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Abstract

This paper describes how to learn Hierarchical Task
Networks (HTNs) in nondeterministic planning do-
mains, where actions may have multiple possi-
ble outcomes. We discuss several desired prop-
erties that guarantee that the resulting HTNs will
correctly handle the nondeterminism in the do-
main. We developed a new learning algorithm,
called HTN-MAKERND , that exploits these prop-
erties. We implemented HTN-MAKERND in the
recently-proposed HTN-MAKER system, a goal-
regression based HTN learning approach. In our
theoretical study, we show that HTN-MAKERND

soundly produces HTN planning knowledge in
low-order polynomial times, despite the nondeter-
minism. In our experiments with two nondetermin-
istic planning domains, ND-SHOP2, a well-known
HTN planning algorithm for nondeterministic do-
mains, significantly outperformed (in some cases,
by about 3 orders of magnitude) the well-known
planner MBP using the learned HTNs.

1 Introduction

The problem of planning in nondeterministic domains, where
one or more actions may have multiple possible outcomes,
is of recurring and increasing interest among researchers.
For example, a node in a computer network may attempt
to pass a message to another node, but this message may
or may not arrive due to connectivity issues. Despite re-
cent advances [Jensen et al., 2001; Cimatti et al., 2003;
Pistore and Traverso, 2001], nondeterministic planning prob-
lems, are still very hard to solve in practice.

Some researchers have proposed to use domain knowl-
edge encoded as HTNs (or similar representations) for non-
deterministic domains [Karlsson, 2001; Kuter and Nau, 2004;
Kuter et al., 2008]. It has been demonstrated that this ap-
proach achieves a significant reduction in the search spaces
of a planner that can exploit such knowledge compared to a
planner that does not. However, it is usually difficult to com-
pile expert-level HTN knowledge that leads to superior per-
formance in nondeterministic planning domains; the HTNs
must specify which actions to take in a potentially exponen-
tial number of circumstances in order to generate a solution

policy for a nondeterministic planning problem. Although in
some toy domains this is feasible, in many cases it is not.

Recent advances in deterministic planning domains have
shown that HTN-based planning knowledge can be effec-
tively learned in an automated fashion and used in planners to
generate solution plans efficiently. Examples of such HTN-
learning systems include [Langley and Choi, 2006; Nejati et
al., 2006; Hogg et al., 2008]. However, research for learn-
ing planning knowledge in nondeterministic domains thusfar
has only concentrated on action models [Pasula et al., 2004;
Jensen and Veloso, 2007], and no HTN-learning algorithms
have been developed for such planning domains.

This paper focuses on learning HTNs in nondeterministic
domains. We found that if HTNs have certain properties, then
they will be able to reason about the nondeterministic effects
of the actions; otherwise, the planning knowledge may not
be useful to generate solutions for nondeterministic planning
problems. These properties describe (1) a particular kind of
recursive structure that is guaranteed to generate a plan for
every nondetermistic outcome of an action, and (2) a way to
compute the applicability conditions for those structures.

We describe how to learn HTNs that commit to the above
properties. We implemented our ideas in the recently-
proposed HTN-MAKER learning system [Hogg et al., 2008],
which uses goal-regression mechanisms to learn HTNs orig-
inally in deterministic domains. We present the outcome of
this work, a learning system that we call HTN-MAKERND .

In our theoretical study, we prove the soundness and com-
pleteness of HTN-MAKERND . We also show that HTN-
MAKERND generates HTN knowledge in low-order polyno-
mial times with respect to the number of input plan traces
and the maximum length of those traces. Our experimental
evaluation in two well-known nondeterministic planning do-
mains confirms the theoretical results. We compared the ND-
SHOP2 algorithm [Kuter and Nau, 2004] using our learned
HTNs with the well-known planning algorithm MBP [Cimatti
et al., 2003]. The experiments showed that the former was
able to outperform the latter significantly (in some cases, by
about 3 orders of magnitude) with the learned HTNs.

2 Preliminaries

Nondeterministic Planning Domains. Intuitively, a nonde-
terministic planning domain is one in which each action may
have more than one possible outcome. Formally, it is a triple
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D = (S, A, γ), where S is a finite set of states, A is a fi-
nite set of actions, and γ : S ×A → 2S is the state-transition
function. An action a is applicable in s if γ(s, a) is nonempty.

A policy π is a function from a set Sπ ⊆ S into A, such
that for each s ∈ Sπ , the action π(s) is applicable to s.
The execution structure of π is a digraph Σπ representing all
possible executions of π. Formally, Σπ = (Vπ, Eπ), where
Vπ = Sπ ∪

⋃
{γ(s, π(s)) | s ∈ Sπ} and Eπ = {(s, s′) | s ∈

Sπ, s′ ∈ γ(s, π(s))}. That is, the vertices of the execution
structure are the states for which an action is defined and any
final states that can be reached by following such an action,
and there is an edge from each state for which an action is de-
fined to each state that can be reached by applying that action
to that state. If there is a path in Σπ from s to s′ then s is a
π-ancestor of s′ and s′ is a π-descendant of s. If the path has
length 1, s is a π-parent of s′ and s′ is a π-child of s. A node
is a leaf if it has no π-children.

A nondeterministic planning problem is a triple P =
(D,S0, G), where D = (S, A, γ) is a nondeterministic plan-
ning domain, S0 ⊆ S is a set of initial states, and G ⊆ S is
a set of goal states. P may have several kinds of solutions
as follows [Cimatti et al., 2003]. A weak solution for P is
a policy π such that every state s ∈ S0 is a π-ancestor of at
least one goal state. A strong-cyclic solution is a policy π
such that every state s in Σπ is a π-ancestor of at least one
goal state and the leaf nodes in Σπ are goal states. Note that a
strong-cyclic solution is allowed, but not required, to contain
cycles. A strong solution is a policy π such that π is acyclic,
every state s in Σπ is a π-ancestor of at least one goal state,
and the leaf nodes in Σπ are goal states.
Hierarchical Task Networks (HTNs). We use the usual def-
initions for HTNs and HTN planning as in Chapter 11 of
[Ghallab et al., 2004]. A task is a symbolic representation of
an activity in the world. We formalize a task as an expression
of the form (t arg1 . . . argq) where t is a symbol denoting
the name of the activity and each argi is either a variable or a
constant symbol. A task can be either primitive or nonprim-
itive. A primitive task corresponds to the head of a planning
operator and denotes an action that can be directly executed in
the world. A nonprimitive task cannot be directly executed;
instead, it needs to be decomposed into simpler tasks until
primitive ones are reached.

In [Hogg et al., 2008] an annotated task was defined as
a triple (Task,Pre,Eff) where Task is a task, Pre are some
conditions that hold in any state from which the task can be
accomplished, and Eff are the positive effects that will be true
in any state where the task has been accomplished. We gen-
eralize these preconditions and effects as a triple (t, Si, Sf )
where t is a task symbol, Si ⊆ S is a set of states from which
the task may be accomplished, and Sf ⊆ S is a set of states in
which the task has been accomplished. Given a set G ⊆ S of
states in which some goals are true, we define the equivalent
annotated task to those goals as one in which (t,S, G) for
some task symbol t. That is, the annotated task equivalent to
some set of goals can be attempted from any state and is com-
pleted when it reaches any state in which those goals hold.
The equivalent HTN problem to a nondeterministic planning
problem P has the same initial state as P and a single initial
task that is the equivalent annotated task to the goals of P . An

HTN method is a description of how to decompose nonprim-
itive tasks into simpler ones. Formally, a method is a partial
function m : S ×T → H, where T is a finite set of tasks and
H is a set of sequences of tasks. Given a state s and a task t,
if m(s, t) is defined then we say that m is applicable in s to
the task t. The result of applying m in s to t is the sequence
of the subtasks specified by m(s, t).

3 Learning HTNs for Nondeterministic

Domains

Existing well-known algorithms for learning HTN methods
in deterministic domains, such as X-Learn [Reddy and Tade-
palli, 1997], Icarus [Nejati et al., 2006], and HTN-MAKER
[Hogg et al., 2008], have two mechanisms in common:
Bottom-up Learning. Learning proceeds in a bottom-up
fashion by grouping a sequence of actions and previously
learned structures a1 . . . an in an input trace together as sub-
tasks of newly constructed methods.
Precondition Identification. Applicability conditions for
an HTN method are computed. For example, X-learn uses
explanation-based learning techniques to prune conditions
not needed in the state S preceeding the first action a1 in the
trace of actions a1 . . . an. Similarly, HTN-MAKER uses the
concept of goal regression from explanation-based learning
to collect all necessary preconditions in the trace that would
allow execution of the actions a1 . . . an.

We now illustrate how these mechanisms are used to learn
HTNs in the deterministic case, where they fail in the non-
deterministic case, and how to extend these mechanisms to
correctly learn HTNs in that case. We then exemplify these
extended mechanims with the HTN-MAKER algorithm and
call the resulting HTN learner HTN-MAKERND .

3.1 Learning HTN Knowledge in Deterministic
Domains: An Illustration

Before describing the extensions, we discuss an example in
the traditional 4-operator version of the Blocks World do-
main. Here, blocks sit on a table and may be picked up from
the table, put down onto the table, stacked on top of another
block, or unstacked from above another block by a gripper.

Consider a simple input trace, which we will call simple
stack, consisting of the following sequence of deterministic
actions: (PICKUP a) (STACK a b). Assume that originally
block a was clear and on the table, block b was clear, and the
gripper was empty. Then after executing these actions block
a will be on top of b and the gripper will be empty once again.
An HTN learning algorithm will learn the above sequence to
achieve the task of stacking a on top of b. It will also learn as
applicability conditions the same conditions above. The two
actions will correctly solve any deterministic Blocks World
problem requiring to stack a block x on top of a block y,
assuming that x and y meet the above conditions.

3.2 Precondition Identification and Bottom-Up
Learning, Revisited for Nondeterminism

Consider the nondeterministic version of Blocks World as de-
scribed in [Kuter and Nau, 2004]. In this version, an action
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may unexpectedly drop the block on the table. That is, each
of the operators (STACK ?x ?y), (UNSTACK ?x ?y), and
(PICKUP ?x) have an additional possible effect that specifies
the case in which the block ?x is dropped on the table. Ad-
ditionally, each of the four operators may have no effect at
all.

In the nondeterministic version of Blocks World, the sim-
ple stack trace is a valid trace (one in which each action has
its usual effects). If this trace is given as input to an HTN
learning algorithm in a nondeterministic version of the do-
main, it would learn the same methods as before. However,
these methods would fail to generate a strong or strong-cyclic
solution because the policy does not specify any action if
(PICKUP a), (STACK a b), or both fails.

Now assume that the following two additional traces are
given, which succesfully stack the block a on top of b from
the same initial state as the simple stack trace:

• Failed pickup. (PICKUP a) (PICKUP a) (STACK a b), in
which the first pickup action fails and needs to be repeated.

• Failed stack. (PICKUP a) (STACK a b) (PICKUP a)
(STACK a b), in which the first stack action fails and the
block a needs to be picked up again and stacked.

The two traces above together with the simple stack trace
provide the information needed by an HTN learner to gener-
ate methods to correctly handle the different outcomes of the
pickup and stack actions. A learning algorithm that fulfills the
following two requirements will ensure that these outcomes
are learned from the three traces.

Right-recursive Bottom-Up Learning of Task Pairs. The
methods learned consist of one or two subtasks. If there is
one subtask, then it must be primitive. If there are two sub-
tasks, then the first must be primitive and the second must be
nonprimitive. The selection of a method to decompose the
second subtask will handle the fact that the first subtask has
many possible outcomes, and will allow the planner to select
an appropriate method for each.

Suppose a sequence of actions a1 . . . an in an input trace
p together achieves a task t. Then, we would require the fol-
lowing n methods, each having t as its head task:

• The method mn has a single subtask an (i.e., the terminal
case).

• For i between 1 and n − 1, each method mi has two sub-
tasks: ai and t (i.e., the recursive case).

Step-wise Precondition Identification. Applicability con-
ditions must be collected for each method mi in a stepwise
fashion, taking into account which of the nondeterministic
outcomes was triggered for each action ai in the trace.

• The conditions for mn are collected by determining the
applicability conditions for an and mn+1 relative to trace
p.

• For i between 1 and n − 1, the preconditions for each
method mi are obtained by determining the applicability
conditions for ai relative to trace p.

These extensions enable a learning algorithm to incremen-

Algorithm 1 HTN-MAKERND (p, S0, τ, M0)
1: M ← M0

2: for S′ ← S0 to state after last action in p do
3: for S′′ ← S′ to S0 do
4: Select a task t ∈ τ such that

- the effects et of t are satisfied in S′ and
- the preconditions of t are satisfied in S′′

5: (a1 . . . an) ← collectActions(S′′, S′, p)
6: c ← regressConditions(an, et)
7: for k ← n to 1 do
8: Add to M if not already there a new method:

if k = n then
task: t, preconditions: c, subtasks: an

else
task: t, preconditions: c, subtasks: ak, t

9: p ← regressConditions(ak−1, c)
10: Return M

tally learn the various possible outcomes of action ai. In
the nondeterministic Blocks World example, the simple stack
trace will learn two methods for a task t. In Icarus t would be
simply the goal to achieve, (on ?a ?b). Equivalently, in HTN-
MAKER it would be an annotated task, say (Make-2Pile ?a
?b), having no preconditions and the single effect (on ?a ?b).
The methods would have the form: m1 = (task: t precon-
ditons: p1 subtasks: (PICKUP ?a), t) and m2 = (task: t
preconditons: p2 subtasks: (STACK ?a ?b)). Interestingly,
these methods already cover the PICKUP failure indicated in
the failed pickup trace because if (PICKUP a) fails, the state
of the world will revert to the situation where method m1
is applicable and therefore it can pickup block a again. For
the same reasons it covers multiple subsequent failures of the
pickup action in this state. Both Icarus and HTN-MAKER
provide mechanisms to avoid learning new methods in this
situation. For example, HTN-MAKER can check whether
new methods are subsumed by existing methods by checking
if their tasks and subtasks match and if the preconditions of
one are implied by those of the other.

The failed stack trace provides new information, namely
what to do if the stack operation fails. It will learn the
method: m3 = (task: t preconditons: p3 subtasks: (STACK
?a ?b), t), which is learned from the second action of the
failed stack trace. All other methods that could be learned
from the failed stack trace are already subsumed by m1 and
m2 and therefore aside from m3 no new methods would be
learned from this trace. These 3 methods would allow ND-
SHOP2 to generate a strong solution policy for any stacking
task (STACK ?a ?b) provided that ?a is originally on the ta-
ble, ?a is clear, ?b is clear, and the gripper is empty.

We believe that any of the known HTN learners could pro-
duce methods of this form with appropriate input or modifica-
tions to restrict what may be learned. For illustration purposes
we have chosen to implement our ideas in HTN-MAKER .

3.3 Nondeterministic Learner

Algorithm 1 shows a high-level description of the top-level
learning procedure of HTN-MAKERND that incorporates the
two extensions discussed before. The inputs are an input trace
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p, the initial state from which that trace may be executed S0,
a set of annotated tasks τ , and a (possibly empty) set of meth-
ods M0. It returns a collection of methods M that includes
those given to it and any new ones learned from the trace.

In Algorithm 1, S′ indicates the state in which the task
t has been accomplished, while S′′ is the state from which
the accomplishment of that task began. The actions that ac-
complished t are (a0 . . . an), while the preconditions for the
action sequence (ak . . . an) are c. For each of the actions in
(a0 . . . an), a method is learned that satisfies the above re-
quirements.

A set of traces and initial states may be processed by a
sequence of instantiations of HTN-MAKERND such that the
set of methods produced in one iteration becomes part of the
input to the next iteration.

4 Properties

Let D be a nondeterministic planning domain and τ be a set
of annotated tasks for D. Let P = (D,S0, G) be a nondeter-
ministic planning problem in D and π be a solution for P .

Theorem 1 Suppose HTN-MAKERND is given a set of exe-
cution traces for D and it produces a set M of HTN methods.
Let A be a sound nondeterministic HTN planning algorithm.
Given the HTN-equivalent problem of P with the methods M ,
suppose A generates a weak, strong, or strong-cyclic policy
π. Then, π is a weak, strong, or strong-cyclic solution for P .

Sketch of proof. For the strong-planning case, by our def-
initions, the input execution traces will include strong paths
that do not include any cyclic execution. Suppose π is not a
strong solution for P . There are two cases:

First, suppose that there is a cyclic path in π. Given the
learned methods in M , the first case can happen only if the
planning algorithm A uses methods learned for different pur-
poses from different input execution traces. The only way a
cycle could happen is when the learned methods induce a path
in which there is a state s that is a π-ancestor of itself. How-
ever, since HTN-MAKERND is learning from acyclic paths,
there must be a subset of methods in M that will induce an
acyclic path. Thus, the planner A will eventually select those
combinations of the methods and generate π. Otherwise, if A
is sound, it would not generate π at all.

Second, suppose that π contains a state that is not a π-
ancestor of a goal state. This situation above might happen if
(i) there are infinite cycles in π or (ii) there is a terminal state
in π that is not a goal state. The case (i) cannot happen for
the reasons stated above. The case (ii) cannot happen because
otherwise A would not generate π.

Therefore, the theorem follows for strong planning. The
proofs for weak and strong-cyclic planning are very similar,
but we omit them due to space limitations. �

We now establish the completeness of the HTN-
MAKERND algorithm. We say that a set M of HTN methods
is complete relative to a set G of goals if when any nondeter-
ministic planning problem (D,S0, G) has a weak, strong, or
strong-cyclic solution, the HTN-equivalent problem has also
a weak, strong, or strong-cyclic solution.

Theorem 2 There exists a finite number of input execution
traces such that HTN-MAKERND learns from this input a set
M of methods that is complete relative to G.

This is shown to be true in the deterministic case in [Hogg
et al., 2008]. The nondeterministic case is similar; there are
an infinite number of possible traces in a domain, but HTN-
MAKERND needs only to see one example of each cycle that
makes this the case.

Theorem 3 Let P be the set of execution traces for π. Then,
given P , HTN-MAKERND will return a set of methods M
in time O(|P|n3), where n is the number of actions in the
longest execution trace in P and |P| denotes the number of
execution traces in P . 1

Sketch of proof. Given an execution trace p of length n,
HTN-MAKERND searches every possible prefix of the trace
(see Line 2 of Algorithm 1) of length 1, . . . , n. Within each
plan prefix, HTN-MAKERND then generates every possi-
ble postfix of that plan prefix (see Line 3). Finding a post-
fix is therefore an O(n2) operation, where n is the number
of actions in the execution trace. For each postfix, HTN-
MAKERND learns a set of methods by first finding the actions
in that postfix via the collectActions subroutine (see Line 5),
which has the time complexity of O(n), and then regressing
the predicates that appear at the final state of the postfix to-
ward the start state of it using the preconditions and effects of
the actions (see Line 6). This procedure has a time complex-
ity of O(1) since it simply stores regressed condition given
the goal in its second parameter through the action in its first
parameter. Finally, HTN-MAKERND generates n methods
(see Lines 7–9) from the processed postfix. These n meth-
ods implement the generation of right-recursive methods that
are required for nondeterministic domains, as we discussed
above. Each of these methods has either a single primitive
subtask or a primitive subtask followed by a nonprimitive
subtask. The generation process has a complexity of O(n).
Thus, the entire HTN-MAKERND procedure has a complex-
ity of O(n3). For a set of input |P| traces, the theorem fol-
lows. �

5 Implementation and Experimental

Evaluation

As mentioned above, we have implemented the HTN-
MAKERND algorithm in the HTN-MAKER system [Hogg
et al., 2008]. We conducted an experimental evaluation of
HTN-MAKERND in two benchmark nondeterministic plan-
ning domains, namely the Robot Navigation domain [Cimatti
et al., 2003] and the nondeterministic Blocks World domain
[Kuter and Nau, 2004], which we describe below.

We have used HTN-MAKERND to learn an HTN descrip-
tion of each of the nondeterministic planning domains. Then,
we used that description in the ND-SHOP2 planner [Kuter
and Nau, 2004], an HTN planner developed for nondeter-
ministic domains. We compared the time performance of

1An option to HTN-MAKERND causes it to reject any method
subsumed by one already known. When this option is used, the time
complexity also depends on the number and size of methods known.
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ND-SHOP2 using the learned HTNs with the MBP planner
[Cimatti et al., 2003], another state-of-the-art planning sys-
tem that uses symbolic model-checking techniques for plan-
ning in nondeterministic domains. MBP does not learn from
traces because it uses no knowledge beyond the input action
descriptions. MBP encodes the action model, which is also
given as input to our learner. MBP was used as a benchmark
versus ND-SHOP2 in [Kuter and Nau, 2004]; thus, we also
chose it to compare ND-SHOP2 with our learned HTNs. 2

All experiments were performed on a Linux-based virtual
machine with 512 MB of memory and a 2.16 GHz Intel Core
Duo processor.

Robot Navigation. This domain is introduced as one of the
benchmark domains for MBP [Cimatti et al., 2003]. It con-
sists of a building with 8 rooms connected by 7 doors, with
several packages that need to be moved to desired locations
and a robot that is responsible for moving them. The robot
can open and close doors, move through doorways, and pick
up and put down objects. It can hold at most one package at
a time. Some or all of the doors are “kid doors,” and a “kid”
can open or close any combination of those doors after each
of the robot’s actions. The kid is modeled not as a separate
agent, but as a set of nondeterministic effects for each action.

In this domain, we randomly generated 500 planning prob-
lems with 1 package to deliver. For each planning prob-
lem, we generated 50 random execution traces from the initial
state of the problem to one of its goal state. We ran HTN-
MAKERND on these 25,000 randomly-generated execution
traces and produced an HTN domain description. We then
generated 25 planning problems randomly, for each number n
of packages, where n = 1 . . . 5, as testing examples. We gave
the learned HTN description to ND-SHOP2 and compared its
performance with MBP on the test planning problems.

Figure 1 shows the results. MBP was only able to solve 3 of
the 25 problems with 5 packages within a time limit of 1 CPU
hour, so we are not reporting that datapoint in the Figure 1
above. ND-SHOP2 with the learned HTN domain descrip-
tion was able to solve almost all of the problems with 1 . . . 5
packages; however, our experiments showed that the learned
HTNs did not cover one of the 1-package problems, two of
the 2-,3-, and 4-package problems, and 6 of the 5-package
problems. That is, the solutions to these problems required a
combination of actions that was not observed in the training
examples. The times for these problems are not included in
the averages for MBP or ND-SHOP2. In the problems that

2We used the above experimental setup in order to evaluate the
learned HTNs by HTN-MAKERND . In addition to the above, we’ve
also investigated the possibility of a comparison between HTN-
MAKERND and Icarus. However, Icarus does not generate strong or
strong-cyclic solution policies in nondeterministic domains. Icarus
would find an execution trace from the initial state to the goals and
those plans could include cyclic executions (i.e., repeated action exe-
cutions to achieve subgoals). However, strong or strong-cyclic poli-
cies require that from every state reachable from the initial state a
goal must also be reachable. To the best of our knowledge, Icarus’
skills do not necessarily guarantee such solutions, as the execution
will stop when the goals are achieved. Thus, since a comparison be-
tween Icarus and HTN-MAKERND would not be fair to the latter,
we have not performed such experiments.
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Figure 1: Average running times for ND-SHOP2 using the
learned HTNs and MBP, as a function of increasing number
of packages in the Robot Navigation domain.

the learned HTNs was not able to solve, ND-SHOP2’s aver-
age running times before it returned failure were: 5.36 sec-
onds for the 1-package case, 12.2 seconds for the 2-package
case, 80.775 seconds for the 3-package case, 200.47 seconds
for the 4-package case, and finally, 35.63 for the 5-package
case.

Nondeterministic Blocks World. This is like the classical
Blocks World, except that an action may have three possible
outcomes: (1) the same outcome as in the classical case, (2)
the block slips out of the gripper and drops on the table, and
(3) the action fails completely and the state does not change.
This domain was introduced in [Kuter and Nau, 2004] as a
benchmark for ND-SHOP2.

In this domain, we randomly generated 1000 8-block prob-
lems, and for each problem, we generated 100 solution
traces for a total of 100,000 training traces. We ran HTN-
MAKERND on these traces and generated an HTN descrip-
tion of the domain. As the testing set, we randomly gener-
ated 50 problems for each size of problem (3 blocks through
8 blocks). As before, we ran ND-SHOP2 with the learned
HTN domain and compared its performance against MBP on
the test planning problems.

Figure 2 shows the results. Again, MBP was only able to
solve 11 of the 50 problems with 8 blocks in the time alloted,
so we are not reporting that datapoint in the Figure 2 above.
ND-SHOP2 with the learned HTN domain description was
able to solve all problems with 3, 4, and 5 blocks; the learned
HTNs, however, did not cover 5 of the 6-block problems, 7
in the 7-block case, and 12 of the 8-block problems. The
times for these problems are not included in the averages for
MDP or ND-SHOP2. In the problems that the learned HTNs
could not solve, ND-SHOP2’s average running times before
it returned failure were: 0.04 seconds for the 6- and 7-block
cases, and 0.03 for the 8-block case.

Discussion. It is possible in both domains that there is some
overlap between the training and testing sets, but this is very
unlikely due to the very large number of potential problems
from which each set was randomly selected. For example,
there are more than 150 billion distinct 8-block problems in
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Figure 2: Average running times for ND-SHOP2 using the
learned HTNs and MBP, as a function of increasing number
of blocks in the nondeterministic Blocks World domain.
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Figure 3: Learning rate for HTN-MAKERND in the nonde-
terministic Blocks World domain.

Blocks World.
Figure 3 shows the learning rate of HTN-MAKERND in

the nondeterministic Blocks World domain. Each curve rep-
resents the percentage of the 50 testing problems of that size
that were solvable after learning from a certain number of
traces. There are few different problems containing only 3 or
4 blocks, so strategies to solve all problems may be learned
from only a few examples. The number and complexity of
problems increases exponentially with the number of blocks,
so many more traces are required to cover every edge case. If
our training set had included traces from more problems we
would have eventually been capable of solving every problem
in the testing set.

6 Related Work

Our work is closely related to Icarus [Langley and Choi,
2006], X-Learn [Reddy and Tadepalli, 1997], Stepping-
Stone [Ruby and Kibler, 1991], and HTN-MAKER [Hogg
et al., 2008]. These systems aim to learn the hierarchical rela-
tions between tasks. Icarus, for example, groups actions into
HTN methods based on a given set of concepts represented
as Horn clauses. These concepts play a similar role to the in-
put tasks in HTN-MAKERND , describing to the learner the

target that it should aim to learn. However all of these works
require deterministic actions, whereas in HTN-MAKERND

actions might be nondeterministic.
Icarus can deal with reactive environments; i.e., the envi-

ronment may change during execution as a result of external
factors. Icarus’s built-in learning and execution mechanism
can learn from those situations by creating new HTN meth-
ods that fill the gaps in its current knowledge. This means
that Icarus drops the static assumption of classical planning,
namely, “No exogenous events: no changes except those per-
formed by the controller”. In contrast, HTN-MAKERND

drops the deterministic assumption, namely, “each action or
event has only one possible outcome” [Ghallab et al., 2004].
3 To the best of our knowledge, HTN-MAKERND is the first
learner for nondeterministic planning domains.

Our work is also related to learning preconditions for
HTNs such as [Ilghami et al., 2005], [Xu and Muñoz-Avila,
2005], and [Yang et al., 2007]. However, unlike HTN-
MAKERND , those works assume that the HTNs are given and
that the actions are deterministic. HTN-MAKERND learns
both the HTNs and the applicability conditions simultane-
ously, although it is conceivable that some of these techniques
could be used to simplify the preconditions learned by HTN-
MAKERND . For example, [Ilghami et al., 2005] describes
how to use candidate elimination for finding the minimal sets
of preconditions needed for applying a method.

In Reinforcement Learning [Sutton and Barto, 1998], the
learning system aims to learn an optimal policy, maximizing
some given utility, through a trial-and-error process in which
actions are tried in the environment and the outcome of an
action is evaluated to determine if selecting the action was
useful or not in the current state. Reinforcement Learning
systems can deal with nondeterministic actions (e.g., as in
robotics tasks [Smart and Kaelbling, 2002]). It is conceivable
that HTN-MAKERND could be extended to incorporate Re-
inforcement Learning techniques. This would require defin-
ing a utility function so that the utility of the intermediate
states could be computed on the input traces. This would re-
sult in leaning methods that generate optimal policies rather
than, as currently, learning methods that guarantee that the
policies generated will reach desired states regardless of how
well, relative to the utility, those states are reached.

7 Conclusions

We have studied the problem of learning HTN methods in
nondeterministic domains in this paper. We identified princi-
ples of nondeterministic planning domains that are necessary
for learning successful task decompositions that correctly ac-
count for multiple possible outcomes of the actions. Based on
these principles, we have described two basic mechanisms:
(1) learning methods that have either two subtasks, i.e., one
primitive followed by a compound, or a single primitive task;
(2) learning the preconditions of each method in (1) based on
the outcome of each action that appears in the input trace.

3Reactive domains, under certain restictions, can be modeled as
nondeterministic planning domains [Au et al., 2008]. As an example
in the Robot Navigation domain, the kid’s actions are modeled as a
nondeterministic effect of the robot’s action for openning a door.
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We have grounded these ideas in the HTN-MAKER learn-
ing system, which uses backwards-action chaining to gen-
erate the task-subtask relations in the methods and goal-
regression to elicit the methods’ preconditions. We call the al-
gorithm we developed HTN-MAKERND . In our theoretical
analysis of HTN-MAKERND , we showed that it is sound and
complete. We also found that the algorithm runs in O(|P|n3)
time in the number |P| of input traces and their length n.
We tested the HTN domain descriptions learned by HTN-
MAKERND by using ND-SHOP2, an existing HTN planner
for nondeterministic domains. In two standard benchmark
domains, nondeterministic Blocks World and the Robot Navi-
gation domain, using the learned HTNs, ND-SHOP2 was able
to outperform another state of the art planner MBP by about
3 orders of magnitude. It should be noted that this speedup is
not due to the learned HTNs being especially clever. Rather,
our work allows the general advantages of HTNs to be gained
in nondeterministic domains without requiring that a human
encode appropriate methods.

In the future, we would like to study how to automatically
learn methods that restrict the ordering of the subgoals to be
achieved, as we believe this would yield significant reduc-
tions in the search space.
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