
Abstract
Automatic recognition of human activities is among 
the key capabilities of many intelligent systems with 
vision/perception. Most existing approaches to this 
problem require sophisticated feature extraction 
before classification can be performed. This paper 
presents a novel approach for human action recog-
nition using only simple low-level visual features: 
motion captured from direct frame differencing. A 
codebook of key poses is first created from the 
training data through unsupervised clustering. 
Videos of actions are then coded as sequences of 
super-frames, defined as the key poses augmented 
with discriminative attributes. A weighted-sequence 
distance is proposed for comparing two super-frame 
sequences, which is further wrapped as a kernel 
embedded in a SVM classifier for the final classi-
fication. Compared with conventional methods, our 
approach provides a flexible non-parametric se-
quential structure with a corresponding distance 
measure for human action representation and clas-
sification without requiring complex feature ex-
traction. The effectiveness of our approach is 
demonstrated with the widely-used KTH human 
activity dataset, for which the proposed method 
outperforms the existing state-of-the-art. 

1 Introduction 
Being able to recognize human activities in video is a critical 
capability of an intelligent vision system in applications such 
as video surveillance, content-based video retrieval, and 
human-robot interaction. On this task, human vision still 
outperforms any existing automatic techniques. Humans tend 
to describe, remember, perform and compare an action as a 
sequence of key poses of the body. For example, in both 
choreography and sports, body movements are usually de-
scribed as an ordered sequence of key poses. Most of the 
existing vision techniques attempt to mimic this to certain 
degree, explicitly or implicitly, by modeling and classifying 
human actions based on key poses and their orders. Unfor-
tunately, such techniques typically reply on sophisticated 

feature extraction (e.g., explicit detection and tracking of 
body parts, or doing so implicitly by complex representation 
and detection of the body motion through high-dimensional 
spatial-temporal features), which are a challenging task on its 
own especially considering the wide variability of acquisition 
condition. 

One interesting observation is that, humans can casually 
take a glimpse of a video clip (even at a critical-
ly-downsampled resolution) and recognize the underlying 
action correctly without careful thinking. The recognition 
can also be done accurately with optical flow only without 
the original video clip. This may suggest that only very ru-
dimentary visual features are necessary for action recognition. 
In this work, we propose a novel approach to video-based 
recognition of human actions using simple visual features: 
motion captured in direct frame differencing. In the proposed 
approach, a codebook of atom poses is first formed using 
unsupervised clustering of difference frames from videos of 
various actions. A video is then coded based on its corres-
ponding sequence of atom poses augmented with other dis-
criminative attributes such as the duration of the poses, re-
sulting in a stream of  (pose, attributes) couples. Further, we 
introduce a novel weighted-sequence distance (WSD) 
measure for comparing the similarity between two sequences, 
based on not only the constituent poses but also their 
attributes plus the global structure of the pose sequences. The 
compact metric WSD is further embedded into a Support 
Vector Machine (SVM) classifier as a kernel for classifying 
the coded video clips. As the result, the proposed approach 
does not rely on sophisticated feature extraction but rather 
direct frame differencing and thus it is more universally 
applicable for various acquisition conditions such as different 
imaging sensors or illumination conditions.  

The rest of this paper is organized as follows. We first 
review related literature in Section 2. The action coding 
scheme and the WSD are proposed in Section 3 and 4 re-
spectively. Classification strategies are described in Section 
5. In Section 6, experiments with a real-world dataset are 
presented and analyzed. We conclude in Section 7 with a 
brief discussion on future directions.  
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2 Related Work 
Existing approaches for human action recognition can be 

generally classified into two categories: graphi-
cal-model-based approaches and bag-of-words approaches. 
The former utilizes a graphical structure consisting of states 
and models the activities as sequential transitions between 
the states. Hidden Markov Model (HMM) [Niu and Ab-
del-Mottaleb, 2005] is one of the most commonly-used ex-
amples in this category. Other sophisticated extensions in-
clude Abstract HMM [Bui and Venkatesh, 2002], Hidden 
Permutation Model [Bui et al., 2008], Relational Markov 
Networks [Liao, 2005], etc. While being capable of modeling 
temporal transitions in a sequence, these methods usually 
suffer from an excess of parameters and overfitting of the 
data with insufficient training samples. In addition, the rigid 
structure also constrains its flexibility of dealing with struc-
tural variations among different sequences. Bag-of-words 
approaches have become popular in recent years. Methods in 
this category view the activity recognition problem as a 
standard classification problem which involves two stages: 
feature extraction and classification. Typically, the feature 
extraction step is very complex (such as spatial-temporal 
word feature proposed in [Dollar et al., 2005]), and additional 
pre-processing steps or extra information are often required 
(e.g., single action circle segmentation [Schindler and Gool, 
2008], accurate alignment [Wong et al, 2007; Kim et al., 
2007], accurate scale information [Liu and Shah, 2008], etc.). 
Often, the feature vectors are treated as independent data 
points in the classification stage (e.g., [Niebles et al., 2008]). 
Therefore, in general, these approaches simplify temporal 
sequences into a set of independent features and thus while 
local temporal information is encapsulated in the extracted 
spatial-temporal descriptors, global temporal information is 
not utilized. Nowozin et al. proposed a discriminative sub-
sequence mining approach [Nowozin et al., 2007] which 
employs spatial-temporal features provided by [Dollar et al., 
2005] and further formed a sequential representation of the 
original videos. However, it does not achieve noticeable 
improvements over previous approaches. 

The proposed approach attempts to incorporate both local 
spatial-temporal information (through unsupervised cluster-
ing of motion-capturing difference frames in forming the key 
poses) and global temporal structure (through a novel WSD 
metric for comparing sequences of poses and an SVM clas-
sifier based on it) into a unified action coding and classifica-
tion scheme. 

3 Action Coding 
In this section, we present the action coding scheme based on 
the (pose, attributes) couples, which is termed as su-
per-frames. Formally, a super-frame f is defined as a 2-tuple 
(c, w) which consists of an atom pose c and its attributes w.
The set of atom poses form a codebook. Each frame of a 
video is first assigned a codeword c and then adjacent frames 
with the same codeword are merged with the attribute w

denoting the duration of the same codeword. With this 
strategy, the coded sequence reflects the local spa-
tial-temporal information through the codewords (which are 
based on frame differencing) while retaining the global 
temporal order of the original sequence. This results in a 
compact yet descriptive representation of the original video 
clip. Details of codebook learning and sequence coding are 
elaborated in the following sub-sections. 

3.1 Codebook Learning 
We create a codebook from the training data through clus-
tering difference frames, computed as the difference between 
two nearby frames (not necessarily consecutive ones if the 
video frame rate is high and thus the motion magnitude is not 
large between consecutive frames). The distance measure for 
clustering is based on Euclidean distance between two dif-
ference frames. For simplicity, we will still call the difference 
frames as “frames”. The centroids from the clustering stage 
are kept as atom poses in the codebook. It is worth empha-
sizing that, although we use the term “atom pose” for the 
codeword, the centroids are not original video frames but 
rather a representation of the difference frames, which cap-
ture the local spatial-temporal variation of the underlying 
actions. (Another reason we use difference frames instead of 
the original frames is that they may naturally be robust to 
cluttered background since the difference is taken between 
nearby frames, which presumably have similar clutter sig-
natures, assuming a decent frame-rate.) A learning approach 
automatically covers variations present in the training set, 
such as scale changes. Figure 1 illustrates some sample atom 
poses and their corresponding video frames. 

       
      A              B         C           D            E            F          G        
Figure 1: An illustration of atom poses (the top row) and their cor-

responding video frames (the bottom row). 

Like any unsupervised clustering scheme, the choice of 
the number of clusters is an issue. To address this problem, 
we introduce a distance matrix which records pair-wise 
Euclidean distances (normalized to [0, 1]) among all code-
words in the codebook. The distance matrix is then taken into 
consideration in computing the weighted-sequence distance 
between two super-frame sequences. More details are dis-
cussed in Section 4. 

3.2 Video Coding Based on Super-frames 
With an established codebook, we code a given video clip by 
the following three steps: (1) Assign a codeword to each 
frame based on similarities between the frame and each co-
deword; (2) Group adjacent frames with the same codeword 
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and store the duration of the codeword in the attribute, re-
sulting in a super-frame; (3) Store all the super-frames in 
their original temporal order in the video. 

Figure 2 illustrates two coded sequences using key poses 
in Figure 1. 

4 Weighted-sequence Distance  
After a video clip is coded as a super-frame sequence, action 
recognition boils down to classification of the super-frame 
sequences, for which a measure of the distance between two 
data points (super-frame sequences) is needed. In this sec-
tion, we propose a generalized version of the classical Le-
venshtein Distance (also known as String Edit Distance 
[Levenshtein, 1966]), which takes both the attribute and the 
character (codeword) distances into consideration.  

String distance/similarity problems widely appear in many 
areas of computer science. For example, in Web search, 
string matching/text comparison is one of the basic problems 
for text-based retrieval (e.g., [Crochemore and Rytter, 1994]; 
[Cancedda et al., 2003]); in computational biology, string 
matching techniques are often used for comparing biological 
patterns (e.g., [Leslie et al., 2004]). Edit distance, a basic 
string similarity metric, is defined as the minimum number of 
operations (including Copy/Substitution, Insertion and De-
letion) required for turning one string to the other [Le-
venshtein, 1966]. Typically, fixed costs are assigned to each 
operation respectively in computing the overall cost of a 
series of editing operations. This formulation assumes that 
characters are of equal importance and that distance between 
two characters is binary (either “same” or “different”). 
However, in our problem of comparing super-frame se-
quences, these assumptions are no longer reasonable.  

Figure 3: An illustration of distances between two characters.

Firstly, “characters” in a super-frame sequence are atom 
poses with corresponding weights (which may reflect the 
significance of the atom pose).  Intuitively, operations on a 
crucial atom pose (e.g., one lasting for a longer period) 
should cost more than on a less important one. For example, 
deleting a super-frame of significant length during compar-
ison should result in a large cost for a relative short video. 

Secondly, the similarity between the atom poses varies and 
thus in operations, such as Substitution, the cost of the oper-
ation relies on what to use for the replacement. For example, 
in Figure 3, we assume that the distance between two cha-
racters equals the color difference between the corresponding 
bars. Obviously, to substitute “B” in the “ABC” sequence, 
“D” would cost less than using “E”, since the color of “D” is 
much closer to “B” than “E”. As mentioned earlier, such 
information is kept in a distance matrix in the codebook 
creation step and thus we should be able to systematically 
address such issues. 

In the following sub-sections, we propose a 
weighted-sequence distance (WSD), which is able to address 
both of the above practical issues. 

4.1  WSD for Super-frames 
We define a weighted character a (e.g., the super-frame f in 
our problem) as a 2-tuple (c, w) which consists of the label c
(e.g., the codeword in our super-frame formulation) and its 
weight w. Then a weighted string can be written as  

1 2{ , ,..., },  ( , ),  1,...,n i i is a a a a c w i n                (1) 

where n is the number of characters in s . Assume that we 
have two weighted strings s(1) and s(2):

1

(1) (1) (1) (1) (1) (1) (1)
1 2 1{ , ,..., },  ( , ),  1,...,n i i is a a a a c w i n  (2) 

2

(2) (2) (2) (2) (2) (2) (2)
1 2 2{ , ,..., },  ( , ),  1,...,n j j js a a a a c w j n  (3) 

A 1 2 1 2( ) ( )n n n n  symmetric matrix Dc (with zero ele-
ments on the diagonal) records pair-wise distances of the 
vocabulary (range of values in Dc is [0, 1]): 

1 2

(1) (1) (1) (2) (2) (2)
1 2 1 2{ , ,..., , , ,..., }n nc c c c c c                   (4)  

Then the weighted-sequence distance between s(1) and s(2) is 
defined as the sum of costs caused by operations for turning 
s(1) to s(2):

(1) (2)

1,...,
( , )WSD

l
l L

D s s Cost                       (5) 

in which L is the number of operations involved; Costl de-
notes the required cost for the lth operation. Three types of 
editing operations: Substitution, Insertion and Deletion and 
corresponding costs are defined as follows:  

(1) (2) (1) (2) (1) (2) (1) (2)
1( , ) | | min{ , } ( , )S

cCost a a w w w w D c c (6) 
(1) (2) (2)

2( , )ICost a a w                                                     (7) 
(1) (2) (1)

3( , )DCost a a w                                                    (8) 

where CostS(a(1), a(2)) denotes the cost of substituting a(1) in 
s(1) by a(2) from s(2). CostI(a(1), a(2)) indicates inserting a(2) to 

Figure 2: Two examples of coded sequences (Weights here are 
shown as the number of frames each group includes. In the 
experiments, we use normalized frame numbers as weights.) 

                    
(1) (1)( , )i ic w : (A, 4)       (B, 5)     (C, 4)     (D, 5)      (C, 6)     (B, 6) 

(a) Super-frame sequence s(1) for a “hand clapping” clip 

                       
(2) (2)( , )j jc w :    (A, 6)      (F, 7)       (G, 8)      (F, 5)       (E, 4)        

  (b) Super-frame sequence s(2) for a “hand waving” clip 
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s(1). CostD(a(1), a(2)) means deleting a(1) from s(1) when com-
paring a(1) and a(2). 1 , 2  and 3  are weights for balancing 
the components. We use 1 2 3 1/ k  in our experi-
ments, where k is the codebook size. 

With the above definitions, we propose an algorithm as 
shown in Figure 4 for computing the WSD by extending the 
conventional Edit Distance algorithm based on dynamic 
programming. Landau and Vishkin [Landau and Vishkin, 
1989] have shown that classical edit distance problem can be 
solved in O(mn) time using dynamic programming. Since our 
generalized version does not change the structure of the 
original algorithm, it still maintains the same computational 
complexity. 

Figure 4: Weighed-sequence distance (WSD) algorithm. 

4.2  Properties of WSD 
In this sub-section, we analyze the properties of the WSD 

defined in the previous subsection, which serve to verify that 
WSD is a desired distance measure for comparing two 
weighted-sequences.
Property 1 (Zero Copy Cost): Assume that a(1) = (c(1),w(1))
and a(2) = (c(2),w(2)) are two weighted characters from se-
quence s(1) and s(2), respectively. If Dc(c(1), c(2)) = 0 and 
w(1)=w(2), then the substitution cost for a(1) and a(2) in turning 
s(1) and s(2) equals zeros: 

(1) (2)( , ) 0SCost a a                             (9)
This property can be easily proved by inserting Dc(c(1),c(2))=0
and w(1)=w(2) into Eq. (6). It means that when the two 
weighted characters are equal, Substitution is reduced to 
Copy and its cost becomes zero.  
Property 2 (Commutative Law): Assume that s(1) and s(2)

are two weighted-sequences and the weights of Insertion and 
Deletion costs ( 2 and 3 in Eq. (7) and Eq. (8)) are equal. 
The cost of turning s(1) to s(2) equals the cost of turning s(2) to
s(1):

(1) (2) (2) (1)( , ) ( , )WSD WSDD s s D s s                    (10) 
Proof: If we can prove that the costs of any operations for 
turning s(1) to s(2) equal the cost of those for turning s(2) to s(1),
Property 2 is proved. Substitution cost defined in Eq. (6) 
obeys Commutative Law. For Insertion and Deletion, in-
serting a(2) to s(1) in turning s(1) to s(2) is essentially the same as 
deleting a(2) from s(2) in its inversed process—turning s(2) to
s(1). According to Eq. (7) and (8), we have 

(1) (2) (2) (1)( , ) ( , )I DCost a a Cost a a
Similarly, we can obtain  

(1) (2) (2) (1)( , ) ( , )D ICost a a Cost a a
Thus Eq. (10) is always held. 

For properties 3-6, we assume there are three 
weighted-sequences s(1), s(2) and s(3) which are of the same 
length.
Property 3 (Character Variation): If all corresponding 
weights of three sequences are equal 

(1) (2) (3) , 1,..,i i iw w w i n
while there are p characters in s(2) and q characters in s(3)

which are different from the corresponding characters in s(1)

and the corresponding character distances are all equal to 1:  
(1) (2)( , ) 1, 1,..., , [1, ]

j jc x x jD c c j p x n
(1) (3)( , ) 1,  1,..., ,  [1, ]

k kc x x kD c c k q x n

and p>q, then (1) (2) (1) (3)( , ) ( , )WSD WSDD s s D s s .
Property 4 (Order Variation): Assume that s(1), s(2) and s(3)

consist of the same set of elements (tuples of characters and 
corresponding weights), but with different order. If there are 
p and q elements in s(2) and s(3) respectively, which are dif-
ferent from the corresponding elements in s(1):

Algorithm: Weighted-Sequence Distance (WSD) com-
putes the weighed-sequence distance between two 
weighted-sequences s(1) and s(2) with given distance ma-
trix Dc.

      Input: Weighed-sequence s(1) and s(2) and distance 
matrix Dc.
1     if n1 = 0 
2           return

2

(2)

1,...,
j

j n
w ;

3    end
4     if n2 = 0 
5           return

1

(1)

1,...,
i

i n
w ;

6   end
7    Construct an empty matrix M ;
8    Initial the first row of M as 

1

1 1 1 1
1 1 2

1,...,
,( ),..., i

i n
w w w w ;

9    Initial the first column of M as 
2

2 2 2 2
1 1 2

1,...,
,( ),..., j

j n
w w w w ;

10  while 1i n do
11             while 2j n do
12                      Compute the following costs respectively: 

13                                                                              ;    

14                                                                         ; 

15                                                                         ; 

16                    Let ( 1, 1)M i j
17                                 min{ ( , 1) ,insertionM i j Cost
18                                         ( 1, ) ,deletionM i j Cost
19 /( , ) }copy substitutionM i j Cost ;
20              end
21   end 
22   1 2( 1, 1)WSDD M n n ;

23   return WSDD .

/ (1) (2)( , )copy substitution S
i jCost Cost a a

(1) (2)( , )insertion I
i jCost Cost a a
(1) (2)( , )deletion D
i jCost Cost a a
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(1) (2) , 1,..., , [1, ]
j jx x ja a j p x n
(1) (3) , 1,..., , [1, ]
k kx x ka a k q x n

and
p q , (2) (3) , 1,...,

r rx xa a r q

then (1) (2) (1) (3)( , ) ( , )WSD WSDD s s D s s .
Property 5 (Weight Variation): If all corresponding cha-
racters of three sequences are equal 

(1) (2) (3) , 1,..,i i ic c c i n
while there are p weights in s(2) and s(3) respectively, which 
are different from the corresponding ones in s(1):

(1) (2) (1) (3), , 1,..., , [1, ]
j j j jx x x x jw w w w j p x n

and
(1) (2) (1) (3)| | | |,  1,..., , [1, ]

j j j jx x x x jw w w w j p x n

then (1) (2) (1) (3)( , ) ( , )WSD WSDD s s D s s .
Property 6 (Character Distance Variation): If all corres-
ponding weights of three sequences are equal 

(1) (2) (3) , 1,..,i i iw w w i n
while there are p characters in s(2) and s(3) respectively, which 
are different from the corresponding characters in s(3) and  

(1) (2) (1) (3)( , ) ( , ),  1,..., , [1, ]
j jj jc x x c x x jD c c D c c j p x n

then (1) (2) (1) (3)( , ) ( , )WSD WSDD s s D s s .
Properties 3-6 can all be proved formally but we skip the 

proofs due to the space limitation. These properties show that 
when variations involved are increased, WSD between the 
reference sequence and the new created sequence raises 
monotonically. They coincide with our heuristic require-
ments in terms of characters, weights of characters, distances 
of characters and sequential order of characters for measur-
ing the distance between two weighed-sequences. 

5 Weighed-sequence Classification 
With the distance measure WSD proposed in Section 4, 
classification algorithms can be designed for the weighed- 
sequences (the super-frame sequences). In our experiment, 
we use both 1-Nearest Neighbor (1-NN) strategy based on 
WSD and an SVM classifier [Cristianini and Shawe-Taylor, 
2000] with our WSD kernel. 

For non-numerical data, one possible solution of using 
SVM is revising non-numerical data to numerical (e.g., using 
binary digits to represent a categorical attribute [Chang and 
Lin, 2001]). In addition, it can be solved by using sequence 
based kernels, such as the string kernel used for text docu-
ments [Cancedda et al., 2003], sequence kernels for speaker 
recognition [Campbell, 2001] or protein classification [Leslie 
et al., 2004]. However, to the best of our knowledge, none of 
existing string/sequence kernels is able to deal with 
weighted-sequence. In this paper, based on our proposed 

weighted-sequence distance, we define a WSD kernel func-
tion as 

(1) (2)exp( ( , , )),  0WSD
cD s s D                (11) 

in which is a model parameter. In our experiments, we use 
LibSVM [Chang and Lin, 2001] with kernels computed from 
our kernel function defined in Eq. (11). Model parameter 
is selected from an n-fold cross validation on the training set. 
Since the kernel matrix is not always positive semi-definite, 
to guarantee a global optimum in SVM, we revise the kernel 
matrix through shifting all the eigen values by a positive 
constant [Roth et al., 2003]. The constant is set as the abso-
lute value of the minimum eigen value in our experiments. 

6 Experiments 
In order to verify the effectiveness of our proposed algorithm, 
we performed experiments with a real-world human activity 
recognition dataset.  

The KTH human activity dataset [Schuldt et al., 2004] 
contains 6 human actions (walking, jogging, running, boxing, 
hand waving and hand clapping) performed by 25 subjects in 
4 different scenarios: outdoors, outdoors with scale variation, 
outdoors with different clothes and indoors (599 video clips 
available in total with a 25 fps frame rate). Figure 5 shows 
some sample frames from the 6 actions under 4 scenarios. 
We can see that this dataset covers subject variation, ap-
pearance variation, scale variation, illumination variation, 
and action execution variation, and thus it is deemed as very 
challenging. 

Figure 5: Sample frames from KTH dataset: row—action, col-
umn—scenario.
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In our experiments, we first compute frame differences for 
the first 204 frames in each sequence with a step size 4. (200 
difference frames obtained for each sequence.) In order to 
reduce dimension, we crop out the human body regions by 
using an 80 pixel 100 pixel bounding box. For hand motion 
sequences without scale variations, we manually set a fixed 
cropping region for the first frame of each sequence and use 
it for the entire sequence; for the remaining sequences, we 
estimate the center of the cropping region by using the center 
of the foreground pixels in the difference frames. We further 
sub-sample the sequences spatially to 1/ 4  of the original size 
and temporally by a factor of 3, resulting in 67 difference 
frames for each video clip to be used as input for classifica-
tion. Compared to the strong assumptions required in some 
other work (discussed in the related work and the following 
experiment analysis part), our preprocessing steps are by 
design very simple and the obtained results are still quite 
noisy in reality. 

         

         

         
Figure 6: Samples of obtained atom poses. 

% Box Clap Wave Jog Run Walk
Box 88 9 3 0 0 0
Clap 14 81 3 0 0 2
Wave 6 11 83 0 0 0
Jog 0 0 0 70 22 8
Run 0 0 0 27 73 0

Walk 0 0 0 8 2 91
Table 1: Results using 1-NN classifier with WSD measurement. 

% Box Clap Wave Jog Run Walk
Box 94 6 0 0 0 0
Clap 9 91 0 0 0 0
Wave 6 8 86 0 0 0
Jog 0 0 0 80 8 13
Run 0 0 0 16 84 0

Walk 0 0 0 8 0 92
Table 2: Results using SVM classifier with WSD kernel.

In the codebook creation step, we set the cluster number as 
30 for our experiments. As mentioned in the previous part, 
we take the distances among codewords into consideration in 
computing the weighted-sequence distance, thus the choice 

of the number of clusters in creating the codebook is not 
critical. Figure 6 shows some sample codewords of the atom 
actions (cluster centroids) from our unsupervised classifica-
tion. As we can expect, results of such simple clustering 
strategy applied on the inaccurately-cropped regions are very 
noisy. However, our weighted-sequence distance naturally 
incorporates the global temporal structure of the sequences in 
computing the final measure. The noisy, individual results 
are actually implicitly filtered during the computation. And 
the 87.8% average classification accuracy (see Table 3) fur-
ther verified that our proposed approach is robust to noise 
and works well for data obtained from low-level visual fea-
tures without using sophisticated feature extraction. 

For algorithm training and testing, we use sequences from 
9 random selected subjects for creating the codebook and 
adopt the leave-one-out (LOO) testing paradigm, which is 
employed by all but one of the reference algorithms chosen 
for comparison. Each LOO round consists of sequences from 
24 subjects for training and those from the remaining one for 
testing. Excluding sequences from those 9 subjects which are 
used for creating the codebook, 16 LOO rounds were run. 
Results are shown in Table 1 and Table 2. It was found that 
the best performance was obtained by the proposed WSD 
kernel SVM classifier (which is better than the 1-NN clas-
sifier with WSD by 6.8% on average). 

Several most recent state-of-the-art approaches are chosen 
for comparison. These include Niebles et al.’s work [Niebles 
et al., 2008], Dollar et al.’s work [Dollar et al., 2005], and 
Nowozin et al.’s result [Nowozin et al., 2007]. (Although 
some other methods also reported results on the same dataset, 
they were not selected for comparisons here since they rely 
on excessive manual segmentation or strong assumption of 
the availability of accurate preprocessing steps for feature 
extraction, which may significantly boost the performance. 
For example, [Schindler and Gool, 2008; Fathi and Mori, 
2008; Mikolajczyk and Uemura, 2008] require accurate 
bounding box for each frame and [Liu and Shah, 2008] as-
sumes accurate scale information for each frame. Both of the 
assumptions explicitly avoid the scale variation problem, 
which occurs in 1/4 of the sequences in KTH dataset.)  

%    Box   Clap Wave Jog Run Walk Ave
Our (1-NN)    88    81    83 70 73 91 81.0
Our (SVM)    94    91 86 80 84 92 87.8

Niebles et al ’08     98    86 93 53 88 82 83.3
Dollar et al. (1-NN)    80    82 84 63 73 89 78.5
Dollar et al. (SVM)    85    77 93 57 85 90 81.2
Nowozin et al ’07    86    89 92 69 86 86 84.7
Table 3: Comparisons to state-of-the-art results on KTH dataset 

It was found that the WSD kernel SVM algorithm is able to 
outperform each of the reference methods in terms of overall 
accuracy, as shown in Table 3. Further, we can also observe 
from Table 3 that our algorithm is able to discriminate well 
“jogging”, “running” and “walking” classes, which are good 
examples where the global temporal structure of the se-
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quences are key to correct classification. This suggests that 
the proposed super-frame coding strategy is able to retain the 
global temporal information as desired. It is worth pointing 
out that both versions of the proposed methods (1-NN-based 
and SVM-based) outperform the corresponding algorithms 
from Dollar et al.

7 Conclusion and Future Work 
We proposed an approach for human action recognition 

based on a novel super-frame-based coding scheme and a 
novel weighted-sequence distance for comparing su-
per-frame sequences. Our approach takes into consideration 
both local and global spatial-temporal structures of an action 
that are deemed as critical for classification. The approach 
has been evaluated on a challenging real database and was 
found to be able to outperform many existing state-of-the-art 
approaches by a non-trivial margin, even if it uses very sim-
ple low-level visual features as the input.   

There is still much room for further improving our work. 
For example, in our current work, we only use the temporal 
length of the atom poses as the attributes. Other information 
or features that may contribute to better discrimination of the 
actions can also be added to the attributes for each atom pose. 
Also, in our experiments, while the chosen dataset is chal-
lenging and has been widely-used, it does not include mul-
tiple actions/subjects and appearance variations due to view 
angle changes. Our future work includes evaluating and 
extending the proposed method to cover more complex cases. 
In addition, we also plan to explore the application of the 
proposed WSD on other problems where comparison be-
tween sequences of symbols with attributes is involved. 
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