A Distributed Control Loop for Autonomous Recovery in a Multi-Agent Plan

Roberto Micalizio
Dipartimento di Informatica
Universita di Torino
micalizio@di.unito.it

Abstract

This paper considers the execution of a Multi-
Agent Plan in a partially observable environment,
and faces the problem of recovering from action
failures.

The paper formalizes a local plan repair strategy,
where each agent in the system is responsible for
controlling (monitoring and diagnosing) the actions
it executes, and for autonomously repairing its own
plan when an action failure is detected.

The paper describes also how to mitigate the im-
pact of an action failure on the plans of other agents
when the local recovery strategy fails.

1

Many real complex tasks find proper solutions in the adop-
tion of a Multi-Agent Plan (MAP), where a team of agents
cooperate to reach a complex goal G by performing actions
concurrently.
The execution of a MAP, however, is a critical phase as plan
threats (e.g., agent faults in [Birnbaum et al., 1990]) can dis-
rupt the nominal progress of the plan by causing the failure
of some actions. The occurrence of a plan threat does not
prevent, in general, the agents to complete their activities, but
the MAP needs to be repaired; i.e., a new planning process is
required to overcome the effects of the action failure, so that
the global goal can be achieved in some alternative ways.

Wielding action failures in a multi-agent setting is particu-
larly challenging. First of all, the failure of an action must be
detected as soon as possible. Moreover, since the agents co-
operate by exchanging services, the local failure of an agent
can easily propagate in the global MAP: the services the agent
in trouble can no longer provide are preconditions for the ac-
tions of other agents. If the local failure is not properly han-
dled, these agents may fall in a stalling condition waiting in-
definitely for services that will never be provided. Finally,
even though the impaired agent does not provide services to
other agents, it may represent a latent menace because it may
lock critical resources.

To cope with these issues, the paper proposes a distributed
approach to autonomous plan repair, where each agent per-
forms a closed control loop over the actions in its local

Introduction

1760

plan; this control loop allows the agents in the team to au-
tonomously handle plan threats by overcoming (when pos-
sible) their harmful effects. Three main tasks are included
in the control loop: the plan monitoring, the agent diagnosis,
and the plan repair (consisting of a re-planning step driven by
the agent diagnosis). However, due to the partial observabil-
ity of the system, establishing the control loop is a complex
task: the monitoring can just estimate the agent state as a set
of alternatives (i.e., a belief state), and the agent diagnosis is
typically ambiguous (i.e., a set of alternative explanations);
as a consequence the re-planning step must be able to deal
with uncertainty.

The paper is organized as follows: in section 2 basic no-
tions on multi-agent plans are introduced; in sections 3 and 4
two steps of the control loop, the monitoring and the diagno-
sis respectively, are formalized; in section 5 is presented the
plan repair methodology, which mainly focuses on what goals
must be reached to repair a local plan. The effectiveness of
the repair methodology is discussed in section 6 where some
experimental results are presented. Finally, in section 7 the
proposed approach is compared with other relevant works in
literature.

2 Background

Global Plan. The paper considers MAPs where the agents of
a team 7 actively cooperate for reaching a complex goal G.
For the sake of discussion, the model of a MAP is a simpli-
fied version of the formalism presented in [Cox et al., 2005].
In particular, the MAP P is the tuple (A, E, CL, RE), where:

- A is the set of the action instances the agents have to ex-
ecute. Two pseudo-actions, ag and a., belong to A; ag (the
starting action) has no preconditions and its effects specify
the propositions that are initially true; a, (the ending action)
has no effects and its preconditions specify the propositions
which must hold in the final state i.e., the goal G of the MAP.
Except ag and a., each action instance a € A is assigned to
a specific agenti € 7.

- I is a set of precedence links between actions: a prece-
dence link a < @’ in E indicates that the execution of a must
precede the execution of a’;

- CL is a set of causal links of the form ¢l : a -5 a’; the
link ¢l states that the action a provides the action a’ with the
service q (q is an atom occurring in the preconditions of a’);

- RE is a set of precedence links ruling the access to the re-

sources. In fact, according to the concurrency requirement in-
troduced in [Roos and Witteveen, 2007], two actions a and a’,
assigned to different agents, cannot be executed at the same
time instant if they require the same resource res, therefore,
the planning process puts in the plan a precedence link be-
tween them, either a <,.s @’ or @’ <5 a; these precedence
links are labeled with the identifier of the specific resource
the precedence link refers to, and are collected in the set RE.
Local Plans. The MAP P is decomposed into as many local
plans as the agents in the team, and each local plan P is as-
signed to an agent i, and reaches a specific sub-goal G*.

Formally, the local plan for agent i is the tuple ‘ 4
P=(A" £, CL" T}, T, RE},,RE!,,) where A', E'
and C'L* have the same meaning of the sets A, F and CL,
respectively, restricted to actions assigned to agent 5. A’ in-
cludes also two special actions a, and a’_ which specify, re-
spectively, the initial and final conditions for the sub-plan P?.
Tiin (T%,.) is a set of incoming (outgoing) causal links of the

form a 5 a’ where o’ (a) belongs to A’ and a (a') is assigned
to another agent j in the team. Similarly, RE!, (RE?) is
a set of incoming (outgoing) precedence links of the form
a <res a’ wWhere a’ (a) belongs to A* and a (a’) is assigned to
another agent j in the team.

We assume that each local plan P is totally ordered, that
is P' is the ordered sequence of actions [a), a}, . .., a’,].
Distributed plan execution. An agent executes its next ac-
tion as soon as the action preconditions have been satisfied
(the notions of preconditions and effects of an action will be
formalized in the following section); however an agent can
execute no more than one action in a given time instant. In
particular, the time is assumed to be a discrete sequence of
instants, and actions are atomic.
In the following the notation a(¢) will denote that the I-th
action in the local plan P’ is executed by agent 7 at time ¢.
Coordination during plan execution. Since agents execute
actions concurrently, they need to coordinate their activities
in order to avoid the violation of the constraints defined dur-
ing the planning phase. Effective coordination among agents
is obtained by exploiting the causal and precedence links in
the global MAP.
As pointed out in [Decker and Li, 2000], coordination be-

tween agents ¢ and j is required when ¢ provides j with a

service g; this is modeled by a causal link ¢ : aﬁl N ai in the

MAP P. (As an effect of the MAP decomposition, cl belongs
both to T7%,,, and to 77, .) Since an agent can observe (at most)
the direct effects of the actions it executes, only agent ¢ has
the chance of observing the achievement (or the absence) of
q; thereby, the agent < must notify agent j about the outcome
of action aj,.

Similarly, the consistent access to the resources is a form of
coordination which involves precedence links. For example,
the precedence link pl : aﬁl ~res afc means that agent ¢ will
release resource res to agent j just after the execution of ac-
tion a}; resource res will be used by agent j to execute action

aj.. Of course, pl belongs both to RE? ,, and to REY, .

Since the system is distributed, an agent does not have a
global view of the status of all system resources, but it knows
just the status of the resources it holds. After having released

1761

the resource res, the agent ¢ will not have access to the actual
status of res. In the following we will denote as AvRes(i, t)
(available resources) the subset of resources assigned to agent
1 at time {¢; i.e., only agent ¢ observes and knows the actual
status of those resources.

3 Monitoring a MAP

In this section we formalize the first step of the local control
loop: the plan monitoring activity. Before that, however, we
first introduce some fundamental notions.

Agent status. The status of agent ¢ is modeled by a set of
status variables VAR', partitioned into three subsets END"*,
ENV*® and HLT*. END® and ENV" denote the set of en-
dogenous (e.g., the agent’s position) and environment (e.g.,
the resources state) status variables, respectively. Because
of the partitioning, each agent ¢ maintains a private copy
of the resource status variables; therefore for each resource
resy € RES (k : 1.|RES|) the private variable resy; is

included in the set ENV". The precedence links in RE guar-
antee that, at each time ¢, a resource resy is available just
for an agent ¢ (i.e., resy belongs to AvRes(i,t)); therefore
for any other agent j € 7 \ {i} the status of the resy, is un-
known, and we do not need to check the consistency among
the private copies of the resource variables.

Since we are interested in monitoring the plan execution
even when something goes wrong, we introduce a further set
HLT" of variables for modeling the health status of an agent.
For each agent functionality f, a variable vy € HLT" rep-
resents the health status of f, the domain of variable vy is
the set {ok, abnq, ..., abn,} where ok denotes the nominal
mode, while abny, ..., abn, denote anomalous or degraded
modes. An action failure can be therefore explained in terms
of faults in a subset of functionalities of a specific agent.
System observability. We assume that after the execution
of an action a}(t) the agent i receives a set obs'(t + 1) of
observations, that conveys information about a subset of vari-
ables in VAR". Given the partial observability, an agent can
directly observe just the status of its available resources, and
the value of a subset of variables in END", whereas the vari-
ables in HLT"® are not directly observable and their actual
value can be just inferred. As a consequence, at each time ¢
the agent ¢ can just estimate a set of alternative states which
are consistent with the received observations; in literature this
set is known as belief state, and in the following the notation
Bi(t) will refer to the belief of agent 4 inferred at time ¢.
Action models. In order to monitor the execution of action
al(t), agent i needs a model for estimating all the possible,
nominal as well as anomalous, evolutions of the action it-
self. An action model is the tuple (var(a}(t)), PRE(a}(t)),
EFF(aj(t)), A(aj(t))), where: var(aj(t)) C VAR is the
subset of active status variables over which the precondi-
tions PRE(a}(t)) and the action effects EFF (al(t)) are de-
fined; finally, A(a{(t)) is a transition relation defined over
the agent status variables from time ¢ (when the action
starts) to time ¢+1 (when the action ends). Given action
al, healthVar(al)=HLT'Nvar(a}) denotes the set of variables
representing the health status of the functionalities which di-

rectly affect the outcome of action aj.

The healthy formula healthy(a}) of action a} is computed by
restricting each variable v € healthVar(a}) to the nominal
behavioral mode ok and represents the nominal health status
required to agent ¢ for successfully completing the action.

Definition 1 The set of the nominal effects of action af is
nomEff(ai)={q € EFF(a}) | PRE(a})U healthy(a}) \- q}.

On the contrary, when at least one variable v € healthVar(a})
assumes an anomalous mode (i.e., a functionality is not in the
nominal mode), the behavior of the action may be non deter-
ministic and some of the expected effects may be missing.

In the following, A will denote the set of action models an
agent exploits for monitoring the progress of its own plan.
The estimation of the agent status. The estimation process
aims at predicting the status of agent ¢ at time ¢ + 1 after
the execution of an action af(t); however, because of the non
determinism in the action model and the partial system ob-
servability, the estimation process can in general infer just a
set of alternative agent states (i.e.; a belief state) rather than
the actual agent state. The estimation can be formalized in
terms of the Relational Algebra operators as follows.

Definition 2 Let Bi(t) be the belief state of agent i, let
A(al(t)) the model of the action executed at time t, the agent
belief state at time t + 1 results from: Bi(t + 1) =
PROJECTIONy 41 SELECTION i (41 (B7(t) JOIN A(af(t)))

The join operation B*(t) jo1N A(aj(t)) is the predictive step
by means of which all the possible agent states at time t+1 are
estimated. The selection SELECTION i (441), refines the pre-
dictions by pruning off all those estimates which are incon-
sistent with the agent observations. Finally, the belief state
Bi(t + 1) is obtained by projecting the resulting estimates
over the status variables of agent ¢ at time ¢ + 1.

Action outcome. The outcome of an action is either suc-
ceeded or failed; given the belief B*(t + 1), the agent i deter-
mines the successful completion of action a; (¢) as follows:

Definition 3 The outcome of action ai(t), is succeeded iff
Vg € nomEff (a}(t)), Vs € B'(t+ 1), s = q.

In order to be conservative, we consider action aj (t) success-
fully completed only when all the atoms ¢ in nomEff (a}(t))
are satisfied in every state s in Bi(t + 1); i.e., when all the
nominal effects of a} () hold in every possible state estimated
after the execution of the action. When we cannot assert that
action al(t) is succeeded, we assume that the action is failed.

4 Agent Diagnosis

In this section we formalize the step of agent diagnosis,
which explain the action failure in terms of faults in the agent
functionalities. As a further refinement of the failure analysis,
we show also how to compute the set of missing goals, which
in principle steers the recovery process.

Agent diagnosis. The diagnostic process is activated when-
ever the agent i detects the failure of an action aj(t). The
purpose of the diagnostic process is to single out which fault
(or combination of faults) is a possible cause (i.e., an expla-
nation) for the detected failure. An explanation is therefore

1762

expressed in terms of the status variables in healthVar(a}), as
these variables model the health status of the functionalities
required for the successful execution of action aj.

Intuitively, given the agent belief state B (¢ + 1), the agent
diagnosis D' is inferred by projecting B%(t + 1) over the sta-
tus variables in healthVar(a}). However, since Bi(t + 1) is
in general ambiguous, the agent diagnosis D? results to be a
set of alternative explanations: each explanation exp € D’
is a complete assignment of values to the status variables in
healthVar(a}).

Missing Goals. As noted earlier, the agents in the team
T cooperate one another by exchanging services; that is, there
exist causal dependencies between actions of different agents.
As a consequence, the failure of action af prevents the execu-
tion of the actions in the plan segment [a! 15 a’,] and, since
some services will never be provided, it can indirectly impact
the local plans of the other teammates.

The set of the services that agent ¢ can no longer provide due
to the failure is denoted as the set of missing goals; singling
out these services is important as, in principle, it would be
sufficient to find an alternative way to provide them in order
to reach the global goal G despite the failure of action a}(t).

Definition 4 Given the failure of action af, let
[af_H, ...,a’] be the plan segment the agent i is un-
able to complete, the set of missing goals is: MG(i)={
service q| ‘ .
Vay, € [aj, ..., a5.], ¢ € nomEff (ay,), and
q € PRE(al,) or
3 a causal link cl € C'L such that cl : aj, 4 al;i#j)}

Namely, the service ¢ is a missing goal when ¢ is a nominal
effect no longer provided by an action in the plan segment
[al,...,a’], and when either ¢ is an atom appearing in the
sub-goal G (i.e., ¢ is a precondition of the special action a’_)
or g is a service agent ¢ should provide to another agent j.

5 Plan Repair: a local strategy

In this section we discuss a methodology for repairing the lo-
cal plan P?, interrupted after the failure of action a! has been
detected. Essentially, this repairing process consists in a re-
planning step intended to overcome, if possible, the harmful
effects of the failure. Due to lack of space the planner acti-
vated by agent 7 is not described; it is sufficient to say that
this planner is based on a forward-chaining strategy, and it is
similar to the conformant planners described in [Cimatti and
Roveri, 2000; Micalizio and Torasso, 2007] (in the following
we will point out why this planner must be conformant).

Instead of describing the planner, in this section we focus
on which goals should be reached for the recovering purpose.
As noted above, the set of missing goals can be used to this
end; unfortunately, when the recovery is driven by the miss-
ing goals it requires global changes; in fact, the missing goals
are long term objectives, that can be reached by acquiring new
resources; the acquisition of a resource, however, imposes the
coordination with other teammates, and hence new causal and
precedence links are to be introduced in the global MAP P;
it follows that a number of other agents in the team have to
change their local plans.

The local strategy we propose, instead, try to recover from
the failure of a! just by changing the local plan P, without
any direct impact on the plans of other teammates. The idea
of a local strategy stems from the observation that in many
cases an agent is still able to do something useful even if its
health status is not completely nominal. By exploiting this
possibility, we first formalize a local replanning strategy in-
tended to overcome the causes of an action failure; however,
when such a replanning step fails, we show also how the agent
in trouble can reduce the impact of the failure in the MAP P
by moving into a safe status.

Repairing the interrupted local plan. This step is based on
the observation that the plan segment [aj_, ,, .. ., a%] could be

carried out if the root causes of the failure of action a] were
removed.

Of course these root causes have been singled out by the diag-
nostic inferences: the agent diagnosis D* explains the failure
of a} as a combination of anomalous conditions in the func-
tionalities of agent ¢; therefore, to overcome the causes of this
failure the agent 7 has to restore a healthy condition in those
functionalities. To this end the agent i can exploit a set A”
of repairing actions, each action ar € A" restore the healthy
condition in a specific agent functionality; however, it is pos-
sible that for some functionalities no repairing action exists.
For example, if our agents were robots, a low charge in the
battery could be fixed by means of a recharge repairing
action, whereas a fault in the mobility functionality would
require the human intervention and it could not be fixed au-
tonomously by the robots.

Therefore, relying on the agent diagnosis D?, the agent i as-
sesses whether one (or a set of) repair action(s) exists. If re-
cover actions do not exist, agent ¢ gives up the synthesis of
a recovery plan and tries to reach a safe status (see later). If
recovery actions exist, the agent ¢ tries to reach the new high-
level goal /C consisting in: 1) restoring the healthy conditions
in its functionalities by executing an appropriate set of repair-
ing actions, and 2) restarting the execution of the plan from
the failed action a;. The repairing plan Pr® is a plan which
meets these two goals, and it can be found by resolving the
following planning problem:

Definition 5 The repairing plan Pri=lar}, ... ar’] is a so-
lution of the plan problem (I, F, A); where:

- 7 (initial state) corresponds to the agent belief state:
EFF(ary) = B'(t + 1) (i.e., the belief state inferred after
the execution of action a}(t)).

- F (final state) is the goal K defined as
PRE(ari)) = {Vv € healthVar(al), v = ok} A PRE(a})

- A= AUAR is the set of action models which can be used
during the planning process.

The repairing plan Pr?, however, must satisfy two further de-
manding requirements:

Requirement 1 Since the repairing plan Pr' can impose lo-
cal changes only, no new resources can be acquired: the ac-
tions in Pr® can just exploit the resources in AvRes(i,t),
already acquired by agent i at the time of the failure.

Requirement 2 Since the belief state B(t + 1) is potentially
ambiguous (the actual agent health status is not precisely

1763

known) the repairing plan Pr' must be conformant, namely,
it must be executable no matter the actual health status of
agent 1.

An important consequence of the conformant requirement is
the following property.

Property 1 For each action ar,iC € Pr' it must hold
healthy(ari) U Dt/ L

Property 1 states that all the actions in the repairing plan
must be executable despite the current status of agent 7 is
not healthy; therefore, when no action is executable given the
agent diagnosis D?, the repairing plan does not exist.
Assuming that the plan Pr exists, the agent i yields its new
local plan P*! = [ar{, ... ,ari]o [a},..., a’]; where o de-
notes the concatenation between two plans (i.e., the second
plan can be executed just after the last action of the first plan
has been executed).

Property 2 The recovery plan P*' is feasible and exe-
cutable.

Due to space reason the proof is omitted, intuitively the fea-
sibility of the recovery plan P** stems by two characteristics:
1) every plan segment is feasible on its own as it has been pro-
duced by a specific planning step, and 2) the preconditions of
the action ar’_ of the first plan matches with the effects of the
action a; of the second one. A more important property is the
following one:

Property 3 The recovery plan P** meets all the services in
MG(3).

Property 3 guarantees that, by executing P*' in lieu of
[al,...,a’], agent i can recover from the failure of action
a! and achieve its sub-goal G* despite the failure.

Reaching the Safe Status. The repairing plan Pr?, however,
may not exist; in fact the faults occurred to the functionalities
may be not repairable, or a conformant solution which guar-
antees to be executable given the ambiguous agent diagnosis
may not exist. In any case, when the plan recovery process
fails, the impaired agent can be seen as a latent menace for
the other team members (e.g., when the agent locks indefi-
nitely critical resources). We complement the first step of the
local strategy by means of a further step intended to lead the
agent ¢ into a safe status St: i.e., a condition where all the
resources used by ¢ at time ¢ (the time of the failure of action
al(t)) have been released. Also this step can be modeled as a
planning problem as follows:

Definition 6 The plan-to-safe-status Ps‘=[as), ... as] is
a solution of the plan problem (I, F, A); where:

- 7 (initial state) corresponds to the agent belief state:
EFF(ash) = Bi(t + 1) (i.e., the belief state inferred after
the execution of action aj(t)).

- F (final state) is the safe status S°, defined as

PRE(asl,)) = Vres; € AvRes(i,t), resy; = free.

- A is the set of action models which can be used during
the planning process.

Of course, also the plan-to-safe-status Ps® must satisfy the
requirements 1 and 2; thus property 1 can be extended to the
actions in Ps’ too. Repairing actions can be used also dur-
ing this planning step, in some cases in fact it is required to

LocalControLoop(P*, B(0)){ ¢=0;
while there are actions in P* to be executed {
a;=nextAction(P");
if PRE(a}) are satisfied in B*(t) {
(EXECUTE a});
gather observations obs(t + 1);
B*(t + 1) = Monitoring(5*(t), A(a}))
if outcome(a}, B'(t + 1)) equals failed {
D' = Infer-Diagnosis(B(t + 1), healthVar(al))
Pr = Conformant-Planner(B(t + 1), K, A
if Pr®isnotempty — P'=Pr o [aj, .., al]
else { Ps' = Conformant-Planner(3'(t), S, A)
if Ps’isnotempty — P'=Ps’
else invoke a global recovery strategy } } }
t=t+1; } }
Figure 1: The control loop algorithm.

restore the healthy status in some functionalities to release a
resource.

When the plan-to-safe-status Ps' exists, it becomes the new
local plan assigned to agent 4; that is P** = Ps’, and all the
actions in [al,...,a’_] are aborted. Therefore, even though
the agent 7 is unable to reach its goal G, it moves into safe
status in order to do not obstruct the other team members in
their activities.

When the recovery strategy fails. Both steps of the recov-
ery strategy described above require a local re-planning step,
which fail when the sought plan does not exist. In this case,
we adopt a conservative policy and we impose that the im-
paired agent gives up the execution of its local plan. Per-
forming further actions, in fact, may lead the agent in danger-
ous conditions; for example, the agent could lock indefinitely
some resources preventing others to access them.

The failure of the local recovery strategy does not imply, in

general, that the action failure cannot be recovered from, but
different, global strategies should be activated. These strate-
gies (out the scope of this paper), are driven by the set of
missing goals, and may require the cooperation of a subset of
agents, or the activation of a global re-planning step.
The algorithm. The high-level algorithm of the control loop
performed by each agent i € 7 is showed in Figure 1. The
algorithm consists in a while cycle, where at each iteration
the agent i singles out the next action a; to be executed. The
action a} is executed iff its preconditions are satisfied in the
current belief state B(t). After the execution, the agent i
gathers the available observations and detects the outcome of
af (see Definition 3). In case the action outcome is failed,
first the diagnostic inference are activated, then the confor-
mant planner is invoked to find a repairing plan (Definition
5), or alternatively a plan-to-safe-status (Definition 6). When
both the planning steps fail, the agent ¢ sends a message to all
the other agents about its failure and interrupts the execution
of its local plan P?.

6 Experimental results.

The proposed control loop has been implemented in Java
JDK 1.6 by exploiting the symbolic formalism of the Or-
dered Binary Decision Diagrams (OBDDs) to encode the

1764

agents’ belief states, and the non deterministic models of
the actions. Monitoring, diagnosis and planning are there-
fore implemented in terms of standard OBDDs operators
(see [Micalizio and Torasso, 2007; Cimatti and Roveri, 2000;
Jensen and Veloso, 2000]). Agents are threads running on the
same PC (Intel Core 2, 2.16GHz, RAM 2GB, WindowsXP).

In our experiments we have (software) simulated a service-
robot scenario where a team of robotic agents offer a “mail
delivery service” in an office-like environment. Resources
are parcels, clerks’ desks, doors, and one or more reposito-
ries. Resources are constrained: desks, doors and reposito-
ries can be accessed by only one agent per time; moreover, at
most one parcel can be put on a desk. The environment we
have simulated is fairly large involving 30 critical resources.
In such an environment we have considered the execution of
15 MAPs, involving 6 agents, each of which executes 10 ac-
tions and has to reach 2 sub-goals (i.e., the complex goal G
consists of 12 sub-goals). The execution of each MAP has
been perturbed by the injection of a fault in the functionali-
ties of one agent.

In order to prove the effectiveness of the local recovery
strategy, we have compared the execution of the 15 MAPs
in four scenarios: no-repair, the agent in trouble does not
handle the failure (the agent just stops the execution of its lo-
cal plan); safe-status, whenever an action failure occurs, the
agent in trouble moves into a safe status; repair, the agent
tries to repair its own plan, when the repair process fails the
agent stops the plan execution; repair+safe-status, a combi-
nation of the previous scenarios: first the agent tries to repair
its plan, in case this step fails the agent reaches a safe status.

The collected results are reported in Table 1. From these
results it emerges that the local control loop is performed
very efficiently being in the order of hundreds of millisec-
onds even when the replanning step is performed. As ex-
pected, the (average) computational time for monitoring and
diagnosing a local plan is independent from the adopted re-
pair policy. Whereas the computational time for plan repair is
a little more expensive in the repair+safestatus scenario as, in
some cases, the re-planner is invoked twice. More important,
the effectiveness of the local control loop is demonstrated by
the number of performed actions and by the percentage of
reached sub-goals of the whole MAP. In no-repair scenario
the impaired agent is two times harmful for the whole system:
one because it does not provide some services to other team-
mates, and one because it may lock some system resources;
as a consequence, just one-third of the sub-goals is reached.
In the safe-status scenario it is evident how an agent can re-
duce the impact of a local failure simply by releasing all the
resources it holds; while in the repair scenario it emerges the
effectiveness of a repair strategy. Of course, the best results
are obtained in the repair+safe-status scenario, where the two
methodologies are combined. Note that, even in this last sce-
nario one-third of sub-goals are not reachable, this is due to
the fact that in some cases the failures are not repairable.

7 Related works

In this section, we compare our methodology first w.r.t.
model-based approaches to the plan execution diagnosis, then
w.r.t. works devoted to the plan repair task.

no-repair safe-status repair repair+
safe-status

CPU time [msec] 193.90 21545 201.27 210.45

mon.+diag. (avg)

CPU time [msec] 0 407.64 424.82 504.46

re-planning (avg)

MAP’s executed 35.42 43.23 50.90 55.25

actions (avg)

% MAP’s reached 32% 47% 68% T3%
sub-goals

Table 1: Experimental results

In [Birnbaum ez al., 1990] a model-based approach to plan
diagnosis is presented, in this approach the authors relate the
health status of a planning agent to the outcome of the plan-
ning activity. Also in this paper we relate the outcome of
the actions executed by plan executors to the health status of
these executors, however, in this work we will consider multi-
agent plans whereas Brinbaum et al. considered just a single
planning agent.

The multi-agent setting is discussed in [Roos and Wit-
teveen, 20071, where the authors introduce the notion of plan
diagnosis as the subset of actions whose failure is consistent
with the anomalous observed behavior of the system. In con-
trast to our work, this approach does not relate the failure of
an action to the health status of the agents; it focus just on the
detection of abnormal actions.

In [Kalech and Kaminka, 2007] the authors introduce the
notion of social diagnosis to find the cause of coordination
failures. In their approach, however, they do not explicitly
consider plans, rather they model a hierarchy of behaviors:
each agent selects independently from others the more appro-
priate behavior given its own beliefs.

The plan repair task has been addressed by a number
of works (see e.g., [van der Krogt and de Weerdt, 2005;
Decker and Li, 2000; Horling and Benyo, 2001], which con-
sider both self-interested and collaborative agents; however
these works are not directly applicable in our framework.
These approaches in fact are mainly focused on repairing co-
ordination flaws occurring during plan execution, thus they
involve a re-scheduling task rather than performing a re-
planning step (see the GPGP solution in [Decker and Li,
2000]). In [Horling and Benyo, 2001] a solution for reor-
ganizing the tasks among the (collaborative) agents is pre-
sented: this approach is driven by the results of a diagnostic
engine which explains detected plan failures. In this case,
however, the explanations are derived from a causal model
where anomalous events (e.g., resource unavailable) are or-
ganized in a fault tree, and the reaction to plan failure is a
proper precompiled repairing solution.

8 Conclusions.

In this paper we have formalized a closed loop of control over
the execution of a multi-agent plan.

The paper contributes to show the importance of a repair
strategy driven by a failure analysis which highlight the root
causes of an action failure. Depending on the (possibly mul-
tiple) faults and on the activities of the agent in trouble, dif-

1765

ferent course of actions are synthesized either for recovering
the action failure (if the local repairing plan exists) or to bring
the agent in a safe status and limit the impact of the failure.

The preliminary experimental results show that the pro-
posed methodology is adequate to promptly react to an action
failure and to actually mitigate the harmful effects of the fail-
ure. Also the computational cost of the approach is affordable
since the search for a recovery plan is strongly constrained by
the agent diagnosis.

As future work, the proposed framework can be extended
to deal with more sophisticated notions multi-agent plan.
First of all, concurrency constraints can be introduced to
model joint actions (see e.g., [Micalizio and Torasso, 2008]).
A more interesting extension concerns the temporal dimen-
sion. Dealing with temporal plans has a strong impact on the
conformant planner. In fact the planner has to find a repair-
ing plan that meets the set of missing goals, and that can be
executed without violating any temporal constraint.

References

[Birnbaum et al., 1990] L. Birnbaum, G. Collins, M. Freed,
and B. Krulwich. Model-based diagnosis of planning fail-
ures. In Proc. AAAI9O, pages 318-323, 1990.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Con-
formant planning via symbolic model checking. JAIR,
13:305-338, 2000.

[Cox et al., 2005] J. S. Cox, E. H. Durfee, and T. Bartold. A
distributed framework for solving the multiagent plan co-
ordination problem. In Proc. AAMASOS, pages 821-827,
2005.

[Decker and Li, 2000] K. Decker and J. Li. Coordinating
mutually exclusive resources using GPGP. Journal of AA-
MAS, 3(2):113-157, 2000.

[Horling and Benyo, 2001] B. Horling and V. Benyo,
B. Lesser. Using self-diagnosis to adapt organizational
structures. In Proc. ICAA’01, pages 529-536, 2001.

[Jensen and Veloso, 2000] R. M. Jensen and M. M. Veloso.
Obdd-based universal planning for synchronized agents in
non-deterministic domains. JAIR, 13:189-226, 2000.

[Kalech and Kaminka, 2007] M. Kalech and G. A. Kaminka.
On the design of coordination diagnosis algorithms for
teams of situated agents. Al, 171:491-513, 2007.

[Micalizio and Torasso, 2007] R. Micalizio and P. Torasso.
Recovery from plan failures in partially observable envi-
ronments. In Research and Development in Intelligent Sys-
tems XXVII, pages 321-334, 2007.

[Micalizio and Torasso, 2008] R. Micalizio and P. Torasso.
Monitoring the execution of a multi-agent plan: Dealing
with partial observability. In Proc. of ECAI’08, pages 408—
412, 2008.

[Roos and Witteveen, 2007] N. Roos and C. Witteveen.
Models and methods for plan diagnosis. Journal of AA-
MAS, 16:30-52, 2007.

[van der Krogt and de Weerdt, 2005] R. van der Krogt and

de Weerdt. Plan repair as an extension of planning. In
Proc. of ICAPS 05, pages 284-259, 2005.

