
Variable and Value Ordering for MPE Search

Sajjad Siddiqi and Jinbo Huang

National ICT Australia and Australian National University

Canberra, ACT 0200 Australia

{sajjad.siddiqi, jinbo.huang}@nicta.com.au

Abstract

In Bayesian networks, a most probable explanation
(MPE) is a most likely instantiation of all network
variables given a piece of evidence. Recent work
proposed a branch-and-bound search algorithm that
finds exact solutions to MPE queries, where bounds
are computed on a relaxed network obtained by a
technique known as node splitting. In this work
we study the impact of variable and value order-
ing on such a search algorithm. We study sev-
eral heuristics based on the entropies of variables
and on the notion of nogoods, and propose a new
meta-heuristic that combines their strengths. Ex-
periments indicate that search efficiency is signifi-
cantly improved, allowing many hard problems to
be solved for the first time.

1 Introduction

In Bayesian networks, a most probable explanation (MPE)
is a most likely instantiation of all network variables given a
piece of evidence. Exact algorithms for MPE based on in-
ference include variable elimination, jointree, and, more re-
cently, compilation [Chavira and Darwiche, 2005]. While
variable elimination and jointree algorithms have a complex-
ity exponential in the treewidth of the network and are hence
impractical for networks of large treewidth, compilation is
known to exploit local structure so that treewidth is no longer
necessarily a limiting factor [Chavira and Darwiche, 2005].

When networks continue to grow in size and complex-
ity, however, all these methods can fail, particularly by run-
ning out of memory, and one resorts instead to search algo-
rithms. Most recently, Choi et al. [2007] proposed a branch-
and-bound search framework for finding exact MPE solutions
where bounds are computed by solving MPE queries on a re-
laxed network. The latter is obtained by splitting nodes of the
network in such a way that (i) its treewidth decreases, mak-
ing the MPE easier to solve, and (ii) the MPE probability of
the relaxed network is no less than that of the original. This
framework allows one to capitalize on advances in exact in-
ference methods (such as the ones we mentioned above) and
focus instead on generating good network relaxations.

Moreover, Choi et al. have shown that the well-known
mini-bucket heuristic [Dechter and Rish, 2003] is none other

than a specific strategy for obtaining such relaxed networks,
and hence it can be used in conjunction with any exact in-
ference algorithm—not just variable elimination—to solve
MPE. In particular, they have shown that by replacing vari-
able elimination with compilation, it is possible to improve
search efficiency by orders of magnitude on hard networks.

In this paper, we enrich this framework by studying the im-
pact of variable and value ordering on the search efficiency.
Specifically, we study heuristics based on the entropies of
variables and on the notion of nogoods. The idea is to start
the search with a high probability solution computed from the
entropies of variables, and then use dynamically computed
scores for variables to favor nogood assignments, which tend
to cause early backtracking. Compared with the “neutral”
heuristic used in [Choi et al., 2007], we show that our new
heuristics further improve efficiency significantly, extending
the reach of exact algorithms to networks that cannot be
solved by other known methods.

The rest of the paper is organized as follows. We review
the framework of [Choi et al., 2007] in Section 2, and present
our new heuristics in Section 3. Section 4 reports an extensive
empirical study, and Section 5 concludes the paper.

2 Search for MPE

In this section we briefly review the search framework based
on node splitting proposed in [Choi et al., 2007], which pro-
vides the basis for our new contributions. We start with a
formal definition of MPE. Let N be a Bayesian network with
variables X, a most probable explanation for some evidence
e is defined as:

MPE(N, e) =def arg maxx∼ePrN (x)

where x ∼ e means that the assignments x and e are consis-
tent, i.e, they agree on every common variable. We will also
write MPEp(N, e) to denote the probability of the MPE so-
lutions.

MPE queries involve potentially maximizing over all
(uninstantiated) network variables, and are known to be NP-
hard in general. The central idea behind node splitting is to
simplify the network in a systematic way so that the new
network is easier to solve and yet its solution can only “go
wrong” in one direction. These approximate solutions can
then be used as bounds to prune a branch-and-bound search
for an exact MPE.

1964

Figure 1: An example of node splitting.

2.1 Node Splitting

Node splitting creates a clone X̂ of a node X such that X̂
inherits some of the children of X . Formally:

Definition 1 (Node Splitting). Let X be a node in a Bayesian
network N with children Y. We say that X is split according
to children Z ⊆ Y when it results in a network N ′ that is
obtained from N as follows:

• The edges outgoing from X to its children Z are re-
moved.

• A new root node X̂ with a uniform prior is added to the
network with nodes Z as its children.

A special case of splitting is when X is split according to
every child, in which case X is said to be fully split. Figure 1
shows an example where Y has been split according to both

of its children X and Z , and Ŷ1, Ŷ2 are clones of Y .

If e is an assignment to variables in network N , we write
e→ to denote the compatible assignment to their clones in N ′,
meaning that a variable and its clones (if any) are assigned the

same value. For example, if e = {Y = y}, then e→ = {Ŷ1 =

y, Ŷ2 = y}.

An interesting property of a split network is that the prob-
ability of the MPE with respect to the split network gives us
an upper bound on the probability of the MPE with respect to
the original network, after normalization. Formally:

MPEp(N, e) ≤ βMPEp(N
′, e, e→)

where β is a constant equal to the total number of instanti-
ations of the clone variables. For example, suppose that in
the network of Figure 1a, variables have binary domains and
Pr(Y = y) = 0.6, Pr(Y = ȳ) = 0.4; all the parameters in
the CPTs of X and Z are 0.5; and e = {Y = ȳ}. Recall that
both Y1, Y2 are given uniform priors. Then MPEp(N, e) =
0.10 and MPEp(N

′, e, e→) = 0.025. The value of β is 4 in
this case and we have MPEp(N, e) ≤ 4 ∗ 0.025.

In this example the upper bound equals the exact solution.
In general, this is guaranteed if all the split variables have
been instantiated in e (and their clones in e→). Hence to
find an exact MPE one need only search in the space of in-
stantiations of the split variables, as opposed to all network
variables. At leaves of the search tree, solutions computed on
the relaxed network give candidate MPE solutions, and else-
where they give upper bounds to prune the search.

Algorithm 1 BNB-MPE : Computes probability of MPE for
evidence e

procedure BNB-MPE (N ′, e)
inputs: {N : split network}, {e : network instantiation}
global variables: {Y : split variables}, {β : number of possible
assignments to clone variables}

1: bound = βMPE(N ′, e,e→)
2: if bound > solution then
3: if e is complete instantiation of variables Y then
4: solution = bound /* bound is exact */
5: else
6: pick some X ∈ Y such that X �∈ E

7: for each value xi of variable X do
8: e← e ∪ {X = xi}
9: BNB-MPE (N ′, e)

10: e← e\{X = xi}

2.2 Branch-and-Bound Search

Algorithm 1 formalizes such a branch-and-bound search (this
code only computes the MPE probability; however the actual
MPE can be recovered with minor book-keeping). The proce-
dure receives a split network N ′ and the evidence e. At each
call to BNB-MPE, the bound βMPE(N ′, e, e→) is computed
(line 1). If the bound becomes less than or equal to the cur-
rent solution (line 2), meaning that any further advancement
in this part of the search tree is not going to give a better
solution, the search backtracks. Otherwise, if the bound is
greater than the current solution and the current assignment
is complete over split variables, meaning that the bound has
become exact, the current solution is replaced with the bet-
ter one (lines 3–4). If the assignment is not complete then an
unassigned split variable X is chosen (line 6), e is appended
with the assignment X = xi (line 7), and BNB-MPE is re-
cursively called (line 8). After the recursive call returns the
assignment X = xi is removed from e and other values of X
are tried in the same way.

The choice of which variables to split (variables Y in the
pseudocode) has a fundamental impact on the efficiency of
this approach. More split variables may make the relaxed
network easier to solve, but may loosen the bounds and in-
crease the search space. Choi et al. [2007] studied a strategy
based on jointree construction: A variable is chosen and fully
split that can cause the highest reduction in the size of the
jointree cliques and separators. Once a variable is fully split a
jointree of the new network is constructed, and the process re-
peated until the treewidth of the network drops to a preset tar-
get. This heuristic was shown to outperform the mini-bucket
heuristic in [Choi et al., 2007], and is therefore used in our
present work. Also, given the success reported in [Choi et
al., 2007] we will use compilation as the underlying method
for computing MPEs of relaxed networks.

3 Variable and Value Ordering

As mentioned earlier, by using a neutral heuristic Choi et al.
[2007] has left unaddressed an important aspect of perhaps
any search algorithm—variable and value ordering. Given the
advancements already reported in their work based on com-
bining splitting strategies with new inference methods, one

1965

cannot but wonder whether more sophisticated variable and
value ordering might not take us even farther.

We have thus undertaken this investigation and now take
delight in reporting it here. The first type of heuristic we ex-
amined is based on computing the entropies of variables, and
the second on a form of learning from nogoods. We will dis-
cuss some of our findings, which have eventually led us to
combine the two heuristics for use in a single algorithm.

3.1 Entropy-based Ordering

We start by reviewing the notion of Shannon’s entropy
ξ [Pearl, 1979], which is defined with respect to a probabil-
ity distribution of a discrete random variable X ranging over
values x1, x2, . . . , xk. Formally:

ξ(X) = −

k∑

i=1

Pr(X = xi) log Pr(X = xi).

Entropy quantifies the amount of uncertainty over the value
of the random variable. It is maximal when all probabilities
Pr(X = xi) are equal, and minimal when one of them is 1.

Hence as a first experiment we consider a heuristic that
favors those instantiations of variables that are more likely
to be MPEs. The idea is that finding an MPE earlier helps
terminate the search earlier. To that end, the heuristic prefers
those variables that provide more certainty about their values
(i.e., have smaller entropies), and favor those values of the
chosen variable that are more likely than others (i.e., have
higher probabilities).

This heuristic can be used in either a static or dynamic set-
ting. In a static setting, we order the split variables in increas-
ing order of their entropies, and order the values of each vari-
able in decreasing order of their probabilities, and keep the
order fixed throughout the search. In a dynamic setting, we
update the probabilities of the split variables at each search
node and reorder the variables and values accordingly.

The heuristic requires computing the probabilities of the
values of all split variables, which can be obtained conve-
niently as we have already assumed that the split network
will be compiled for the purpose of computing its MPE—the
compilation, in the form of arithmetic circuits (ACs), admits
linear-time procedures for obtaining these probabilities. Fur-
thermore, in an attempt to improve the accuracy of the prob-
abilities (with respect to the original network), we take the
average of the probabilities of a split variable and its clones
(for the same value) when evaluating the heuristic.

While we will present detailed results in Section 4, we note
here that our initial experiments clearly showed that a static
entropy-based ordering immediately led to significantly bet-
ter performance than the neutral heuristic. On the other hand,
the dynamic version, although often effective in reducing the
search tree, turned out to be generally too expensive, resulting
in worse performance overall.

3.2 Nogood-based Ordering

Hence we need to look further if we desire an effective heuris-
tic that remains inexpensive in a dynamic setting. Here the
notion of learning from nogoods comes to rescue.

Nogoods

In the constraint satisfaction framework where it was origi-
nally studied, a nogood is a partial instantiation of variables
that cannot be extended to a complete solution. In our case,
we define a nogood to be a partial instantiation of the split
variables (i.e., search variables) that results in pruning of the
node (i.e., the upper bound being ≤ the current best candidate
solution).

Note that at the time of pruning, some of the assignments
in the nogood g may contribute more than others to the tight-
ness of the bound (and hence the pruning of the node), and
it may be possible to retract some of those less contributing
assignments from g without loosening the bound enough to
prevent pruning. These refined nogoods can then be learned
(i.e., stored) so that any future search branches containing
them can be immediately pruned.

Nogood learning in this original form comes with the sig-
nificant overhead of having to re-compute bounds to deter-
mine which assignments can be retracted (see the discussion
of Table 1 in Section 4.1). However, it gives us an interesting
motivation for an efficient variable and value ordering heuris-
tic described below.

Ordering Heuristic

The idea is to favor those variables and values that can quickly
make the current assignment a nogood, so that backtracking
occurs early during the search. Hence we give scores to the
values of variables proportionate to the amounts of reduction
that their assignments will cause in the bound, and favor those
variables and values that have higher scores.

Specifically, every value xi of a variable X is associated
with a score S(X = xi), which is initialized to 0. The score
S(X) of the variable X is the average of the scores of its
values. Once a variable X is assigned a value xi, the amount
of reduction in the bound caused by it is added to the score
of X = xi. That is, the score S(X = xi) is updated as
S(X = xi) = S(X = xi)+ (cb−nb), where cb is the bound
before assigning the value xi to X and nb is the bound after
the assignment. The heuristic chooses a variable X with the
highest score and assigns values to it in decreasing order of
the scores of those values.

During initial experiments we observed that over the
course of the search the scores can become misleading, as
past updates to the scores may have lost their relevance under
the current search conditions. To counter this effect, we reini-
tialize the scores periodically, and have found empirically that
a period of 2000 search nodes tends to work well.

Finally, we combine this heuristic with the entropy-based
approach by using the entropy-based static order as the initial
order of the variables and their values, so that the search may
tend to start with a better candidate solution. We now pro-
ceed to present an empirical study which shows, among other
things, that this combined heuristic gives significantly better
performance both in terms of search space and time.

4 Experimental Results

In this empirical study we evaluate the different heuristics we
have proposed, and in particular show that with the final com-
bined heuristic we achieve significant advances in efficiency

1966

� �

������	
��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

����

����

	���

�����

�����

�����

�	���

�����

�����

�����

�	���

����������
�����

����������
�����

����
����
�����

������

�

�
��

�
��

�
�
�

Figure 2: Comparing search spaces on grid networks.

and scalability, able to solve problems that are intractable for
other known methods.

We conducted our experiments on a cluster of computers
consisting of two types of (comparable) CPUs, Intel Core
Duo 2.4 GHz and AMD Athlon 64 X2 Dual Core Processor
4600+, both with 4 GB of RAM running Linux. A memory
limit of 1 GB was imposed on each test case. Compilation of
Bayesian networks was done using the C2D compiler [Dar-
wiche, 2004; 2005]. We use a trivial seed of 0 as the initial
MPE solution to start the search. In general, we keep splitting
the network variables until treewidth becomes ≤ 10, unless
otherwise stated.

We used a variety of networks: the grid networks intro-
duced in [Sang et al., 2005], a set of randomly generated net-
works as in [Marinescu et al., 2003], networks for genetic
linkage analysis, and a set of 42 networks for decoding error-
correcting codes as generated in [Choi et al., 2007]. The last
group were trivial to solve by all the three heuristics, so we
do not report results for them.

For each heuristic, we report the number of cases solved,
search time, and search space, where the search space are
time are averages over solved cases. We also compare the
performance of heuristics on those cases that were solved by
all heuristics. As a reference point, we generated a random
static variable and value order for the split variables in each
split network instance and compared all the heuristics against
it. The comparison showed that the new heuristics generally
provide many orders of magnitude savings in search time and
space over the random heuristic, and hence we will only in-
clude the new heuristics in the presented results. Finally, we
will write SVO and DVO as shorthand for static and dynamic
variable and value ordering, respectively.

4.1 Grid Networks

We first use these networks to show, in Table 1, that the score-
based dynamic ordering (referred to as SC-DVO) outperforms
nogood learning itself. For this purpose, we consider a sim-
ilar dynamic ordering referred to as NG-DVO in the table.
This heuristic starts with the same initial order, uses the same
method of variable and value selection, and also reinitializes

� �

���� ��	
��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

��

��
��

��

��

��
	�

�

��

���
���

���

���

���
���

���

�	�
�
�

����������
�����

����������
�����

����
����
�����

������

�

�
��

�
��

�	

Figure 3: Comparing search times on grid networks.

the scores after the specified period. However, the scores are
updated as follows: When a nogood is learned, the score is
incremented for each literal in the nogood. We compare the
performance of both techniques by computing the MPE for
the empty evidence on each network. For NG-DVO we also
report the average number of nogoods learned and the av-
erage number of branches pruned by nogoods. The results
clearly show that score-based DVO is significantly faster than
nogood learning and results in a much reduced search space.

We then show that the score-based DVO performs consis-
tently better than other heuristics when the number of splits
in a network is varied. For this purpose, we consider only 80
instances of these networks, in the range 90-20-1 to 90-30-
9, which are some of the harder instances in this suite. The
treewidths of these instances range from high twenties up to
low forties. However, all of them can be compiled with a
single split using the strategy mentioned above.

For each instance we split the network using 1 up to 50
splits, making a total of 50 ∗ 80 = 4000 cases to solve. For
each case we compute the MPE for the empty evidence under
a time limit of 15 minutes. The entropy-based DVO solved
3656 cases, entropy-based SVO solved 3968 cases, and score-
based DVO solved 3980 cases, where the score-based DVO

solved all those cases solved by the others. We plot a graph
of search space against the number of splits, and a graph of
search time against the number of splits. Each of data point
on the graphs is the average of search spaces/time for those
queries solved by all three heuristics.

In Figure 2, we observe that, interestingly, entropy-based
SVO can often perform significantly better than entropy-based
DVO, although its search space starts to grow faster than the
DVO when the number of splits increases. This can be as-
cribed to the fact that DVO can exploit the changing probabil-
ities of variables during search. The most significant result,
however, is that for any number of splits the search space of
score-based DVO is generally much smaller than that of the
other two, and becomes orders of magnitude smaller when
the number of splits grows.

In Figure 3, we observe that entropy-based DVO gives poor
performance, apparently because it has to do expensive prob-

1967

networks cases
cases solved common cases

NG-DVO SC-DVO NG-DVO SC-DVO

solved time space nogoods pruned solved time space time space time space
Ratio 50 90 77 89.5 2337 875 576 90 33.2 3365 89.5 2337 7.7 1218
Ratio 75 150 108 74.8 3202 1019 1159 139 49.7 14875 74.8 3202 3.4 1648
Ratio 90 210 135 42.3 6161 873 4413 160 26.2 13719 42.3 6161 1.6 1402

Table 1: Comparing nogood learning with score-based DVO on grid networks.

networks cases
cases solved common cases

ENT-DVO ENT-SVO SC-DVO ENT-DVO ENT-SVO SC-DVO

solved time space solved time space solved time space time space time space time space
Ratio 50 2250 1890 95.7 6286 2121 51.6 8262 2248 25.9 2616 94.1 6215 24.3 4619 7.3 1082
Ratio 75 3750 2693 60.3 5195 3015 40.4 15547 3624 38.0 10909 57.2 4965 15.3 6722 1.6 712
Ratio 90 5250 3463 23.4 2387 3599 22.2 12919 3995 8.2 4453 20.0 2102 10.0 6740 0.3 275

Table 2: Results on grid networks.

ability updates at each search node. Again, we note that the
score-based DVO is generally much faster than the other two
heurstics, and becomes orders of magnitude faster when the
number of splits grows.

To further assess the performance of heuristics on a wide
range of MPE queries, we considered the whole suite of grid
networks and randomly generated 25 queries for each net-
work. The results, summarized in Table 2, again confirm that
the performance of entropy-based DVO is significantly better
than that of the other two heuristics.

4.2 Randomly Generated Networks

Next, to evaluate the scalability of the heuristics we tried them
on a number of randomly generated networks of increasing
size and treewidth, according to the model of [Marinescu et
al., 2003]. Networks are generated according to the param-
eters (N, K, C, P), where N is the number of variables, K
is their domain size, C is the number of CPTs, and P is
the number of parents in each CPT. The network structure
is created by randomly picking C variables out of N and,
for each, randomly selecting P parents from the preceding
variables, relative to some ordering. Each CPT is generated
uniformly at random. We used C = 90%N , P = 2, K = 3,
and N ranging from 100 to 200 at increments of 10. The
treewidths of these networks range from 15 to 33, and gener-
ally increases with N . For each network size we generated 20
network instances, and for each instance generated a random
MPE query, making a total of 20 queries per network size.
The time limit to solve each query was set to 1 hour.

The results of these experiments are summarized in Ta-
ble 3. The score-based DVO solved all those cases that the
other two could solve, plus more, and scales much better
when the network size increases. On cases solved by all three,
the performance of score-based DVO is also the best in terms
of both search time and space.

4.3 Networks for Genetic Linkage Analaysis

We now consider even harder cases from genetic linkage
analysis (http://bioinfo.cs.technion.a.c.il/superlink/). We ex-
tracted 8 networks that have high treewidths and cannot be
compiled without splitting, and considered 20 randomly gen-
erated MPE queries on each of them, for a total of 160

network treewidth splits
SC-DVO

solved time space
pedigree13 43 83 20 1728 168251
pedigree19 36 59 12 6868 532717
pedigree31 44 84 16 6672 446583
pedigree34 35 79 12 5109 332899
pedigree40 37 72 2 6575 745088
pedigree41 43 84 9 7517 783737
pedigree44 33 54 5 7041 673165
pedigree51 54 75 16 3451 268774

Table 4: Results on networks for genetic linkage analysis.

networks cases
cases solved time on common cases

SamIam SC-DVO
SamIam SC-DVO

solved time solved time
Ratio 50 90 49 23.8 90 31.1 23.8 1.4
Ratio 75 150 45 14.1 148 185.4 14.1 0.3
Ratio 90 210 48 18.9 169 114.5 18.9 0.1

Table 5: Comparison with SamIam on grid networks.

queries. Since these networks are significantly harder, the
time limit on each query was set to 4 hours.

The results on these networks are summarized in Table 4.
We report the estimated treewidths of the networks and the
number of splits performed on each of them, and only show
results for score-based DVO, as the two entropy-based heuris-
tics could only solve 9 trivial cases when the MPE for the
given evidence was already 0 and the search was not per-
formed at all. The score-based DVO, by contrast, solved most
of the cases, which further establishes its better scalability.

4.4 Comparison with Other Tools

First we compare our MPE solver SC-DVO with an indepen-
dent Bayesian network inference engine known as SamIam
(http://reasoning.cs.ucla.edu/samiam/). As we were unable to
run SamIam on our cluster, these experiments were conducted
on a machine with a 3.2 GHz Intel Pentium IV processor and
2 GB of RAM running Linux. For each network we compute
the MPE for the empty evidence under a time limit of 1 hour.

The random and genetic linkage analysis networks proved
too hard to be solved by SamIam. For the grid networks, the
results of the comparison are summarized in Table 5. We
observe that SC-DVO solved roughly from 2 to 3 times more

1968

size
cases solved common cases

ENT-DVO ENT-SVO SC-DVO ENT-DVO ENT-SVO SC-DVO

solved time space solved time space solved time space time space time space time space
100 20 131 867 20 47 696 20 31 532 131 867 47 696 31 532
110 20 187 1800 20 70 1270 20 67 952 187 1800 70 1270 67 952
120 19 923 9374 20 471 7760 20 210 3061 923 9374 434 7640 188 2950
130 12 1100 10849 15 1100 19755 18 561 7462 1100 10849 729 11168 291 3989
140 7 1715 19621 11 1340 28574 15 1090 10545 1680 20016 741 17965 311 4529
150 1 2505 10800 6 1859 41628 15 1619 25293 2505 10800 809 8727 634 6789
160 0 n.a. n.a. 1 2379 22428 6 2257 36884 n.a. n.a. n.a. n.a. n.a. n.a.
170 2 0.1 0 2 0.1 0 3 637 14319 n.a. n.a. n.a. n.a. n.a. n.a.

Table 3: Results on random networks.

networks cases
cases solved time on common cases

SMBBF SC-DVO
SMBBF SC-DVO

solved time solved time
Ratio 50 9 7 5.39 9 14.33 5.39 4.34
Ratio 75 15 10 16.16 15 199.11 16.16 2.1
Ratio 90 15 10 7.32 15 3.87 7.32 0.429

Table 6: Comparison with SMBBF on grid networks.

instances than SamIam, and on cases solved by both our solve
is also orders of magnitude faster.

We then compare SC-DVO with the best-first search algo-
rithm (SMBBF) of [Marinescu and Dechter, 2007]. This tool
is only available for Windows, and we used a machine with
an Intel Core 2 Duo 2.33 GHz and 1 GB of memory running
Windows. Note that our solver SC-DVO was run on a clus-
ter with comparable CPU speeds. However, since Windows
reserves some of the memory for the operating system, we ac-
cordingly reduced the memory limit for SC-DVO from 1 GB
to 768 MB for these experiments. Again a time limit of 1
hour was imposed for each query, computing the MPE for the
empty evidence .

SMBBF requires a parameter i that bounds the mini-bucket
size. The results of [Marinescu and Dechter, 2007] do not ap-
pear to suggest any preferred value for i; hence we somewhat
arbitrality set i = 20 taking into account the relatively high
treewidth of our benchmarks.

Due to limited computational resources we used a sample
of the grid networks under each ratio category such that each
selected network represented a class of networks comparable
in difficulty. The comparison of is shown in Table 6. In con-
trast to SC-DVO, SMBBF failed to solve a significant number
of the networks; it was also slower on the networks that were
solved by both.

Finally, from the random networks we arbitrarily took 4
networks of size 100, 110, 120, and 130, respectively, and
from the networks for genetic linkage analysis we took pedi-
gree13, the apparently easiest one. None of these instances
could be solved by SMBBF, which quicky ran out of mem-
ory and got terminated by the operating system. By contrast,
SC-DVO solved all of them.

5 Conclusion

We have presented a novel and efficient heuristic for dynam-
ically ordering variables and their values in a branch-and-
bound search for MPE. A comprehensive empirical evalu-

ation indicates that significant improvements in search time
and space are achieved over less sophisticated heuristics and
over existing MPE solvers. On the whole, we have extended
the reach of exact MPE algorithms to many hard networks
that are now solved for the first time.

Acknowledgments

Thanks to the anonymous reviewers for their comments. Na-
tional ICT Australia is funded by the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through
the Australian Research Council.

References
[Chavira and Darwiche, 2005] Mark Chavira and Adnan Darwiche.

Compiling bayesian networks with local structure. In Proceed-
ings of the 19th International Joint Conference on Artificial In-
telligence (IJCAI), pages 1306–1312, 2005.

[Choi et al., 2007] Arthur Choi, Mark Chavira, and Adnan Dar-
wiche. Node splitting: A scheme for generating upper bounds
in bayesian networks. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), pages 57–66, 2007.

[Darwiche, 2004] Adnan Darwiche. New advances in compiling
CNF into decomposable negation normal form. In Proceedings of
the 16th European Conference on Artificial Intelligence (ECAI),
pages 328–332, 2004.

[Darwiche, 2005] Adnan Darwiche. The C2D compiler user man-
ual. Technical Report D-147, Computer Science Department,
UCLA, 2005. http://reasoning.cs.ucla.edu/c2d/.

[Dechter and Rish, 2003] Rina Dechter and Irina Rish. Mini-
buckets: A general scheme for bounded inference. Journal of
the ACM, 50(2):107–153, 2003.

[Marinescu and Dechter, 2007] Radu Marinescu and Rina Dechter.
Best-first AND/OR search for most probable explanations. In
Proceedings of the 23rd Conference on Uncertainty in Artificial
Intelligence (UAI), 2007.

[Marinescu et al., 2003] Radu Marinescu, Kalev Kask, and Rina
Dechter. Systematic vs. non-systematic algorithms for solving
the MPE task. In Proceedings of the 19th Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2003.

[Pearl, 1979] Judea Pearl. Entropy, information and rational deci-
sions. Policy Analysis and Information Systems, Special Issue on
Mathematical Foundations, 3(1):93–109, 1979.

[Sang et al., 2005] Tian Sang, Paul Beame, and Henry Kautz. Solv-
ing bayesian networks by weighted model counting. In Proceed-
ings of the 20th National Conference on Artificial Intelligence
(AAAI), volume 1, pages 475–482. AAAI Press, 2005.

1969

