Delaying Commitment in Plan Recognition Using Combinatory Categorial
Grammars

Christopher W. Geib

University of Edinburgh School of Informatics
10 Crichton Street,
Edinburgh, EH8 9AB, Scotland
cgeib@inf.ed.ac.uk

Abstract

This paper presents a new algorithm for plan recog-
nition called ELEXIR (Engine for LEXicalized In-
tent Recognition). ELEXIR represents the plans to
be recognized with a grammatical formalism called
Combinatory Categorial Grammar(CCG). We show
that representing plans with CCGs can allow us
to prevent early commitment to plan goals and
thereby reduce runtime.

1 Introduction

Given a plan library and a set of observations, the problem
of identifying an agent’s plans and goals on the basis of their
observed actions is called plan recognition (PR), and is a well
studied problem in AI. Much of the prior research on PR [Bui
et al., 2002; Avrahami-Zilberbrand and Kaminka, 2005;
Geib, 2006; Kautz, 1991] use algorithms that make early
commitments to hypothesized root goals and sub-plans. This
creates a problem. As [Geib, 2004] has pointed out, such
early commitment can result in maintaining an exponential
number of hypotheses. Many, of these hypotheses will be
discarded later as being impossible. Thus, early commitment
to hypotheses can needlessly increase runtime.

To address this problem, we will formulate PR based
on Combinatory Categorial Grammars (CCGs)[Steedman,
2000], a grammatical formalism developed for use in natu-
ral language parsing(NLP). Using CCGs to represent plan li-
braries will require us to introduce the new idea of plan heads.
We will show that making the correct choices about plan
heads enables a least commitment approach to plan recog-
nition and reduces runtimes.

In the rest of this paper, we will outline our approach
to plan recognition. ~We then show how to represent
plans in CCGs and define plan heads. We will then
present a new, probabilistic plan recognition algorithm called
ELEXIR(Engine for LEXicalized Intent Recognition) based
on these ideas. We will discuss its theoretical complexity,
and an empirical evaluation of its performance. These exper-
iments will show that correct choices for plan heads enable
significant computational saving.

We note, the relationship between PR and NLP is not a new
idea, and there is previous work in using ideas from NLP in
PR including [Carberry, 1990; Pynadath and Wellman, 2000]

and others. However, we know of no prior work using CCGs
and headedness to control early commitment.

2 Intuitions and an Example

We are interested in probabilistic plan recognition, and will
use weighted model counting to solve it. We assume as given
a set of observations and a CCG specification of a plan lexi-
con defining the plans to be recognized. To perform PR, we
advocate parsing the observations into the complete and cov-
ering set of explanations that organize the observations into
one or more plan structures meeting the requirements defined
in the plan lexicon. We then establish a probability distri-
bution over the explanations to reason about the most likely
goals and plans. To do this, we must encode the plans in
CCGs. An example will help show how to do this.

Consider the simple abstract hierarchical plan drawn as a
partially ordered AND-TREE shown in Figure 1. To execute

Figure 1: An abstract plan with partial order causal structure

action G the agent must perform actions A, B, C, and D. A
and B must be executed before C but are unordered with re-
spect to each other, and finally D must be performed after C.

3 Representing Plans in CCG

To represent the example plan in a CCG, each observable ac-
tion is associated with a set of categories.

Definition 3.1 We define a set of categories, C, recursively:

Atomic categories : A finite set of basic action categories.
C={A,B,..}.

Complex categories : IfZ € C and {W, X, ...} # 0 C C, then
Z\{\W,X,..} eCand Z| W, X, ...} € C.

1702

Intuitively, complex categories can be thought of as functor
categories that can take a set of arguments ({(W, X, ...}) and
produce a result (Z). The direction of the slash indicates
where the functor looks for its arguments. We require the
argument(s) to a complex category be observed after the cat-
egory for forward slash, or before it for backslash.

Thus, an action with the category A\{B} is a function that
results in performing action A in contexts where an action
with category B has already been performed. Likewise A/{B}
is a function that results in performing A if an action with
category B is executed later.

We are now in a position to define a plan lexicon.

Definition 3.2 We define a plan lexicon as a tuple PL =
(X,C, f) where, X is a finite set of observable action types,
C is a set of possible CCG categories, and f is a function
such thatVo € X, f(o) - C, C C.

C, is the set of categories an observation of type o can be as-
signed. As a short hand, we will often provide just the func-
tion that maps observable action types to categories to define
a plan lexicon. For example,

a:=A, b:=B, c¢:=(G/{D)\{A,B}, d:=D.

defines one plan lexicon for our example plan. The following
definitions will also be helpful:

Definition 3.3 We define a category R as being the root or
root-result of a category G if it is the leftmost atomic result
category in G. For a category C we denote this root(C)

Thus G is the root-result of (G/{D})\{A, B}. Further,

Definition 3.4 we say that observable action type a is a pos-
sible head of a plan for C just in the case that the lexicon
assigns to a at least one category whose root-result is C.

In our lexicon c is the head for G.

This formulation of CCGs is closely related that of
[Baldridge, 2002] in allowing sets of arguments to categories.
Sets of arguments are critical for our treatment of partial or-
dering in the plan. For example, the first argument to c’s cate-
gory is the leftward looking set {A, B} representing the partial
ordering of these actions before C. This definition also allows
multiple categories to be associated with an observed action
type. However, for ease of exposition, we will suppress nota-
tion for this if an observation only has a single category.

Next we must show how CCG categories are combined into
higher level plan structures. In CCGs combinators [Curry,
1977] are used to combine the categories of the individual
observations. We will only use three combinators defined on
pairs of categories:

X/aU{Y}, ¥ = X/a

Y, X\au{Y} = X\«
X/aU{Y}, Y/B = X/aUpB

rightward application:
leftward application:
rightward composition:

where X and Y are categories, and @ and 8 are possibly empty
sets of categories. Other Combinatory rules are sometimes
used in NLP[Steedman, 2000], however, we leave the use of
these combinators in the PR context for future work.

To see how a lexicon and combinators parse observations
into high level plans, consider the derivation in Figure 2 that
parses the sequence of observations: a, b, c.

a b ¢

A B (G/{DH)\A, B}
(G/ID)\A}
G/iD}

Figure 2: Parsing Observations with CCGs

As each observation is encountered, it is assigned a cate-
gory on the basis of the lexicon. Combinators then are used
to combine the categories. First, a is observed and assigned
A and no combinators can be applied. Next we observe b,
and it is assigned B. Again, none of the combinators can be
applied. Notice however, all the hierarchical structure from
the original plan for achieving G is included in ¢’s category.
Therefore, once ¢ is observed and assigned its category, we
can use leftward application twice to combine both the A and
B categories with ¢’s initial category to produce G/{D}.

3.1 Designing Plan Lexicons

In the preceding discussion, we have avoided some of the rep-
resentational questions in designing a plan lexicon. The crit-
ical choice made during lexicon construction is which action
types will be the plan heads. Different choices for heads re-
sult in different lexicons. For example, the following is an
alternative lexicon for G where d is the head rather than c.

a:=A, b:=B, c:=C, d:=(G\A,B)\C}.

We can also represent the plan for G with the following lexi-
con where a has two possible head categories for G:

a = { (G/{DH/{C)/{B},
(G/H{DH/{CH\(B} },
b:=B,c:=C, d:=D.

There are also a number of still more complex lexicons where
other choices are made for the heads.

Modeling issues that are similar to choosing heads for
CCGs occur in traditional hierarchical task network (HTN)
representations[Ghallab et al., 2004] in the form of choos-
ing the sub-goal decomposition. With their long tradition in
planning, decisions about what is and isn’t a sub-goal in a sin-
gle level of an HTN may seem quite intuitive. However, like
choosing heads for a CCG this is a design decision for HTNs
and can have serious impact on PR and planning algorithms.
We will say more about how to choose CCG heads later in
this paper.

Keep in mind, we want to use parsing of CCGs to build ex-
planations for the observed actions. However, we don’t want
to make early commitments to goals. In contrast to tradi-
tional HTNs, CCG categories function as a tree and/or sub-
tree spine crossing multiple levels of plan decomposition. We
can use the “vertical slicing” of plans by categories to define
the scope of our commitments in building goal and plan hy-
potheses. We state the following principle:

Principle of minimal lexically justified explanation: In
building explanations we never hypothesize any plan
structure beyond that provided by the categories of the
observed actions in the plan lexicon.

1703

This principle clearly defines when, how much, and what kind
of plan structures and hypothesis we can build. It enables a
least commitment approach in that it limits plan hypothesis to
those for which we have observed the head of the plan. The
choice of heads for plans will now allow us to determine when
commitments are made about goals, sub-goals, and plans. As
we will see next, it also enables a simple algorithm for gener-
ating explanations for observations.

4 Building Explanations in ELEXIR

While we would like to use NLP parsing algorithms for expla-
nation construction, there are differences between these prob-
lems that prevent this. In the case of PR, we can’t bound a-
priori how many observations there will be. Further, we can’t
assume that all of the observations must contribute to a single
goal. We can’t even assume that we have seen all of the obser-
vations associated with the plan. Many well known parsing
algorithms like CKY, even when modified for CCGs [Steed-
man, 2000], leverage some or all of these assumptions and
are therefore unusable. Therefore we must provide our own
algorithm for parsing action categories into explanations.

For ease of computation we will restrict our action gram-
mars to only leftward applicable categories.

Definition 4.1 We define a set of categories Ct as leftward
applicable if and only if

1. Ct=c*uCC and
2. CA is a set of atomic categories and

3. CC is a set of complex categories of the form
X{/ Y \Z;}* such that X € CA and Vi,Y; € C* and
Vj,Z; c Cch

Intuitively all of the leftward looking arguments in a category
must precede (be “outside”) all of the rightward looking argu-
ments. Thus (((A/{B})/{CH\{D})\{E} is a leftward applicable
category but(((A/{BH\{C})/{D})/{E} is not. We will return
shortly to discuss the reasons for this limitation.

Definition 4.2 We next define an explanation for a sequence
of observation instances for each time instance o ...0, given
a plan lexicon PL = (X, CL, f) as a sequence of categories
[c1...ci] that result from parsing the input stream on the basis
of the plan lexicon.

We can now provide a simple algorithm to generate all the
explanations for a set of observations. See Figure 3. The in-
tuition for the algorithm is as follows. For each explanation
and for each category that the current observation could be
assigned, check that all of its leftward looking arguments are
present in the current explanation. If so, we clone the cur-
rent explanation, add the category to the explanation, and use
application to remove all of its leftward looking arguments.
Then for each category in the explanation that could combine
with the new category using rightward composition or appli-
cation, duplicate the explanation and execute the composition
in the new copy. Add the new explanation to the set of expla-
nations and repeat for the next observation.

To remain consistent with the plan lexicon, the algorithm
cannot assign a category to an observation unless all of the
category’s leftward arguments have been observed. To do so

1704

Procedure BuildExplanations(o...0,) {

ES ={[1}
FORi=1ton
ES’ =0;

FOR each exp = [cy...c;] € ES
FOR each ¢ € f(oy);
IF all of ¢ leftward arguments are in exp, and can
be removed from exp in order, THEN
LET [cy...ck] be exp with all of ¢’s leftward
arguments removed by function application
and ¢’ be the result of ¢ with its leftward
arguments removed.
ES’ = ES’ U|cy...ck, c]
FOR each ¢, € [cy...ck] such that there exists
a combinator that will compose ¢,
and ¢’ resulting in ¢”.
exp’ = remove(cy, [c1...ck, C]
ES’ = append(exp’,c”).
END-for;
END-if;
END-for;
END-for;
ES = ES’;
END-for;
return ES’; }

Figure 3: High level algorithm for explanation generation.

would hypothesize explanations that violate the ordering con-
straints specified in the plan lexicon. Restricting our gram-
mars to leftward applicable categories simplifies this test,
captured in the IF clause at the center of the algorithm.

Thus, the algorithm incrementally creates the set of all
explanations by assigning categories, discharging leftward
looking arguments, and then applying each possible right-
ward looking combinator between the existing categories and
the categories introduced by the current observation.

For example, given the original lexicon and the observa-
tions: a, b, ¢,d the algorithm produces [G] and [G / {D}, D]
as the explanations. Note, the second explanation is included
to account for the case where the D category will be used
in some other, as yet unseen, plan. Under the assumption
that a given category can only contribute to a single plan, if
these categories are consumed at the earliest opportunity they
will be unavailable for later use. Since all leftward arguments
are discharged when assigning an observation a category, and
each possible combinator is applied as later categories are
added, this algorithm is complete and will produce all of pos-
sible explanations for the observations.

S Computing Probabilities in ELEXIR

The above algorithm computes the exclusive and exhaustive
set of explanations. Given this, if we can compute the con-
ditional probability of each explanation, then the conditional
probability for any particular goal is just the sum of the prob-
ability mass associated with those explanations that contain
it. More formally:

Definition 5.1
P(goallobs) =

2

{expilgoaleexp;)

P(expilobs)

where P(exp;|lobs) is the conditional probability of explana-
tion exp;. Therefore, we need to define how to compute the
conditional probability for an explanation.

There are a number of different probability models used to
compute the probability of a CCG parse in the NLP litera-
ture [Hockenmaier, 2003; Clark and Curran, 2004]. We will
extend one described in [Hockenmaier, 2003]. For an expla-
nation, exp, of a sequence of observations, o...07,, that re-
sults in m categories, cy, ..., Cp, in the explanation, we define
the probability of the explanation as:

Definition 5.2

Plexpllory..on)) =]_[P(cinit)|o;) l_[P(root(c)K

i=1 j=1

Where cinit; represents the category initially assigned in this
explanation to observation o;. Thus, the first product rep-
resents the probability of each observation having their as-
signed initial CCG categories. This is standard in NLP and
assumes the availability of a probability distribution over the
observation’s set of categories.

The second term captures the probability that each category
will not be combined into a larger plan but itself represents a
separate plan. This is not part of traditional NLP models. In
NLP it makes no sense to consider the probability of multiple
interleaved sentences or fragments. However, this assumption
does not hold for PR. It is more than possible for a given se-
quence of observations to contain multiple interleaved plans
or to only cover fragments of multiple plans being executed
(consider multi-day plans). Therefore, our system must be
given a prior probability for each category that occurs as a
root-result in the lexicon. The role of these priors in Defini-
tion 5.2 requires some discussion.

We will denote the multiset of all values of root(c;) for a
given explanation, as expgoais, and the probability of this par-
ticular multiset of root-result categories being adopted as top-
level goals as P(expgouis)- Keep in mind, in ELEXIR we want
to allow for multiple instances of a given result in expgoqs (it
is acceptable for root(c;) = root(c;) where i # j).

We denote the set of categories in expgoqs as Goals. Fi-
nally, we represent the assumed probability of an agent adopt-
ing a particular root-result ¢ as a goal as P(c) with each in-
stance of ¢ in expgoqs being chosen (or rejected) indepen-
dently. This means the probability that there will be exactly n
instances of category ¢ in expg,ars 1s given by P(c)"(1 - P(c)).

This is almost certainly incorrect — intuitively the probabil-
ity of multiple instances of a single goal decreases far more
rapidly than this, making this an over estimate of the likeli-
hood of the goals. The algorithm supports more sophisticated
probability models, and this is an area for future work.

If we let |Goals.| represent the number of instances of cat-
egory ¢ in expgoais:

Plexpeoas) = | | P@ %1 -Pe) [(=P

ceGoals c¢Goals

1705

Collecting all of the 1 — P(c) terms produces a product over
all the categories in the lexicon and is therefore a constant:

Plexpcoas) = | | P}k

ceGoals

Rewriting in terms of the instances in the explanation yields
the second term seen in Definition 5.2.

m
P(expgoas) = | | P(root(c))K
J=1

6 Complexity Analysis of ELEXIR

Having completed the description of the algorithm and prob-
ability model, we briefly consider its theoretical complexity.
In order not to be distracted by the number of possible expla-
nations computed, we consider how efficient the algorithm is
in computing a single explanation for n observations.

We begin by noting that testing for the equivalence of two
categories (and hence for combinator applicability) for any
particular CCG is a constant time operation. Since each cate-
gory can be though of as a tree, testing equality is equivalent
to doing an in-order traversal. However, since the CCG gram-
mar is fixed, we know the size of the largest category, and can
then treat this cost as a constant,C.

The algorithm has two stages, explanation building and
computing probabilities. We discuss each separately.

Explanation Building 1) Discharging leftward argu-
ments: Let K be the fixed size of the grammar’s largest
leftward looking argument set. Verifying that all K
arguments have been seen costs CK operations for each
of the possibly n — 1 previous categories. This results in
a worst case O(n) cost.

2) Applying combinators: Let J be the fixed number of
combinators. The algorithm must test each new category
against each of the (in the worst case) n — 1 preceding
categories. This results in nCJ tests for each observation
for an O(n) cost.

Computing Probability Computing the first term of the
probability can be done in constant time when the cat-
egory is chosen. The second term requires a single mul-
tiplication for each of the categories in the explanation.
The cost of this is bounded above by O(n).

Thus the worst case complexity for building a single explana-
tion is O(n). We also note this is as efficient as any algorithm
can be since each of the observations has to be considered.
Therefore the effective runtime of ELEXIR hinges most criti-
cally on the number of explanations being built. We argue that
a least commitment approach can control the number of ex-
planations being built by correctly choosing plan heads. We
will examine this claim in the next section.

7 Empirical Analysis of ELEXIR

To verify the correctness of our system and to test our hypoth-
esis about the efficacy of headedness we have developed a
testing harness that allows us to systematically vary a number
of parameters that define the plans in the CCG plan lexicon.
These parameters include:

e order: How many and what type of ordering constraints
exist between the actions in the plans. This parameter
can take on the following values:

Total: actions in a sub-plan are totally ordered.

First: each sub-plan has a designated first action.
All other actions in the plan are ordered after it but
are unordered with respect to each other.

Last: each sub-plan has a designated last action.
All other actions in the sub-plan are ordered before
it, but are unordered with respect to each other.

Unord: actions in a sub-plan are unordered.
depth: The depth of each plan.
num-roots: The number of plans in the lexicon.

and-bf: The number of children for each sub-plan.

headedness: Determines which sub-plan step will be the
head. This ranges between 0.0 (leftmost/’first”) and 1.0
(rightmost/’last”).

To create these plans, num-roots complete hierarchical
plans based on AND-trees obeying depth and and-bf were
generated and ordering constraints were established over each
sub-tree. These plans were then converted to a CCG lexicon
by starting at the root of the plan and recursively descend-
ing the tree following the actions with the indices given by
[(headedness * and-bf) T collecting siblings that are to the
left and the right of the action. When a leaf is reached a CCG
category is built maintaining the ordering constraints of the
original plan. This process is repeated for all sub-plans not
covered by the initial category.

Given a CCG plan library we generated observations to test
the system by randomly selecting a root-result category and
producing a plan instance for it based on the plan library. (For
test cases with multiple plans this process was repeated and
the resulting plan instances were interleaved, maintaining the
ordering constraints in the individual plans.) ELEXIR is then
timed computing the conditional probability of all the root-
results found by the algorithm given CCG plan library and
the sequence of observations.

All of our experiments on our Allegro Common LISP 8.1
implementation of ELEXIR were conducted on a MacBook
with 4Gb of main memory and 2 2.2-GHz CPUs. We report
CPU time exclusive of any time used by garbage collection,
the operating system or by other processes. For cases where
the runtime registered as zero we report a runtime of 1 msec.

As a first exploratory test of the system we set roots to
twenty, and-bf to three, and depth to two. We then ran a
full factorial experiment on all values of the order factor and
headedness at values of 0.001, 0.5, and 1.0. Each data-point
had two interleaved plans resulting in a total of eighteen ob-
servations. ELEXIR achieved one hundred percent accuracy
on this input data recognizing both plans in the input stream
with the majority of the runs completing in under a second.
These results verify the correctness of our implementation
and its accuracy in the case of no noise or ambiguity.

7.1 Reducing Runtimes by Choosing Plan Heads

The central claim of this paper is that using CCGs and the cor-
rect choice of plan heads can delay commitment to plan and

1706

goal hypothesis and thereby reduce runtimes for PR systems.
To validate these claims, we need to compare the system’s
runtimes varying the headedness of the plans. Synthetic data
provide the perfect means for us to vary headedness of plans
while controlling for other variables.

Notice that previous work in PR that make early commit-
ments to plans and goals are effectively always operating with
plans libraries that have a headedness value fixed at zero. If
we fix headedness at zero, then each category is effectively
a left most depth first tree with no leftward arguments. Thus
when the first action of a plan is seen the whole left spine of
the tree is introduced with the category, and all subsequent
observations are also left most depth first trees. Thus, headi-
ness values very close to zero make the same early commit-
ment that we argued against in other PR systems.

This means we can use very low headedness values as the
baseline for our experiments. If we see a drop in runtime
as headedness is increased, this confirms our hypothesis that
moving the head later in the plan delays commitments to the
goal hypothesis and reduces the algorithm’s runtime.

1000

N
B-—— - —— R

100
T . \\
3 .
w N wm e &
E —a ¢ e-\"""° - - -First
? 10 \ —O— Last
E \ —&—Total
H
B \

0.1

0.001 0.25 0.5

Headedness

0.75

Figure 4: Average Runtimes for Order First, Last, and Total
Plans. Each point represents the average of 500 test runs.

Figure 4 displays the results for a full factorial experiment
where each test case was taken from a plan lexicon with num-
roots set to one hundred, and each plan had an andbf of four.
The tested factors were order and headedness, and they var-
ied between fotal, first,last and 0.001, 0.25, 0.5, 0.75, 1.0 re-
spectively. All other factors were held constant at their pre-
vious values. By setting headedness to these values each of
the children of each AND-node is, in turn, treated as the head
of the plan. The steady drop in runtime across all values of
order as the head of the plan is moved to the right provides
very convincing evidence for our claims.

We see a significant decrease in runtime for all ordering
cases as the head is moved later in the plan and commitment
to plan structure is delayed. We note all of the gains for the
order first case are almost immediate while the gains for the
last case do not occur until much later. Considering the or-
dering constraints in the respective plans will explain this.

In the order last case, we do not see improvement in the
runtime until the head of the plan is assigned to the last ac-
tion. In this case, since all the leading actions are unordered
with respect to each other, any commitment to the structure of
the plan before the last action is equivalent in runtime, but de-

laying commitment to the plan structure until the final action
results in significant savings.

In the case of the order first, a value of 0.001 for headed-
ness aligns the head of the plan with the causally first action
of the plan. As we move the head later in the plan we get
an initial drop in runtime as one of the unordered actions is
selected, but no significant later savings since the ambiguity
associated with the unorded actions is being moved from one
side to the other of the head action.

We did not identify headedness as having a significant ef-
fect in completely unordered plans. The lack of structure in
these plans means that whenever an action in one of these
plans is observed ELEXIR is required to consider an excep-
tionally large number of hypotheses, but moving the head
does not restrict the number of hypotheses. This should not
be seen as a significant limitation. We believe completely un-
ordered plans are unlikely in the real world.

7.2 Discussion and Limitations

These experiments show that a PR algorithm based on CCGs
and headedness is viable and provides a principled way to
control early commitment. However, we have not provided an
answer for how to choose plan heads during lexicon design.
These decisions have to be made by considering three key
factors:

1. Criticality of early recognition: In cases where early
recognition is critical, choosing a head that is early in the
plan is better. Earlier heads allow earlier recognition and
must be weighed against the runtime. We can certainly
imagine domains where the need for early recognition
outweighs the runtime costs.

Runtime: In general, as we have shown, to minimize
runtime, choosing actions that fall later in the plan as
heads is better.

. Causal structure: We can see in these experiments align-
ing choices of plan heads with the causal structure pro-
duces the greatest computational wins.

Thus, all three of these features must be considered by the
system builder when encoding a PR domain.

It is worth noting that the algorithm given here does have
a significant limitation. It is unable to compute the probabil-
ity for any plan for which the head has not been observed.
Consider the first example CCG lexicon given for the initial
example. Suppose the system is only given two observations
[a, b]. Intuitively this should give us a significant amount of
evidence for the goal G. However, the category with root-
result G is assigned to ¢, and ¢ has not yet been observed.
Therefore, the system is unable to consider G as an explana-
tion for the observations.

We are working on developing a revised algorithm to ad-
dress this limitation and consider this a significant area for
future work. That said, there are domains where the speed
of this algorithm and its ability to allow multiple different
choices for plan heads make it worth considering.

8 Conclusions

In this paper, we have defined ELEXIR, a probabilistic plan
recognition algorithm using CCGs to encode plans. We have

1707

analyzed the complexity of the algorithm, and described its
empirical evaluation. We have also shown that CCGs provide
a formal way to control the early commitment problem faced
by other plan recognition systems.

Acknowledgments

The work described in this paper was conducted within the
EU Cognitive Systems project PACO-PLUS (FP6-2004-IST-
4-027657) funded by the European Commission.

References

[Avrahami-Zilberbrand and Kaminka, 2005] Dorit
Avrahami-Zilberbrand and Gal A. Kaminka. Fast
and complete symbolic plan recognition. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence, 2005.

[Baldridge, 2002] Jason Baldridge. Lexically Specified
Derivational Control in Combinatory Categorial Gram-
mar. PhD thesis, University of Edinburgh, 2002.

[Bui er al., 2002] Hung H. Bui, Svetha Venkatesh, and Ge-
off West. Policy recognition in the Abstract Hidden
Markov Model. Journal of Artificial Intelligence Re-
search, 17:451-499, 2002.

[Carberry, 1990] Sandra Carberry. Plan Recognition in Nat-
ural Language Dialogue. ACL-MIT Press Series in Natu-
ral Language Processing. MIT Press, 1990.

[Clark and Curran, 2004] Stephen Clark and James Curran.
Parsing the wsj using ccg and log-linear models. In ACL
'04: Proceedings of the 42th Meeting of the Association
for Computational Linguistics, pages 104—111, 2004.

[Curry, 1977] Haskell Curry. Foundations of Mathematical
Logic. Dover Publications Inc., 1977.

[Geib, 2004] Christopher Geib. Assessing the complexity
of plan recognition. In Proceedings of AAAI-2004, pages
507-512, 2004.

[Geib, 2006] Christopher Geib. Plan recognition. In Alexan-
der Kott and William McEneaney, editors, Adversarial
Reasoning, pages 77-100. Chapman and Hall/CRC, 2006.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

[Hockenmaier, 2003] Julia Hockenmaier. Data and Mod-
els for Statistical Parsing with Combinatory Catagorial
Grammar. PhD thesis, University of Edinburgh, 2003.

[Kautz, 1991] Henry A. Kautz. A formal theory of plan
recognition and its implementation. In James F. Allen,
Henry A. Kautz, Richard N. Pelavin, and Josh D. Tenen-
berg, editors, Reasoning About Plans, chapter 2. Morgan
Kaufmann, 1991.

[Pynadath and Wellman, 2000] David Pynadath and Michael
Wellman. Probabilistic state-dependent grammars for plan
recognition. In Proceedings of UAI-2000, pages 507-514,
2000.

[Steedman, 2000] Mark Steedman. The Syntactic Process.
MIT Press, 2000.

