]). As an ex-
ample, for the model shown in Figure 5(a), the flow network
relative to V7 is given in Figure 5(b).
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Figure 5: A SEM and corresponding flow network.

Assume that we have solved the maximum flow problem
on the flow network Fj (using, for example, Ford-Fulkerson
algorithm). Since every edge has a capacity 1 and every node
has a capacity 1, the computed flow f represents a set of dis-
joint directed paths from s to t. Let the set of directed paths
be

qi = s → Z−i → . . . → X+

i → t, i = 1, . . . , k,

where k = |f |. From the network construction, we have that

Zi ∈ PAj and Xi ∈ SPj . We will call the set of vari-

ables AC = {Z1, . . . , Zk} ⊆ PAj a contributory set relative
to DC = {X1, . . . , Xk} ⊆ SPj and Vj . For example, the
flow network in Figure 5(b) shows a maximum flow solution,
which identifies the set {V1, V2} as a contributory set relative
to {V4, V5} and V7.

A contributory set plays a key role in solving the set of
equations E(PAj). Using Lemma 2 and the properties of the
maximum flow we obtain the following theorems.

Theorem 1 In a ρ-structure-free SEM, let AC ⊆ PAj be
a contributory set relative to DC ⊆ SPj and Vj , then the
set of linear equations E(AC) are linearly independent with
respect to the set of unknowns α(DC) = {αVjXi

|Xi ∈ DC},
that is, E(AC) can be solved with respect to unknowns in
α(DC) (almost everywhere).

The rest of the equations in E(PAj) will be linearly depen-
dent on the set of equations in E(AC).

Theorem 2 The number of linearly independent equations
in E(PAj) (that is, the rank of the coefficient matrix of the
equations) is equal to the maximum flow value |f |.

5.2 Solving the problem

From Theorems 1 and 2, after we have identified a contribu-
tory set AC relative to Vj we can determine the identifiabil-
ity of the path coefficient cjk by solving the set of equations
E(PAj) and E(AC). The following is a direct corollary of
Theorems 1 and 2.

Theorem 3 In a ρ-structure-free SEM, a path coefficient cjk

is identified if and only if the set of linearly independent equa-
tions E(PAj) and E(AC) give a unique solution to cjk that
is independent of αjk’s.

In general, we can first solve the set of linear equations
E(AC) for unknown variables in α(DC) in terms of βjk.’s

For j = 1, . . . , n,

1. Express cjk’s in terms of parameter αjk’s using the
equations in E(PAj).

2. Construct the flow network for Vj .

3. Solve the maximum flow problem to obtain a contribu-
tory set ACj relative to DCj and Vj .

4. Solve E(ACj) with respect to the unknown variables
{αjk|Vk ∈ DCj}.

5. Substitute the values of solved variables into the equa-
tions E(PAj) to determine the identifiability of the path
coefficients cjk’s.

Figure 6: A procedure for systematically identifying the path
coefficients in a ρ-structure-free SEM.

and possibly some αVjXi
’s for Xi �∈ DC. Then we substi-

tute the values of solved variables into the equations E(PAj)
given in (13) to determine the identifiability of the path coef-
ficients cjk’s.

In summary, a procedure for systematically identifying the
path coefficients in a ρ-structure-free SEM is given in Fig-
ure 6. For j = 1, . . . , n, at each step, we attempt to identify
parameters associated with the variable Vj . The procedure
will tell which cjk’s are identifiable, and which are not.

Notice that the equations in E(PAj \AC) are linearly de-
pendent on the equations in E(AC) and therefore are not
useful for determining the identifiability of parameters. If
we substitute the values of solved variables in α(DC) into

the equations in E(PAj \ AC), we will get a set of equa-
tions involving βil.’s. These equations represent the set of
constraints on the covariance matrix implied by the model
structure. They can be used for testing a hypothesized model
against the observed data.

5.3 An example

We illustrate the identification procedure by an example.
Consider the model in Figure 5(a). Assume that we want to
identify the path coefficients associated with V7 (c74, c75, and
c76). First we express the path coefficients in terms of α7i’s
as follows

(V6) : c76 = β76.12345 − α76. (21)

(V5) : c75 = β75.12346 − α75. (22)

(V4) : c74 = β74.12356 − α74. (23)

Then we construct the flow network shown in Figure 5(b) and
solve the maximum flow problem. Assume that the solution
returns {V1, V2} as a contributory set relative to {V4, V5}.
Then we solve the equations (V1) and (V2) given in the fol-
lowing

(V1) : β71.23456 = −β41.23α74 (24)

(V2) : β72.1345 = −β42.13α74 − β52.134α75 − β62.1345α76

(25)
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with α74 and α75 as unknown variables. We obtain

α74 = −β71.23456/β41.23 (26)

α75 = −β72.1345/β52.134 + β42.13β71.23456/(β41.23β52.134)

− β62.1345α76/β52.134 (27)

We conclude that α74 is identified, and that α75 and α76 are
nonidentifiable. Finally, we substitute expressions for α74

and α75 into Eqs. (21)-(23), and we conclude that c74 is iden-
tified, and c75 and c76 are both nonidentifiable.

We notice that we have not used equation (V3) given below

(V3) : β73.12456 = −β43.12α74, (28)

which is indeed linearly dependent on the equations (V1) and
(V2). In fact if we substitute into (V3) the solved value of α74

given in Eq. (26) we obtain

β41.23β73.12456 = β43.12β71.23456, (29)

which represents a constraint on the covariance matrix im-
posed by the model structure.

6 Conclusion and Discussion

The identification problem has been a long standing problem
in the applications of linear SEMs. Given a SEM, we would
like to know which parameters in the model are uniquely de-
termined by the observed covariances and which parameters
are not, and we would like to know what constraints are im-
plied by the model structure on the covariance matrix. In this
paper, we provide a procedure for answering these questions
in the class of ρ-structure-free SEMs.

In related work using graphical models methods, sufficient
criteria for model identification have been developed in [Brito
and Pearl, 2002c; 2002b; 2006], which established sufficient
conditions for all the parameters in the model to be identified
but can not be used to identify individual parameters if there
exist nonidentifiable parameters in the model. A number of
sufficient criteria for identifying individual parameters have
been developed in [Pearl, 2000; Brito and Pearl, 2002a; Tian,
2007a]. Given a model, these methods may identify certain
parameters but make no claims about other parameters.

The closest related work is a necessary and sufficient pro-
cedure for identifying P-structure-free SEMs [Tian, 2007b].
The ρ-structure-free SEMs we have solved in this paper con-
tain P-structure-free models as a strict subset. The ultimate
goal of this line of research is to provide a necessary and suf-
ficient algorithm for identifying any possible models that may
be hypothesized by researchers using SEMs. We believe this
work is an important advance in this direction as there exist
a large number of possible models containing the structure in
Fig. 2(b) that are ρ-structure-free but not P-structure-free.
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