Tractable Multi-Agent Path Planning on Grid Maps

Ko-Hsin Cindy Wang and Adi Botea*

NICTAT and The Australian National University
{cindy.wangladi.botea}@nicta.com.au

Abstract

Multi-agent path planning on grid maps is a chal-
lenging problem and has numerous real-life appli-
cations. Running a centralized, systematic search
such as A* is complete and cost-optimal but scales
up poorly in practice, since both the search space
and the branching factor grow exponentially in the
number of mobile units. Decentralized approaches,
which decompose a problem into several subprob-
lems, can be faster and can work for larger prob-
lems. However, existing decentralized methods
offer no guarantees with respect to completeness,
running time, and solution quality.

To address such limitations, we introduce MAPP,
a tractable algorithm for multi-agent path planning
on grid maps. We show that MAPP has low-
polynomial worst-case upper bounds for the run-
ning time, the memory requirements, and the length
of solutions. As it runs in low-polynomial time,
MAPP is incomplete in the general case. We iden-
tify a class of problems for which our algorithm is
complete. We believe that this is the first study that
formalises restrictions to obtain a tractable class of
multi-agent path planning problems.

1

Path planning is important in many real-life problems, includ-
ing robotics, military applications, logistics, and commercial
games. Single-agent path planning, where the size of the
state space is bounded by the map size, can be tackled with
a search algorithm such as A* [Hart et al., 1968]. In multi-
agent problems, however, both the number of states and the
branching factor grow exponentially in the number of mobile
units. Hence, despite its completeness and solution optimality
guarantees, a centralized A* search has little practical value in
a multi-agent path planning problem, being intractable even
for relatively small maps and collections of mobile units.

Introduction

*We thank Nick Hay, Malte Helmert, Jussi Rintanen, and our
reviewers for their valuable feedback.

TNICTA is funded by the Australian Government’s Backing Aus-
tralia’s Ability initiative.

1870

Scalability to larger problems can be achieved with decen-
tralized approaches, which decompose an initial problem into
a series of searches [Silver, 2006; Wang and Botea, 2008].
However, existing decentralized methods are incomplete and
provide no criteria to distinguish between problems that can
be successfully solved and problems where such algorithms
fail. Further, no guarantees are given with respect to the run-
ning time and the quality of the computed solutions.

Addressing such limitations is a central motivation for our
work. We introduce MAPP (multi-agent path planning), a
tractable algorithm for multi-agent path planning on grid
maps. Given a problem with m traversable tiles and n mo-
bile units, MAPP’s worst case performance is O(m?n?) for
the running time, O(m?n) for the memory requirements, and
O(m?®n?) for the solution length. Depending on the assump-
tions on the input problems, the bounds can be even lower,
being linear in m instead of quadratic, as we discuss in Sec-
tion 5. As it runs in low polynomial time, MAPP is incom-
plete in the general case. However, it is complete for a class
of problems which we define in Section 3, and extend in Sec-
tion 6.

MAPP keeps its running costs low by eliminating the need
for replanning. A path 7r(«) is computed at the beginning for
each unit u. No other searches are required at runtime. A
blank travel idea, inspired from sliding tile puzzles, is at the
center of the algorithm. A unit u can progress from a current
location [} to the next location [{*, ; on its path 7(u) only if a
blank is located there (i.e., [}!, | is empty). Intuitively, if the
next location is currently occupied by another unit, MAPP
tries to bring a blank along an alternate path, which connects
li* 1 and [}*, | without passing through [j*. When possible, the
blank is brought to I}, ; by shifting units along the alternate
path, just as the blank travels in a sliding tile puzzle. The
ability to bring a blank to the next location is key to guarantee
a unit’s progress. See formal details in Section 4.

Among several existing methods to abstract a problem
map into a search graph, including navigation meshes (e.g.,
[Tozour, 2002]), visibility points (e.g., [Rabin, 2000]), and
quadtrees (e.g., [Samet, 1988]), we focus on grid maps. Be-
sides being very popular and easy to implement, grid maps
are well suited to multi-agent problems. Their search graphs
contain more nodes to cover all locations of the traversable
space, offering more path options to avoid collisions.

2 Related Work

Traditional multi-agent path planning takes two main ap-
proaches [Latombe, 1991]. A centralised method incorpo-
rates a single decision maker. For example, planning for all
units simultaneously, as in a centralised A* search, or us-
ing techniques such as biased-cost heuristics [Geramifard et
al., 2006] to detect and resolve collisions as a whole. Al-
though theoretically optimal, in practice this approach has a
prohibitive complexity and cannot scale up to many units.

On the other hand, a decentralised method can signifi-
cantly reduce computation by decomposing the problem into
several subproblems. This typically involves first planning
the units’ paths independently, then handling the interactions
along the way; it is often much faster but yields suboptimal
solutions and loses completeness. Examples include com-
puting velocity profiles to avoid collisions [Kant and Zucker,
19861, or assigning priorities [Erdmann and Lozano-Perez,
1986]. Local Repair A* (LRA*) [Stout, 1996] replans using
expensive A* searches with every collision. Ryan [2008] in-
troduces a complete method that combines multi-agent path
planning with hierarchical planning on search graphs with
specific sub-structures such as stacks, halls, cliques and rings.

Other recent decentralised methods in a grid-based world
include using a direction map structure [Jansen and Sturte-
vant, 2008] to share information about units’ directions of
travel, so later units can follow the earlier ones. The im-
proved coherence leads desirably to reduced collisions. Sil-
ver’s cooperative pathfinding method [2006] uses a reserva-
tion table and performs windowed forward searches on each
unit, based on a true distance heuristic obtained from an initial
backward A* search from each target. In Wang and Botea’s
work [2008], units follow a flow annotation on the map when
planning and moving, then use heuristic procedures to break
deadlocks. Methods such as these scale up to a number of
units well beyond the capabilities of centralised search. How-
ever, they come with no formal characterisation of the run-
ning time and the quality of solutions in the worst case. They
lack the ability to answer beforehand whether a given prob-
lem would be successfully solved, which is always important
in the case of incomplete algorithms. We address such issues
in the following sections.

3 Problem Statement and Definitions

A problem is characterized by a map and a non-empty col-
lection of mobile units U. Units are homogeneous in speed
and size. Each unit v € U has an associated start-target pair
(Su, tu). Two distinct units can share neither a common start
nor a common target. The objective is to navigate all units
from their start positions to the targets while avoiding all fixed
and mobile obstacles. A state contains the positions of all
units at a given time.

We assume that only straight moves in the four cardinal di-
rections can be performed (4-connect grid). All our solutions
can be extended to 8-connect grids (octiles), since the stan-
dard practice is to allow a diagonal move only if an equivalent
(but longer) two-move path exists. Therefore, any problem
with diagonal moves can be reduced to a problem with only
straight moves, at the price of possibly taking longer paths.

T
- - - 4 -q—fuq--'- ------
e+ -1

Figure 1: An example of an alternate path, €2;, connecting
locations ¢ — 1 and ¢ + 1 along the path () for a unit u.

Introducing diagonal moves could reduce the path length but
they have the potential drawback of becoming blocked more
often than straight moves on crowded maps, due to the phys-
ical impossibility of squeezing past two orthogonal neigh-
bours. A better study of this trade-off is left as future work.

Definition 1 A problem belongs to the class SLIDEABLE iff
for each unit u € U a path w(u) = (I, 1{,...,[}) exists,
where I = sy, I}l = tu, and k, denotes the length of the
path 7w(u), such that all the following conditions are met:
1. Alternate connectivity: For each three consecutive loca-
tions I* 1, Ii', I}" | on m(u), an alternate path Q?(u) (or
simpler, Y}') exists between [} | and I}, | that does not
go through ', as illustrated in Figure 1.

2. In the initial state, 1} is blank (i.e. unoccupied).
3. Target isolation:

(a) (Vv eU\{u}):t, ¢ n(v); and

(b) VweUVie{l,....,k, —1}) : t, & QY.

Unless otherwise mentioned, in the rest of this paper, we
assume that the input problem belongs to the SLIDEABLE
class and that the computed paths 7(u) are fixed throughout
the solving process. Given a unit u, let pos(u) be its current
position, and let int(m(u)) = {I{,..., [}, _,} be the interior
of its precomputed path 7(u).

Definition 2 We define the private zone ((u) of a unit as fol-
lows. If pos(u) = I} € int(m(w)), then ((u) = {11 1,1}
Otherwise, ((u) = {pos(u)}.

The set of units U is partitioned into a subset S of solved
units that have already reached their targets, and a subset A
of active units. Initially, all units are active. After becoming
solved, units do not interfere with the rest of the problem (as
ensured by the target isolation condition). As shown later,
solved units never become active again, and do not have to be
considered in the remaining part of the solving process.

Definition 3 The advancing condition of an active unit u is
satisfied iff its current position belongs to the path w(u) and
the next location on the path is blank.

Definition 4 A state is well positioned iff all active units have
their advancing condition satisfied.

4 The MAPP Algorithm

As illustrated in Algorithm 1, for each problem instance,
MAPP starts by computing a path 7(u) for each unit u to
its target (goal), constructing and caching alternate paths 2

1871

Algorithm 1 Overview of MAPP.
1: for eachu € A do

2: compute 7(u) and 2’s (as needed) from s,, to ¢,
3: if path computation failed then

4: return problem is not in SLIDEABLE

5: while A # () do

6: do progression step

7: do repositioning step if needed

5 5

b

a

Figure 2: (a) The eight locations two moves away from [. (b)
Two two-move paths from [to location 2 go through 7 and 7.

along the way. Note that all paths 7w and alternate paths 2
need to satisfy the conditions in Definition 1. If the for loop
in lines 1—4 succeeds, MAPP can tell that the instance at hand
belongs to SLIDEABLE, for which MAPP is complete. The
remaining part is a series of two-step iterations (lines 5-7).

A progression step advances active units towards their tar-
gets. As shown later, each progression step brings at least
one active unit to its target, reducing A and ensuring that the
algorithm terminates, reaching the state where all units are
solved. A progression could result in breaking the advancing
condition of one or more active units, if any remain. The ob-
jective of a repositioning step is to ensure that each active unit
has its advancing condition satisfied before starting the next
progression step. Note that a repositioning step is necessary
after every progression step except for the last.

4.1 Path Pre-computation

For each problem instance, we pre-compute each path 7(u)
individually. To ensure that paths satisfy the alternate con-
nectivity condition (Definition 1), we modify the standard A*
algorithm as follows. When expanding a node z’, a neigh-
bour 2"’ is added to the open list only if there is an alternate
path between 2’/ and x, the parent of 2. By this process we
compute each path 7(u) and its family of alternate paths
simultaneously. To give each neighbour z” of the node =’ a
chance to be added to the open list, node x’ might have to
be expanded at most three times, once per possible parent z.
Therefore, O(m) node expansions are required by A* search
to find each 7 path. Equivalently, computing a 7 path could
also be seen as a standard A* search in the extended space of
pairs of neighbouring nodes (at most four nodes are created
for each original node).

Since alternate paths depend only on the triple locations,
not the unit, we can re-use this information when planning
paths for all units of the same problem. This means that the
alternate path for any set of three adjacent tiles on the map
is computed only once, and cached for later use. Given a

1872

location [on the map, there are at most eight locations that
could be on a path two moves away on a four-connect grid.
As shown in Figure 2a, these eight locations form a diamond
shape around [. For each of the four locations that are on a
straight line from [(locations 1, 3, 5, 7), we precompute an
alternate path that avoids the in-between location and any tar-
gets. For each of the other four locations (labeled 2, 4, 6, 8),
we need to compute two alternate paths. For example, there
are two possible paths between [and 2 that are two moves
long: through 7 or 72 (Figure 2b). We need one alternate path
to avoid each intermediate location. In summary, we precom-
pute at most 12 paths for each . For at most m locations on
a map, we need 127’” = 6m alternate paths (only need one
computation for each triple, since an alternate path connects
its two endpoints both ways).

A possible optimization is to reuse alternate paths for
SLIDEABLE problems on the same map. Alternate paths that
overlap targets in the new problem need to be re-computed.
With large number of units, the overhead in verifying and re-
computing alternate paths may outweigh the savings.

4.2 Progression

Algorithm 2 shows the progression step in pseudocode. At
each iteration of the outer loop, active units attempt to
progress by one move towards their targets. They are pro-
cessed in order (line 2). If unit v is processed before unit w,
we say that v has a higher priority and write v < w. The
ordering is fixed inside a progression step, but it may change
from one progression step to another. The actual ordering
affects neither the correctness nor the completeness of the
method, but it may impact the speed and the solution length.
The ordering of units can be chosen heuristically, e.g. giving
higher priority to units that are closer to target. Thus, these
units get to their target more quickly, and once solved they
are out of the way of the remaining units in the problem.

At the beginning of a progression step, one master unit
is selected. It is the unit with the highest priority among the
units that are active at the beginning of the progression step.
The status of being the master unit is preserved during the
entire progression step, even after u becomes solved. At the
beginning of the next progression step, a new master unit will
be selected among the remaining active units.

Lines 3—15 show the processing of u, the active unit at
hand. If u has been pushed off its precomputed path as a re-
sult of blank travel (see details later), then no action is taken
(lines 3—4). If w is on its path but the next location [}’ ; is
currently blocked by a higher-priority unit v, then no action
is taken (lines 5-6). Lines 7 and 8 cover the situation when
unit » has been pushed around (via blank travel) by higher-
priority units back to a location on 7(u) already visited in
the current progression step. In such a case, u doesn’t at-
tempt to travel again on a previously traversed portion of its
path, ensuring that the bounds on the total travelled distance
introduced later hold. Otherwise, if the next location [*, ; is
available, u moves there (lines 9—10). Finally, if l}ﬂrl is oc-
cupied by a smaller-priority unit, an attempt is made to first
bring a blank to [}, ; and then have u move there (lines 11—
13). When v moves to a new location /!, ; (lines 10 and 13),
a test is performed to check if [}*, ; is the target location of u.

Algorithm 2 Progression step.

1: while changes occur do
2: for each u € A in order do

3: if pos(u) ¢ m(u) then
4: do nothing {u has been pushed off the track as a
result of blank travel }
5: else if Jv < u : ' | € ((v) then
6: do nothing {wait until /}'_, is released by v}
7: else if u has already visited [}, ; in current progres-
sion step then
8: do nothing
9: else if /', | is blank then
10: move u to [,
11: else if can bring blank to /i, ; then
12: bring blank to [, |
13: move u to [,
14: else
15: do nothing

Figure 3: At the left, u is blocked by a. A blank is found at
location [along the)-path (outlined in bold). At the right:
by sliding b and then a along {2, the blank is brought to [¥, ;.

If this is the case, then u is marked as solved by removing it
from A and adding it to .S.

Bringing a blank to [}, ; (lines 11 and 12) works as follows.
Alocation ! € 2 is sought with the following properties: (1)
[is blank, (2) none of the locations from [to [;*, ; (including
these two ends) along €)Y belongs to the private zone of a
higher-priority unit, and (3) [is the closest (along 2}) to [3*,
with this property. If such a location [is found, then the test
on line 11 succeeds. The actual travel of the blank from [to
I3, 1 along 2% (line 12) is identical to the movement of tiles in
a sliding-tile puzzle. Figure 3 shows an example before and
after blank traveling. The intuition behind seeking a blank
along (2 is that, often, [{* ; remains blank during the time
interval after v advances to [j' and until the test on line 11
is performed. This is guaranteed to always hold in the case
of the master unit «, since [{" ; belongs to ((u) and no other
unit can interfere with {(@). The following result character-
izes the behaviour of % more precisely. The proof is rather
straightforward from the previous algorithm description, and
we skip it for the sake of space.

Lemma 5 As long as the master unit U is not solved, it is
guaranteed to advance along ww(u) at each iteration of the
outer (“while”) loop in Algorithm 2. By the end of the current
progression step, at least u has reached its target.

The following result is useful to ensure that a progression
step always terminates, either in a state where all units are
solved or in a state where all remaining active units are stuck.

Lemma 6 Algorithm 2 generates no cycles (i.e., no repeti-
tions of the global state).

Proof: Below we show a proof by contradiction. Assume
that there are cycles. Consider a cycle and the active unit u in
the cycle has the highest priority. Since no other unit in the
cycle dominates u, it means that the movements of u cannot
be part of a blank travel triggered by a higher priority unit.
Therefore, the movements of u are a result of either line 10 or
line 13. That is, all u’s moves are along its path 7(u). Since
7(u) contains no cycles, u cannot run in a cycle. O

4.3 Repositioning

By the end of a progression step, some of the remaining active
units (if any left) have their advancing condition broken. Re-
call that this happens for a unit « when either pos(u) ¢ 7(u)
or u is placed on its precomputed path but the next location
on the path is not blank. A repositioning step ensures that a
well positioned state is reached (i.e., all active units have the
advancing condition satisfied) before starting the next pro-
gression step.

A simple and computationally efficient method to perform
repositioning is to undo part of the moves performed in the
most recent progression step. Solved units are not affected.
For the remaining active units, we undo their moves, in re-
verse order, until a well positioned state is encountered. We
call this strategy reverse repositioning.

Lemma 7 If the reverse repositioning strategy is used at line
7 of Algorithm 1 (when needed), then all progression steps
start from a well positioned state.

Proof: This lemma can be proven by induction on the itera-
tion number j in Algorithm 1. Since the initial state is well
positioned (this follows easily from Definitions 1 and 4), the
proof for j = 1 is trivial. Assume that a repositioning step is
performed before starting the iteration j+1. In the worst case,
reverse repositioning undoes all the moves of the remaining
active units (but not the moves of the units that have become
solved), back to their original positions at the beginning of
7-th progression step. In other words, we reach a state s that
is similar to the state s’ at the beginning of the previous pro-
gression step, except that more units are on their targets in s.
Since s’ is well positioned (according to the induction step),
it follows easily that s is well positioned too. O

4.4 Example

A simple example of how MAPP works is illustrated in Fig-
ure 4. There are two units, ordered as a < b. In (i), as a and
b progress towards their targets, a becomes blocked by b. In
(i), a blank is brought in front of a by sliding b down 2¢ (out-
lined in bold); as a side effect, b is pushed off its path. At the
end of the current progression step (iii), a reaches its target.
In the repositioning step (iv), b undoes its previous move to
restore its advancing condition. In the next progression step
(v), b reaches its target. The algorithm terminates.

5 Worst-case and Best-case Analysis

We give here bounds on the runtime, memory usage, and so-
lution length for the MAPP algorithm on a problem in SLIDE-

1873

J i 'ﬁ%

;s

Figure 4: Example of how MAPP works.

ABLE with n units and a map of m traversable tiles. We ex-
amine the worst case scenario in each case, and also discuss a
best-case scenario at the end. Assessing the algorithm’s prac-
tical significance is also very important, but it is not the topic
of this paper.

We introduce an additional parameter, A, to measure the
maximal length of alternate paths 2. In the worst case, A
grows linearly with m. However, in many practical situations,
A is a constant, since the ends of an €2 path are so close to each
other. Our analysis discusses both scenarios.

Theorem 8 Algorithm 1 has a worst-case running time of
O(n®m) when X is a constant, or O(n*m?) when \ grows
linearly with m.

Proof: As outlined in Section 4.1, each single-agent A*
search for 7 expands nodes linear in the size of the map, tak-
ing O(nm) time for all n units. Each A* search for an alter-
nate path {2 expands O(\?) nodes, so the A* searches for all
s take O(mA?) time. If A grows linearly with m, we note
that the number of states in the A* search space is linear in
m, giving O(m?) time.

In a single progression step, outlined in Algorithm 2, sup-
pose blank travel is required by all n units, every move along
the way except the first and last moves, and each operation
brings the blank from the location behind (I}* ;) to the front
(I3 1). Since the length of 7 paths is bounded by m and the
length of alternate paths €2 is bounded by J, the total number
of moves in a progression step is within O(nmA), and so is
the running time of Algorithm 2.

Clearly, the complexity of a repositioning step cannot ex-
ceed the complexity of the previous progression step. In the
worst case, the size of A reduces by one at each iteration in
lines 5-7 of Algorithm 1. So MAPP takes O(n?m)) time
to run, which is O(n?m) when A is constant and O(n?m?)
when A grows linearly with m. a

Theorem 9 The maximum memory required to execute
MAPP is O(nm) when X is a constant, or O(nm?) when \
grows linearly with m.

Proof: Caching the possible {2 paths for the entire problem
as described in Section 4.1 takes O(mA) memory. The A*
searches for the 7 paths are performed one at a time. Af-
ter each search, 7 is stored in cache, and the memory used
for the open and closed lists is released. The A* working
memory takes only O(m) space, and storing the 7 paths takes
O(nm) space. Overall, path computation across all units re-
quires O(nm + m).

Then, in lines 5—7 of Algorithm 1, memory is required to
store a stack of moves performed in one progression step, to

be used during repositioning. As shown in the proof of The-
orem 8, the number of moves in a progression step is within
O(nmA). So, the overall maximum memory required to ex-
ecute the program is O(nmA), which is O(nm) when A is a
constant and O(nm?) when X grows linearly with m. O

Theorem 10 The total distances travelled across all units is
at most O(n?m) when X is a constant, or O(n?m?) when X
grows linearly with m.

Proof: As shown previously, the number of moves in a pro-
gression step is within O(nm). The number of moves in
a repositioning step is strictly smaller than the number of
moves in the previous progression step. There are at most n
progression steps (followed by repositioning steps). Hence,
the total travelled distance is within O(n2mM). O

Corollary 11 To store the global solution takes O(n*m)
memory when X is a constant, or O(n*m?) when \ grows
linearly with m.

We discuss now a best case scenario. MAPP computes op-
timal solutions in the number of moves when the paths 7 are
optimal and all units reach their targets without any blank
traveling (i.e., units travel only along the paths 7). An obvi-
ous example is where all paths 7 are disjoint. In such a case,
solutions are makespan optimal too. As well as preserving
the optimality in the best case, the search effort in MAPP can
also be smaller than that spent in a centralised A* search, be-
ing n single-agent O(m) searches, compared to searching in
the combined state space of n units, with up to (

7), states
and a branching factor of 5”.

6 A Closer Look at Class SLIDEABLE and
Beyond

In this section we discuss advantages, limitations and exten-
sions of the class SLIDEABLE.

Fortunately, all conditions in the definition of class SLIDE-
ABLE refer to the computed paths 7. This gives us some free-
dom to actively search for a path that satisfies those condi-
tions. Among the possible paths between two locations s and
t, we can try, for example, to avoid planning paths through
targets of other units, and single-width tunnels where the al-
ternate connectivity condition is harder to satisfy. Further-
more, when searching for the 7 paths, we can actively try to
minimise the overlapping between paths. This way, we could
avoid beforehand many potential collisions and detours, re-
ducing both the running time and the quality of the solutions.

Examples of problems that do not belong to SLIDEABLE,
as shown in Figure 5, include cases where two or more tar-
gets are located inside a narrow open tunnel and units come
from opposite ends, or where many targets are located next
to each other in a cluster. The existence of special cases that
MAPP cannot solve is quite normal, given the algorithm’s
low polynomial-time upper-bound.

The SLIDEABLE class can be extended without affecting
MAPP’s completeness. The three conditions in Definition 1
are kept simple for the sake of clarity. Each of these can be
relaxed. The relaxations require small and computationally
cheap changes to the algorithm. We show the intuitions for

1874

Figure 5: Two challenging cases. Left: two targets (denoted
by stars) inside a narrow tunnel. Right: a cluster of targets.

Figure 6: After units @ and b make their first moves, initial
blanks are created for ¢ and d, and so on.

extending the first two conditions, and a more detailed expla-
nation for the third.

We can relax the first condition on alternate connectivity
based on the fact that a segment of a path {l}*, ..., l}'} € 7(u)
does not require alternate paths if no other paths or alternate
paths intersect with any of the segment’s locations: (Vv €
U\{u}, Ve € {1,... k. }): {If', ..., 12} (m(v) uy) = 0.
This way, no blank traveling is required along [" . .. [/, since
u is the only unit that traverses that part of the map.

We can also relax the second condition, which requires all
units to have an initial blank, to have only some units meet-
ing this requirement. Figure 6 illustrates an example where
initially only two units, a and b, have a blank in front. But as
they move forward, blanks are created at their vacated posi-
tions, satisfying the initial blank condition for units ¢ and d.
As ¢ and d make their first moves, the blanks get carried back
again, allowing the units behind to start moving in turn.

The third condition (target isolation) can be relaxed as fol-
lows. Assume some targets do interfere with some paths:

Ju,v € U, t, € I(v), where II(v) = (W(U)UUS,L;I QY), vi-
olating the target isolation condition. In such cases, we define
a partial ordering < such that v < u when the target of u is on
TI(v). Problems where < produces no cycles can be solved
by a version of MAPP with two small modifications: (1) the
total ordering < inside a progression step is consistent with
<:v <u=v<u; (2)if v < u, then u cannot be marked
as solved (i.e. moved from A to S) unless v has already been
marked as solved. So even if u arrives at its target first, v can
get past u by performing the normal blank travel. Following
that, v can undo its moves back to target in the repositioning
step, as outlined in Section 4.3.

7 Conclusion

In multi-agent path planning, traditional centralised and de-
coupled approaches both have shortcomings: the former faces
an exponentially growing state space in the number of units;
the latter offers no guarantees with respect to completeness,
running time and solution length. We have identified con-
ditions for a class of multi-agent path planning problems on

1875

grid maps that can be solved in polynomial time. To solve
such problems, we introduced an algorithm, MAPP, with low
polynomial complexity in time (O (n?m?)), space (O(nm?)),
and solution quality (O(n?m?)). The upper bounds can be
even better (linear in m instead of quadratic), depending on
the assumptions on the input problems. We also discussed
extensions to more general classes of problems where the al-
gorithm’s completeness is preserved.

A detailed empirical evaluation, which is important for es-
tablishing MAPP’s practical applicability, is a main future
work topic. Also, we plan to investigate heuristic enhance-
ments that could be added to the algorithm. We will study
the performance ratio of MAPP compared with optimal solu-
tions. We want to define a measure of how tightly coupled
units are in large multi-agent pathfinding problems, and to
use this measure to refine our theoretical study and to design
heuristic enhancements.

References

[Erdmann and Lozano-Perez, 1986] M. Erdmann and
T. Lozano-Perez. On Multiple Moving Objects. In ICRA,
pages 1419-1424, 1986.

[Geramifard et al., 2006] A. Geramifard, P. Chubak, and
V. Bulitko. Biased Cost Pathfinding. In AIIDE, pages 112—
114, 2006.

[Hart e al., 1968] P. Hart, N. Nilsson, and B. Raphael. A
Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Trans. on Systems Science and Cyber-
netics, 4(2):100-107, 1968.

[Jansen and Sturtevant, 2008] R. Jansen and N. Sturtevant. A

New Approach to Cooperative Pathfinding. In AAMAS,
pages 1401-1404, 2008.

[Kant and Zucker, 1986] K. Kant and S. W. Zucker. Toward

Efficient Trajectory Planning: The Path-Velocity Decom-
position. IJRR, 5(3):72-89, 1986.

[Latombe, 1991] J.-C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, 1991.

[Rabin, 2000] S. Rabin. A* Speed Optimizations. In Mark
Deloura, editor, Game Programming Gems, pages 272—
287. Charles River Media, 2000.

[Ryan, 2008] M. R. K. Ryan. Exploiting Subgraph Structure
in Multi-Robot Path Planning. JAIR, pages 497-542, 2008.

[Samet, 1988] H. Samet. An Overview of Quadtrees, Oc-
trees, and Related Hierarchical Data Structures. NATO
ASI Series, Vol. F40, 1988.

[Silver, 2006] D. Silver. Cooperative pathfinding. Al Pro-
gramming Wisdom, 2006.

[Stout, 1996] B. Stout. Smart Moves: Intelligent Pathfind-
ing. Game Developer Magazine, October/November 1996.

[Tozour, 2002] P. Tozour. Building a Near-Optimal Naviga-

tion Mesh. In Steve Rabin, editor, Al Game Programming
Wisdom, pages 171-185. Charles River Media, 2002.

[Wang and Botea, 2008] K.-H. C. Wang and A. Botea. Fast
and Memory-Efficient Multi-Agent Pathfinding. In
ICAPS, pages 380-387, 2008.

