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Abstract

The ultimate goal of human-robot interaction is to
enable the robot to seamlessly communicate with
a human in a natural human-like fashion. Most
work in this field concentrates on the speech in-
terpretation and gesture recognition side assuming
that a propositional scene representation is avail-
able. Less work was dedicated to the extraction of
relevant scene structures that underlies these propo-
sitions. As a consequence, most approaches are
restricted to place recognition or simple table top
settings and do not generalize to more complex
room setups. In this paper, we propose a hierar-
chical spatial model that is empirically motivated
from psycholinguistic studies. Using this model the
robot is able to extract scene structures from a time-
of-flight depth sensor and adjust its spatial scene
representation by taking verbal statements about
partial scene aspects into account. Without assum-
ing any pre-known model of the specific room, we
show that the system aligns its sensor-based room
representation to a semantically meaningful repre-
sentation typically used by the human descriptor.

1 Introduction

Although robotic systems designed for communicating and
interacting with humans have already achieved an impressive
performance [Böhme et al., 2003; Kim et al., 2004; Li et al.,
2005; Montemerlo et al., 2002; Simmons et al., 2003; Toma-
tis et al., 2002], they suffer from an insufficient understanding
of scenes. In this paper, we will focus on indoor environ-
ments, i.e. living rooms, offices, etc. Given the current state
of technology, the human interaction partner is either able to
specify global room types, e.g. ”This is the living room”,
or individual objects, e.g. ”Take the cup” [Mozos et al.,
2007; Torralba et al., 2003]. In the case of more complex spa-
tial descriptions, the scenario is typically restricted to a sin-
gle table top allowing the user to specify simple binary spa-
tial relations between objects [Brenner et al., 2007; Mavridis
and Roy, 2006; Wachsmuth and Sagerer, 2002]. Both scene
representations abstract completely from sensoric data and re-
late verbal descriptions to a set of propositions that are judged
by object detectors or localization procedures. They do not

consider the top-down influence of a verbal description on
establishing a model of the scene structure.

Such approaches are not generalizable to more complex
scenes because they miss an intermediate level of scene rep-
resentation. An indoor environment – such as a living room
– typically consists of a configuration of several pieces of
furniture with many smaller items placed on tables, shelves,
or side-boards. In order to talk to the robot about a pen
lying beside a book on a table that should be placed back
into a drawer under the desk, the scene needs to be repre-
sented at different levels of granularity. However, the auto-
matic extraction of geometric scene structures from sensoric
data is a great challenge that suffers from occlusion and seg-
mentation issues. Without a large amount of pre-knowledge
it is nearly impossible to completely extract chairs, tables,
shelves, or side-boards in a purely data-driven manner. Such
a kind of process will always generate much over- or under-
segmentation. Therefore, the robotic system will come up
with a different scene structure than the human communica-
tion partner expects.
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Figure 1: Object examples and their relations.

Rather than speci-
fying room layouts
beforehand, much
scene information can
be implicitly learnt
from verbal user de-
scriptions (see Fig. 1).
The more the robot
learns about a scene,
the more consistent the

scene representation will be. This leads – step by step – to
spatial structures that are aligned between the robotic system
and the user.

The paper is structured as follows. In Section 2 we dis-
cuss the state of the art in computational spatial models. Our
main contribution is explained in Section 3 and 4, where a
hierarchical model of static scenes is proposed motivating its
assumptions from an empirical psycholinguistic perspective
and the data-driven adaptation of these scene structures is
described processing Time-of-Flight (ToF) depth data. Sec-
tion 5 gives a final conclusion.
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Figure 2: Photograph of the scene presented to the subjects for description. Two typical
relations between scene elements (a parallel and an orthogonal one) are visualized.

2 Related Work

There have been a few approaches that consider more com-
plex scene structures in human-robot scenarios. Zender et al.
[2008] propose a multi-layered spatial representation consist-
ing of a metric map, a graph-based navigation map, a topo-
logical map dividing the set of graph nodes to areas, and
a conceptual map linking the low-level maps and the com-
munication system. Beeson et al. [2007] introduce a Hy-
brid Spatial Semantic Hierarchy (HSSH) as a rich interface
for human-robot interaction. It combines large-scale space
structures with knowledge about small-scale spaces and al-
lows reasoning on four levels (local metrical, local symbolic,
global symbolic, global metrical). In Hois et al. [2006], the
scene description is based on a set of planes that are detected
by a laser sensor. They focus on the combination of vision
and language in order to classify objects placed in the scene
into functional object categories.

All approaches described assume a correctly extracted
scene structure that is compatible with verbal descriptions of
human interaction partners. Based on this information, Hois
et al. are able to map verbal descriptions to scene objects. In
the following, we explore the opposite direction. If we are
able to map verbal object descriptions to scene objects, what
can we infer about the scene structure?

3 Computational Model and Empirical

Foundation

This section deals with the structural elements of a human-
given description about a static indoor scene. They are ex-
amined empirically in a study (Sec. 3.1) and the insights
are used to propose a computational model which provides
a hierarchical model of the scene layout referring to mean-
ingful structures (Sec. 3.2).

3.1 Empirical Foundation

People’s descriptions of spatial scenes reflect aspects of their
mental representations of the perceived scenes relevant for
communication. While there are many psycholinguistic stud-
ies using so-called ’ersatz scenes’ (displays of arbitrarily
arranged objects) few have addressed the way people talk
about ’true scenes’ (real or depicted views of natural envi-
ronments [Henderson and Ferreira, 2004]). These are se-
mantically coherent and comprised of both background el-
ements and objects which are spatially arranged [Hender-
son and Hollingworth, 1999]. To investigate what people’s

object relation object

The car is in front of the koala.
oc = obj(“car”) ok = obj(“koala”)

rel‖(oc, ok)

There are soft toys on the table.
os = obj(“soft toys”) ot = obj(“table”)

rel⊥(os, ot)

Figure 3: Introduction of the notation for T , set of trees. T starts with one tree (tree a
– a1 and a2 are children of a, a11 and a12 are child nodes of a1). Two expressions are
given which are transferred to a parallel and an orthogonal relation. The resulting T
contains three trees (tree a, tree b, tree c) when the objects were inserted with regard to
the definition of the relations. � is used for items of tree structures.

descriptions reveal about their internal model of a visually
perceived complex room setup in general and what specific
information can be gained by analyzing their verbal state-
ments with respect to spatial relations between objects and
background planes, we conducted a psycholinguistic study
in which participants gave verbal descriptions of a depicted
room. Ten native speakers of German participated in this
study. They were shown a photograph of a real room contain-
ing shelves, a table, a chair, and some small objects located
on them (e.g., a toy car, a toy koala, a cup, etc. see Fig. 2).
Their task was to describe what they saw in the picture. The
verbal descriptions produced were analyzed with respect to
the relative frequency of object references (for small objects,
items of furniture, and room parts), the scanning paths ex-
pressed by linearization strategies (sequence of object refer-
ences presents the attention of the subject), and the types of
spatial relations named. A basic analysis of the experimen-
tal data confirmed the importance of spatial room structures
(formed by pieces of furniture and room parts) as crystal-
lization points of room descriptions and a hierarchical spatial
representation of the perceived scene. The use of a hierarchi-
cal spatial model as a basis for the scene descriptions is evi-
denced by the fact that objects are verbally localized relative
to their supporting room structure or to another object sup-
ported by the same room structure. In other words, the spa-
tial relations verbalized in the room descriptions belong either
to the orthogonal type (relation to a superordinate structure,
e.g., “on the chair”) or to the parallel type (relation to an-
other element at the same level and located on the same su-
perordinate structure, e.g., “in front of the koala”). These data
support the conclusion that small objects and background ele-
ments of the visual scene are restructured in the mental model
in a hierarchical way reflecting 3D spatial relations.

3.2 Computational Model

Given a scenario introduced in Sec. 3.1, these verbal descrip-
tions are often organized in sequences of so-called parallel
and orthogonal relations between pairs of objects. These two
types of spatial relations are defined as following:

• rel‖(o1, o2):
describes a parallel relation between two objects o1

and o2 in the sense of o1 lies in front of/behind/next
to/above/below o2 (e.g “a car is in front of the koala”). It
can be inferred that both objects can be assigned to the
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(1) rel‖(o1, o2) ∧ ⇒

(2) rel⊥(o1, o2) ∧ ⇒

(3) rel‖(o1, o2) ∧ ⇒

(4) rel⊥(o1, o2) ∧ ⇒

Figure 4: Graphical visualization of the rules introduced in Fig. 5

rel‖(o1, o2) ⇒ ∃p = obj(“ ”) → np, (1)

child(no1, np),

child(no2, np)

rel⊥(o1, o2) ⇒ child(no1, no2) (2)

rel‖(o1, o2) ∧ ∃np ∈ T : ⇒ child(no2, np) (3)

ischild(no1, np)

rel⊥(o1, o2) ∧ ∃np ∈ T : ⇒ ∀n : ischild(n, np) (4)

ischild(no1, np) → child(n, no2),

delete(np)

Figure 5: These rules define how to rearrange the
current tree set T , namely add new nodes and in-
sert new edges for a given relationship (rel{‖,⊥})
between two objects o1 and o2. no1 and no2 re-
fer to nodes in T representing these objects. The
ischild−, child−, delete−methods operate on T .
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Figure 6: Example set of trees
T generates from the descrip-
tion of subject 4 (Fig. 7) using
the rules of Fig. 5

In the corner is a lamp . Soft toys are on the table , a rose is on the table ,

and a car is in front of the koala . A lion is on the chair . A small robot lies

in front of the lion . In the left cupboard ( cupboard2 ) are books . Also there are

games in the cupboard2 . Next to fred is a raven . Below the raven are the

pokemon . In the right cupboard ( cupboard3 ) are games . Also a candle is in

cupboard3 . Above the candle is a dog .

Figure 7: This is the scene description of subject 4. The magenta framed words are the
objects, the double green underlined the parallel relations, and the single green under-
lined the orthogonal relations.

same superordinate structure which would be the table
in this example. This function is, in the mathematical
sense, commutative as switching the objects’ order does
not change the superior structure.

• rel⊥(o1, o2):
describes an orthogonal relation between two objects o1

and o2 where o1 is assigned to o2 as superordinate struc-
ture in the sense of o1 lies on/in o2 (e.g. “there are soft
toys on the table”). This function cannot be considered
to be commutative as switching the objects’ order would
result in a completely different superior structure.

As stated in Section 3.1, objects in/on different structures
(e.g. the books in the cupboard and the bear on the table) are
not related to each other. Therefore, we are going to build a
set of dependency trees in which verbally related objects are
organized in a hierarchical way, which means that the super-
ordinate structure is a parent node of the subordered elements
in the tree. The notation used to represent the trees can be
seen in Fig. 3. For a certain object label in a verbal expres-
sion, there is a function obj which generates an object o. The
verbal expression in Fig. 3 also provides a relation between
two objects. The current set of trees is extended or trans-
formed depending on the relation.

Our computational model is based on rules that define the
way of how to add new nodes, edges, and trees in a given set
of trees T . When starting with the first expression, T will be
an empty set. An expression “o1 is related to o2” is trans-
formed to two objects o1 = obj(“o1”) and o2 = obj(“o2”)
and a relation rel{‖,⊥}(o1, o2) between them. In general,

new isolated nodes no1 (� o1) and no2 (� o2) are inserted in
T representing the mentioned objects. Labels expressing dis-
tinct scene objects (e.g. “koala”) are added only once into T ,
while category labels (e.g. “soft toys”) will be newly added
every time they are mentioned as it cannot be assumed with-
out additional knowledge that the same objects were meant.
The rules treat nodes with and without children identically.
First, there are three operations on object nodes and the cur-
rent set of trees T :

• child(no, np):
inserts a directed edge from node np known as parent to
the child node no.

• bool = ischild(no, np):
returns true if ∃{no, np} ∈ T with a directed edge bet-
ween np and no.

• delete(np):
deletes the node np from the set of trees T .

The rules for extending T from a given relation
rel{‖,⊥}(o1, o2) are presented in Fig. 4 and 5. They
are explained as follows:
(1) The basic rule for a given parallel relation (rel‖(o1, o2))

between two objects o1 and o2 state that there exists an
object p = obj(“ ”) with an empty label which will be
inserted as new node np into T . The hierarchical re-
lation between o1, o2 and p is expressed via setting the
nodes no1 and no2 as child nodes of np using the child-
operation.

(2) In the case of an orthogonal relation (rel⊥(o1, o2)) bet-
ween two objects a directed edge will be inserted so that
the node no1 will become a child node of no2.

For both basic cases, there exists an exception which has to
be treated by an own rule.
(3) Given a parallel relation and the fact that no1 (node of

object o1) has already a parent node np in T , the node
no2 with its children – if existing – will become a child
node of np.

(4) Assuming o1 has a parent node np with an empty label
in T and an orthogonal relation between o1 and o2, all
child nodes of np including no1 become child nodes of
no2, np will be deleted from the set of trees.
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(a) (b)

Figure 8: Swissranger output: (a) Amplitude image recorded from the scene shown in
Fig. 2. The boxes and labels around the movable objects represent the output O of a
typical object detector. (b) For each pixel also a 3D point is provided. The convex 3D
object hulls are computed on the 3D points determined by the 2D bounding boxes.

Applying these rules on descriptions of ten native speakers
who participated in the study (example see Fig. 7, hand-
annotated for objects and relations), dependency tree sets can
be generated as presented in Fig. 6 and 11. We assume that
a person will provide consistent relations and labels of struc-
tures. Otherwise, inconsistent relations are omitted as an is-
sue to be resolved later in the process using sensor data or to
be clarified in a human-robot interaction scenario via a query.

4 Extracting 3D Scene Structures

The experimental setup for obtaining human room de-
scriptions was designed in such a way that our mobile
robot [Haasch et al., 2004] would be able to use the de-
scriptions to build up a representation of its environment.
We aim for a 3D representation, as it resolves depth disam-
biguities and provides more information for navigation and
manipulation tasks. Our robot is equipped with a Swiss-
ranger SR3000 [Weingarten et al., 2004], which is a 3D time-
of-flight (ToF) near-infrared sensor delivering in real-time a
depth map of 176 × 144 pixels resolution. The advantage of
this sensor is that it provides a dense and reliable 3D point
cloud of the scene shown in Fig. 8(b) and simultaneously a
gray-scale image of amplitude values encoding for each 3D
point the amount of infra-red light reflected (see Fig. 8(a)).

In a scene representation consisting of a set of trees as built
by applying the computational model of Sec. 3.2 (Fig. 6), the
movable objects like soft toys, cups, or books are located at
the leaves of the trees while objects like furniture which are
a structural part of the room can be found on the higher lev-
els of the trees. This represents the physical constraint that
no object is flying in the room but lies on or in a support-
ing structure. Here, the movable objects are hand-labeled by
2D bounding boxes and object names (see Fig. 8(a)) which
is a typical representation provided by object detectors like
Lowe’s SIFT detector [Lowe, 2004] or the Viola-Jones detec-
tor [Viola and Jones, 2001]. Using the 3D ToF data it is even
possible to extract automatically 3D convex hulls of these ob-
jects (Fig. 8(b)). These object hulls and the spatial relations
between them given as a set of trees T can be used to deter-
mine the supporting structures of the leaf objects by assigning
them to their parent nodes. The following sections will ex-
plain how potential supporting planes are specified and how
they are adapted to real sensor data.
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Figure 9: Using the set of trees T (see Fig. 6) generated from the description of subject 4
and the convex hulls of small objects (see Fig. 8(b)) this initial set of potential planes
{Pp

pot}p=1...7 can be computed. Also the ambiguous labels of T are resolved by
distinct objects (red marked in the tree figures).

4.1 Computing Potential Planar Patches

Several papers [Stamos and Allen, 2002; Lakaemper and
Latecki, 2006; Swadzba and Wachsmuth, 2008] have shown
the suitability of planar patches as meaningful structures for
tasks like environment representation, landmarks for naviga-
tion, and room categorization. In our case, planar surfaces
are the supporting structures for the movable objects. Thus,
an intermediate level of scene representation is introduced in
the sense that an object lies on or in such a planar patch. It is
assumed that all child nodes of a parent node np in T belong
to the same patch. Therefore, we are going to compute from
the child objects potential planar patches and assign them
to the corresponding parent node in such a way, that these
patches represent a meaningful area in the room labeled with
the name provided by the parent node.

A parent node may have child nodes with distinct labels
(e.g., “koala”) and labels referring to a set of objects (e.g.,
“soft toys”). The main categories and the corresponding
objects in the set of known objects O (see Fig. 8(a)) are:
• toy: car, robot, . . . • decoration: candle, rose, . . .
• soft toy: koala, bear, . . . • games: games1, games2

Considering all tree nodes in T (of e.g., subject 4) the set O
of available objects given by an object detector can be
divided into a set of confirmed objects Ocon (e.g., “car”,
“koala”, “table”) which are part of T and a set of potential
objects Opot (e.g., “bowl”, “cup”, “cube”) which are not
part of T ). The goal is to find in Opot the correct items the
subject had in mind when uttering, e.g., “soft toys”. These
items have to lie in/on the same spatial structure (here: planar
patch) like the confirmed objects of a certain parent node.

Therefore, plane parameters (P : �n · �x − d = 0) are com-
puted for each parent node np from the set of confirmed ob-
jects Op

con ⊂ Ocon. If the children are known to be on the
parent structure, the normal vector �n is (0, 1, 0)T as the data
was calibrated beforehand such that table and ground plane
are parallel to the xz−plane. The constant d is determined
by that object of Op

con having the smallest y-value. If the
children are in the parent structure this structure is approxi-
mated by a vertical plane with its normal �n is the cross pro-
duct of �b1 = (0, 1, 0)T and �b2 obtained by finding the best
line via RANSAC through the points of Op

con projected onto
the xz−plane. The centroid of all object points determines
d. If nothing is known about the relation of the children to
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(a) extracted planar patches
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(b) correct wrong assignments of objects
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(c) adapt potential structures to real structures (d) match model on {Pi
real}i=1...m

Figure 10: The models in this figure are based on the description given by subject 4. (a) shows the automatically extracted planar patches {Pi
real}i=1...m using a region growing

technique. (b) shows the scene model (visualized by planar patches and a set of trees) after correcting wrong assignments of objects in the initial model given in Fig. 9. (c)
oversegmentation of structures (e.g., the table) are resolved using real planar patches which results into a rearranged set of trees and adapted planar patches. (d) the scene model
of Fig. 10(c) is matched on the set of real planes {Pi

real}i=1...m. This results into a subset of meaningful patches for which labels are provided by the model (e.g., “table”,
“cupboard2”, . . .). The labels refer to that 3D point cloud pigmented with the color of the corresponding label.

their parent, the arrangement of the lowest point (regarding
the y-value) per object in Op

con is considered. A plane is com-
puted through these points and tested whether it is parallel to
the xz−plane or not. Depending on the result an in or on
relation is assumed.

The computed potential plane is exploited to resolve am-
biguous child labels. Those objects of Opot which are lo-
cated on/in this plane are assigned to the corresponding par-
ent node. Finally, the region of interest (here ideally assumed
as a circle) in each node plane is determined as the smallest
circle holding all child objects. Fig. 9 shows a sets of po-
tential planar patches {Pp

pot}p=1...7 obtained from the set of
dependency trees given in Fig. 6.

4.2 Adaption of Tree Represention and Potential
Planar Patches to Real Data

The potential planar patches were derived without any know-
ledge about real planar patches in the 3D data. As can be
seen in Figure 9, there are two main errors. First, objects are
misleadingly assigned to a wrong parent while resolving am-
biguous labels by distinct objects if different structures are
aligned along an infinite plane (e.g., ngames1 and ngames2 are
assigned to ncupboard3). Secondly, real structures sometimes
consist of two or more potential patches as the verbal descrip-
tion did not provide relations between certain objects (e.g.,
left and right part of “table”). These two problems can be
addressed via considering real planar surfaces {Pi

real}i=1...m

(see Fig. 10(a)) extracted using a region growing approach
based on coplanarity and conormality measurements between
3D points [Stamos and Allen, 2002].

Considering {Pi
real}i=1...m the wrong object assignments

can be corrected. For each potential patch Pp
pot, all possi-

ble real patches have to be identified. The coplanarity mea-
surement and the Euclidean distance to the center of Pp

pot

are computed for all points of Pi
real. If there is any point

of Pi
real for which both values are below a certain threshold

then this patch is related to the current potential patch. Then,
all objects of Pp

pot are tested whether they lie in/on one of
the assigned real planes. Those not assigned to a real plane
are removed. Afterwards, if a real plane Pi

real is assigned to
different potential patches with different labels (not consid-

ering empty labels “ ”) it can be concluded that some of the
objects are mismatched. Pi

real will be put to that potential
patch holding the biggest percentage of objects lying in Pi

real

(Pp
pot) and all objects lying in Pi

real are assigned to Pp
pot.

Fig. 10(b) shows a corrected object assignment of Fig. 9. The
node ngames1 is now assigned to “cupboard2”.

After correcting mismatched objects and recomputing po-
tential patches, the real planes can be used to establish new
relations. In Figure 10(b), it can be seen that the objects on
the table are grouped into two sets one labeled as “table” and
one as “ ”. Originally, the subject did not provide a relation
which indicated to fuse these two sets. Obviously, a human
would conclude that both sets have the same supporting struc-
ture which would be the table. In our framework such infer-
ences can be done based on real planes in our scene. All po-
tential patches pointing to the same real plane will be merged
to one patch and their objects will be assigned to the new par-
ent node, if at most one label is not empty. Unless there exists
a non-empty label, it will be assigned to the new patch (see
Figure 10(c)) and the corresponding real plane (Figure 10(d)).

4.3 Results

The planar surfaces in Fig. 10 and their labels obtained
from human descriptions convincingly meet the expected
groundtruth, as meaningful structural elements were chosen
and the correct labels were provided. In contrast to “cup-
board2”, it can be seen that two planes (colored in different
greens) are annotated with “cupboard3” as this furniture con-
sists of several patches in the data. No patch is found for the
label “chair” (only the potential patch is displayed) because in
the current data the chair is hidden completely by its objects
on top. However, our algorithm would be able to find it in
subsequent data, when the objects are removed. In this case, a
reliable chair patch would be extracted and labeled correctly,
since a model representation of the static scene layout exists
(see Figure 10(c) for potential patches and their annotations).

The developed computational model (Sec. 3.2) is applied
to the verbal expression of all ten subjects participating in our
experiment. Fig. 11 shows the sets of trees generated from the
given descriptions. Six of the ten participants described the
scene quite detailed pointing to each object separately. The
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Figure 11: For all descriptions collected in our study a set of dependency trees is generated using the computational model proposed in Sec. 3.2.

remaining subjects grouped the movable objects by their cat-
egories or picked some representative examples. Two persons
provided almost no structural relations, they simply itemized
the things they saw.

Apart from the default structures given by the fact that each
(movable) object defines a patch where it lies on, Fig. 12
presents for each subject the additional structures learnt from
the verbal descriptions. Fig. 12(k) gives an overview of how
often each structure (here: “table”, “chair”, “cupboard2”,
“cupboard3”, “cupboard”, and “corner”) was generated. In
eight of the ten cases the “table”-structure and in six of ten
cases the “chair”-structure was inferred from the provided re-
lations. This fact supports the impression that these two struc-
tures had a prominent role in the given scenario. In one case
(subject 6) no structures could be learnt as only a rough scene
description was delivered with almost no relations between
objects. In three cases potential patches could not be com-
puted as the subjects provided ambiguous information which
could not be resolved. In most cases they said “There are
soft toys on/in ...” without specifying the objects more de-
tailed like “namely a koala, bear ...”. Our system needs at
least one specific object from which it can gather a position
and orientation of the potential patch. Then it can solve such
ambiguities.

5 Conclusion

In this paper, we propose a computational model for arrang-
ing objects into a set of dependency trees via spatial relations
given by human descriptions. It is assumed that objects are
arranged in a hierarchical manner. The method predicts in-
termediate structures which support other object structures as
expressed in “soft toys lie on the table”. The objects at the
leaves of the trees are assumed to be known and used to com-
pute potential planar patches for their parent nodes leading
to a model of the scene. Finally, these patches are adapted
to real planar surfaces correcting wrong object assignments
and introducing new object relations which were not given in

the verbal descriptions, explicitly. Results show that our ap-
proach provides reliable scene models which match meaning-
ful labels to planar surfaces in the real 3D world and supports
the empirical hypotheses about a hierarchical spatial model.

So far, we have used the planar model for supporting struc-
tures. The planar model holds in the case of “something lies
on a structure”, but generalizes only partly for “something
lies in a structure”. In future work our approach will be ex-
tended by using different models and degrees of shape ab-
straction to handle the in-relations comprehensively. Further,
it would be interesting to learn the degrees of freedom of the
spatial arrangements in the obtained model.
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H.-J. Böhme, T. Wilhelm, J. Key, C. Schauer, C. Schröter, H.-M.
Groß, and T. Hempel. An approach to multi-modal human-
machine interaction for intelligent service robots. In Robotics
and Autonomous Systems, 2003.

M. Brenner, N. Hawes, J. Kelleher, and J. Wyatt. Mediating between
qualitative and quantitative representations for task-orientated
human-robot interaction. In International Joint Conference on
Artificial Intelligence, 2007.
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