
Activity Recognition with Intended Actions

Alfredo Gabaldon

Center for Artificial Intelligence
New University of Lisbon
ag@di.fct.unl.pt

Abstract

The following activity recognition problem is con-
sidered: a description of the action capabilities of
an agent being observed is given. This includes the
preconditions and effects of atomic actions and of
the activities (sequences of actions) the agent may
execute. Given this description and a set of propo-
sitions, called history, about action occurrences, in-
tended actions and properties of the world all at var-
ious points in time, the problem is to complete the
picture as much as possible and determine what has
already happened, what the intentions of the agent
are, and what may happen as a result of the agent
acting on those intentions. We present a frame-
work to solve these activity recognition problems
based on a formal language for reasoning about ac-
tions that includes a notion of intended actions, and
a corresponding formalization in answer set pro-
gramming.

1 Introduction

We consider the following problem: given a partial record
of what an agent being observed is doing, including a) in-
tended actions, b) action executions, c) fluent values, all at
various time points, determine a complete picture of what
the agent has done, intends and may do in the future. This
activity recognition problem is what we are concerned with
in this paper. We develop a new approach that is based on
logical reasoning with partial information about the activities
of an observed agent and a background knowledge base that
includes a formal action theory representing how the world
evolves as the agent executes actions, knowledge about non-
elementary actions, called activities, that the agent might be
executing, and a theory of intended actions.

For illustration of our approach we shall use the following
adapted version of an example from [Kautz and Allen, 1986].
Example 1 The observed agent in this domain is capable of
executing various meal preparation activities: it can cook
chicken marinara which consists in making marinara sauce
and putting it together with chicken by mixing chicken mari-
nara. It can cook fettuccini alfredo by making fettuccini,
making alfredo sauce and putting it together by mixing fet-
tuccini alfredo. It can also cook fettuccini marinara, cook

spaghetti carbonara and cook chicken primavera using simi-
lar steps. Then, if the agent declares that he intends to make
fettuccini at time 1, and we observe that mix chicken marinara
occurred at time 3, then the possible conclusions are that the
agent intends to cook two dishes: one of the fettuccini dishes
and chicken marinara. In the case that he is making fettuccini
marinara, it is possible that he makes marinara sauce once, for
both dishes, i.e. the two cooking activities share an action.

There is a substantial body of work on activity or plan
recognition. Among the influential early work on this prob-
lem is [Kautz and Allen, 1986], which presents a formal
framework for plan recognition using logic and circumscrip-
tion. Our approach is also logic-based and aims at a fairly
general solution. However, we build on a more recent and
general framework for reasoning about actions that allows
us to account for aspects of the problem that are beyond
the capabilities of other approaches, for instance, taking into
account knowledge about the state of the world at various
time points. Another advantage of using a general action
theory is that the reasoner would be able to solve an activ-
ity recognition problem and then plan its own actions, pos-
sibly in response to what the observed agent is doing, us-
ing the same action domain description and observations,
in the same formal framework. Some of the recent ap-
proaches to activity recognition are based on Hidden Markov
Models, e.g. [Bui et al., 2002; Geib and Goldman, 2005;
Blaylock and Allen, 2006], and Probabilistic Grammars, e.g.
[Pynadath and Wellman, 2000]. These approaches achieve
high efficiency, but are limited in several respects. One major
limitation is an inability to handle multiple activities occur-
ring simultaneously. Other limitations of some of these ap-
proaches include an inability to utilize negative information,
such as an observation that some action did not occur, obser-
vations about properties of the world, and a focus on answer-
ing a single type of query: what is the top-level activity be-
ing executed by the observed agent. In contrast, our approach
based on a general theory of actions allows computing a more
complete picture of the situation, that in addition to the top-
level activities includes what the agent has done in the past,
what is true of the world at each stage, what the agent may in-
tend to do next, etc. There are also symbolic approaches, such
as [Avrahami-Zilberbrand and Kaminka, 2005], which typi-
cally focus on matching observed actions to plans, achieving
high efficiency at the cost of ignoring dynamic domain prop-

1696



erties. An approach perhaps closer to ours is [Demolombe
and Hamon, 2002]. As in our case, this approach also em-
ploys an action formalism, although a different one: the sit-
uation calculus. It differs in that it does not utilize notions
of purposeful and justified actions, as we do, but relies on
an explicit specification of which actions must not occur at
particular points of an activity if it is to be recognized. This
makes the definitions of activities more complicated and less
elaboration tolerant. That approach is improved in [Goulti-
aeva and Lespeance, 2007] by reformalizing the problem in
a way that allows incremental recognition of plans. Both of
these approaches require the history to be a complete prefix
of an activity in order for the recognition to work. They are
thus not able to solve problems where the history is miss-
ing observations of earlier occurring actions, as in Example 3
below, for instance. These frameworks also require observa-
tions of actions to be made in the order the actions occur and
cannot handle shared actions between activities. Our frame-
work does not have these limitations. On the other hand, their
approach allows more general forms of activities than the se-
quential ones we consider. A more general notion of activity
is among our plans for future work.

It is worth pointing out as well that none of the above
frameworks allows in the history statements of intention to
execute an action or activity, since they do not employ an
explicit notion of intended actions. The latter are important
when employing activity recognition, for instance, for detect-
ing errors (e.g. a patient that forgets to take some drugs) or
for detecting attempts of deception.

Our main goal is a framework for activity recognition using
a reasoning about actions language, together with an Answer
Set Programming (ASP) [Gelfond and Lifschitz, 1990] for-
malization, that can be integrated with other reasoning mod-
ules [Baral and Gelfond, 2000], e.g. for planning and diagno-
sis. We chose the language ALI [Baral and Gelfond, 2005]
because it belongs to a family of very general reasoning about
actions formalisms with a solid theoretical foundation and
also because this particular language already incorporates a
notion of intended actions. An ASP formalization, in addi-
tion to a formal characterization, directly gives us correct im-
plementations through solvers like Smodels [Niemelä and Si-
mons, 1997]. Of course, solving a more general problem has
a higher computational cost, so we cannot hope to achieve the
execution times of some of the frameworks mentioned earlier.
Nevertheless, the effectiveness of modern answer set solvers
provides us with a competitive computational tool.

The rest of the paper is structured as follows: we start in
Section 2 with an overview of a language for reasoning about
intended actions. In Section 3, we explain the concepts of
purposeful and justified activities and then formally charac-
terize activity recognition as considered in this paper. This is
then followed by our answer set programming formalization
in Section 4. We conclude with some remarks in Section 5.

2 Reasoning about Intended Actions

The action description language ALI [Baral and Gelfond,
2005] extends similar action languages, in particular AL
[Baral and Gelfond, 2000], with the capability of reasoning

about intended actions. Next we give an overview of ALI.
A domain description in ALI includes a set of dynamic

causal laws, static causal laws and executability proposi-
tions. A set of such statements, called action description,
describes a transition system which models how the world
moves from one state to another as actions are executed. A
separate set of constructs in the language is used to capture a
history: a set of statements about observed values of fluents
and occurrences of actions at specified time points. Given
a domain description and a possibly incomplete history, the
reasoning task is then to determine a complete trajectory that
the world may have followed and that is compatible with the
history. Additionally, the language ALI allows for reason-
ing about intended actions, thus it includes a construct for
specifying in a history that at a given time the agent intends
to execute a given action. The underlying principle is: nor-
mally, unfulfilled intentions persist, meaning that if the agent
is not able to execute an intended action at a specified time
(e.g. because the action was not executable at that time) then
the intention persists until the agent successfully executes the
action. The formal syntax and semantics of ALI follows.

A signature consists of two disjoint, finite sets: a set of
elementary action names A, and a set of symbols F , called
fluents, which represent properties of the domain that change
when actions are executed. A fluent literal is a fluent f or its
negation, denoted by ¬f . A set of literals Y is called com-
plete if for every f ∈ F , f ∈ Y or ¬f ∈ Y , and Y is called
consistent if there is no f s.t. f,¬f ∈ Y . A state is a com-
plete and consistent set of fluent literals and represents one
possible state of the domain. An action is a set {a1, . . . , an}
of elementary actions representing their simultaneous execu-
tion. Sequences of actions are lists of actions separated by
commas and enclosed by 〈·〉.

Given a signature Σ = (A, F ), a transition diagram over Σ
is defined as a directed graph T where:

• the states of T are the states of Σ, denoted by σi’s;
• the arcs of T are labeled by actions of Σ.

A path 〈σ0, a1, σ1, . . . , an, σn〉 of a transition diagram is
called a trajectory of the domain.

As mentioned above, an action description consists of a set
of statements understood as describing a transition diagram.
These statements are of the following three forms (ae denotes
an elementary action and li’s denote fluent literals):

• dynamic causal laws: causes(ae, l0, [l1, . . . , ln]), stating
that executing ae in a state where l1, . . . , ln hold causes
l0 to be true in the resulting state;

• static causal laws: caused(l0, [l1, . . . , ln]), stating that l0
is caused to hold in every state where l1, . . . , ln hold;

• executabilitypropositions: impossible if (ae, [l1, . . . ln]),
stating that ae cannot be executed in a state where
l1, . . . , ln hold.

The definition of the transition diagram specified by an
action description requires the following notions and nota-
tion: An action a is executable in a state σ if there is no
proposition impossible if (ae, [l1, . . . ln]) s.t. ae ∈ a and
{l1, . . . , ln} ⊆ σ. A set S of fluent literals is closed under

1697



a set Z of static causal laws if S includes the head l0 of ev-
ery static causal law s.t. {l1, . . . , ln} ⊆ S. The set CnZ(S) of
consequences of S under Z is the smallest set of fluent literals
that contains S and is closed under Z. The notation E(ae, σ)
is used to denote the set of all literals l0 s.t. there is a dynamic
causal law causes(ae, l0, [l1, . . . , ln]) and {l1, . . . , ln} ⊆ σ.
Moreover, E(a, σ) =

⋃
ae∈a E(ae, σ).

An action description specifies a transition diagram that
satisfies certain properties. One is that all the states of the
transition diagram must satisfy the static causal laws. Sec-
ond, if there is a transition from σ to σ′ labeled by a, then a
must be executable in σ. Furthermore, σ′ must include the di-
rect effects E(a, σ) of a, the indirect effects that follow from
the static causal laws and it must contain literals that are oth-
erwise not affected by a but are preserved by the common
sense law of inertia. Formally, the transition system specified
by an action description AD is defined as follows.
Definition 1 An action description AD with signature Σ de-
scribes the transition system T = (S, R) where:

1. S is the set of all the states of Σ that are closed under the
static causal laws of AD;

2. R is the set of all triples 〈σ, a, σ′〉 s.t. a is executable in
σ and σ′ is the fixpoint of the equation:

σ′ = CnZ(E(a, σ) ∪ (σ ∩ σ′))
where Z is the set of all the static causal laws in AD.

Definition 2 A history is a set of propositions of the forms
(α denotes an action sequence, i a time point, and l a fluent
literal):

1. intended(α, i): action α is intended at time point i;
2. (¬)happened(a, i): a (did not) happen at time point i;
3. observed(l, i): l was observed to hold at time point i.
The semantics of happened and observed is defined in the

usual way for A-like languages (see Definition 3 below). The
semantics of intended is based on the following assumptions:

1. once an agent establishes the intention to execute an ac-
tion, it does so as soon as the action is executable;

2. for an intended sequence 〈a1, . . . , an〉, a1 is intended
first and each ai+1 in turn intended after ai executes;

3. if an intended action is not executable, the intention to
execute it persists until it becomes possible to execute it.

A history is interpreted by trajectories of the background
transition system. The following definition describes when a
trajectory is a model of a history.
Definition 3 Let AD be an action description, H a history,
P = 〈σ0, a1, σ1, . . . , an, σn〉 a trajectory and 1 ≤ i ≤ n.

1. P satisfies observed(l, i) if l is true in σi (l ∈
σi). Similarly for initial state statements, P satisfies
observed(l, 0) if l is true in σ0.

2. P satisfies happened(a, i) if a ⊆ ai. In this case, a is
said to be supported at i. P satisfies ¬happened(a, i) if
a 	⊆ ai.

3. P satisfies intended(a, i) if a) a ⊆ ai; or b) a is
not executable in σi−1 (i.e. there is a proposition
impossible if (ae,�l) ∈ AD s.t. ae ∈ a and �l ⊆ σi−1),
i < n and P satisfies intended(a, i + 1).

If a ⊆ ai, we say that a ends at i+1 and that each ele-
ment of a is supported at i.

4. P satisfies intended(α, i) where α = 〈a′1, . . . , a′m〉 and
m > 1, if P satisfies intended(a′1, i) and P satisfies
intended(〈a′2, . . . , a′m〉, j) where a′1 ends at j in P . We
say that α ends at k in P , if a′m ends at k in P .

5. P is a model of a history H if it satisfies all the state-
ments of H and, for all 1 ≤ i ≤ n, all the elements of ai

are supported at i in P .

3 Activity Recognition

Reasoning about intended actions in the language ALI is
done in terms of the trajectories specified by the history. Our
goal here is to characterize activity recognition similarly in
terms of models of the recorded history. The differing na-
ture of the activity recognition problem requires some elabo-
ration of the framework. For once, intuitively activity recog-
nition is done from the perspective of an external observer of
the agent that is executing the actions. Also, in addition to
the background action description and the history, in activity
recognition the reasoner typically has additional knowledge
in the form of a set of activities that the agent being observed
may do and sometimes information about which actions are
“purposeful.” Let us elaborate these two points a bit further.

3.1 Named Activities

Our approach to activity recognition is based on the availabil-
ity of a set of background activities that the observed agent
may do. These serve as hypothesis space to the recognition
system. In our case these activities will be represented as
pairs (s, α) where s is the name of the activity and α a se-
quence of actions (including other activities). Thus we extend
the signature of the language with an additional set C of ac-
tivity names. An action description will contain a set of pairs
(s, α) with one pair for each s ∈ C. We will often use s to
refer to activity (s, α). For the sake of simplicity, sequences
α in named activities are assumed not to repeat actions.

Two examples from the cooking domain are:

(ccm, 〈mk marinara, mix chicken marinara〉)
(cfm, 〈mk fettuccini,mk marinara,mix fettuccini marinara〉)

We assume that only actions can be observed to occur and
thus will not use activity names in happened statements. On
the other hand, we do allow activity names in intended state-
ments as part of the history, as we consider the possibility that
the observed agent declares its intentions or that the activity
recognizer is otherwise informed of those intentions.

3.2 Purposeful Actions

By purposeful actions we mean actions whose execution in
isolation, as opposed to as part of a more complex activity,
is considered reasonable. For example, one may consider the
action of taking a bus as not purposeful since normally a per-
son does not take a bus for the sake of taking a bus, but does
so as part of a more complex activity such as commuting to
work. Here we treat purposefulness as a fixed (non fluent)
property of activities. A more elaborate treatment of purpose-
fulness intuitively seems to require this notion to be context

1698



dependent and to be captured as a default. We plan to con-
sider more general notions of purposefulness in future work.

Purposeful actions are simply declared to be so by means
of statements of the form purposeful(c), where c is an action
or an activity. Actions not declared to be purposeful are as-
sumed not to be purposeful. The next section describes how
this knowledge influences reasoning about intended actions.

3.3 Formal Characterization

In our formalization of activity recognition we do not allow a
history to state that a named activity happened, only elemen-
tary actions can be observed. We moreover assume that all
the observed actions were intentional.

The definition of satisfaction of history statements by a tra-
jectory is given in Def. 3. While activities cannot be observed
to happen, we allow that the reasoner may be informed that
the observed agent intends to execute a named activity. This
means that we must extend histories by allowing statements
intended(s, i) where s is an activity name, and extend the def-
inition of satisfaction of such statements by a trajectory P .

Definition 4 For a named activity (s, α), a trajectory P sat-
isfies a statement intended(s, i) if P satisfies intended(α, i).

For simplicity we will assume that sequences α relevant to
a history are given a name s and that intended(s, i) is used
instead of intended(α, i). We will also overload actions to
include named activities and actions as defined earlier.

Before we introduce models of a history, we need some ter-
minology. We say that an action (including named activities)
c starts at i in a trajectory P if P satisfies intended(c, i) but
does not satisfy intended(c, i − 1), i.e. it is said to start when
it becomes intended. A named activity (s, 〈a1, . . . , an〉) ends
at i in P if an ends at i in P (as in Def. 3).1 Furthermore, an
action c is said to be in progress at k in P if c starts at i and
ends at j in P and i ≤ k < j. Henceforth we will omit P
when clear from context and say c starts at i, c ends at j, etc.

Next we define the key notion of justified actions. This
notion captures the intuition that if an action that is not pur-
poseful is believed to occur or be intended at i, then it must
be part of an activity in progress at the same time i.

Definition 5 Let AD be an action description, P be a trajec-
tory and c be an action.

1. c is justified by c at i if purposeful(c) ∈ AD;
2. c is justified by s at i if

(a) (s, α) is a named activity in AD,
(b) c appears in α,
(c) s is in progress at i,
(d) s does not justify c at an earlier time point in its

current execution, that is, if l is the latest start time
of s such that l < i, then s does not justify c at k
such that l ≤ k < i.

We say c is justified at i if c is justified by b at i for some b.

We are now ready to define models of a history. This defi-
nition must take into account whether actions are justified or
not for the purpose of reasoning about activity recognition.

1“Starts” and “ends” mark the period between an action first be-
coming intended and the termination of its execution.

In addition to satisfying the history, a trajectory must sat-
isfy a number of additional conditions. Condition (2) below
precludes vacuous actions from models. Condition (3) intu-
itively says that for every action in progress there must be at
least one action that justifies it from start to end. Condition
(4) says that an activity cannot end if an action that appears
in its sequence is still intended, unless that action is justified
by some other activity. Finally, Condition (5) says that at the
end of the trajectory, no intended actions remain.

Definition 6 A trajectory P = 〈σ0, a1, σ1, . . . , an, σn〉 is a
model of a history H of an action description AD if the fol-
lowing conditions hold:

1. P satisfies all the statements of H;
2. for each 1≤ i ≤ n, all elements of ai are supported at i;
3. for every action c such that P satisfies intended(c, i) and

c starts at i and ends at j, there is an action c′ such that c
is justified by c′ at k for every i ≤ k < j;

4. for every activity (s, 〈c1, . . . , cm〉) s.t. s ends at i+1,
there is no action ck, 1≤k < m, in the sequence of s s.t.

(a) P satisfies intended(ck, i),
(b) ck is justified by s at i,
(c) there is no s′ 	= s such that ck is justified by s′ at i;

5. for every action c, if c is in progress at n, c ends at n+1.

Example 2 Consider again the cooking domain. Suppose
that we have a history containing the following statements:
intended(mk fettuccini, 1),intended(mix chicken marinara, 3).
Assuming no concurrency, this history has no models of
length less than 4. It has one model of length 4 with
actions: mk fettuccini, mk marinara, mix chicken marinara,
mix fettuccini marinara, occurring in that order. Intuitively,
two activities are occurring: cook chicken marinara (ccm), in
progress from time 2 to 3, and cook fettuccini marinara (cfm),
in progress from 1 to 4. They share the action mk marinara,
which is justified by both ccm and cfm at time 2.

It has 4 models of length 5. One of which contains the
actions mk marinara, mk fettuccini, mix chicken marinara,
mk marinara, mix fettuccini marinara. The same ccm and
cfm are occurring, with ccm in progress from 1 to 3 and cfm
from 1 to 5. In this case mk marinara is not shared as it oc-
curs for ccm before it becomes intended for cfm. In the other
two models, ccm and ’cook fettuccini alfredo’ (cfa) occur. In
one model mk marinara occurs at 1 and mk fettuccini at 2. In
the other they occur in the opposite order.

4 Formalization in ASP

For lack of space we must rely on familiarity with ASP en-
codings of dynamic domains (e.g. [Baral, 2003]) which are a
component of our formalization. We only describe the main
components required on top of the transition system encod-
ing. In the rules shown below, domain predicates should be
used in the usual way making them safe. We do not show
them to save space. In our experiments we use the Smod-
els construct #domain to specify domains for all the vari-
ables that appear in the rules. We start with the component
that, given a statement intended(c, i) in the history, conjec-
tures that some activity s containing c is in progress.

1699



inprogress(S,I):- component(C,K,S),
intended(C,I), K <= I,
not other_justified(C,I,S).

other_justified(C,I,S):- component(C,K,S),
justified(C,I,S1),
neq(S,S1).

From conjecturing that an activity is in progress one can con-
clude that it was intended at some point:
intended(S,I):- inprogress(S,I),

not inprogress(S,I-1).
intended(S,I):- inprogress(S,I), ends(S,I).

Next we describe the component that captures the notion
of justified actions, starting with self-justified actions:
justified(C,I,C):- inprogress(C,I),

purposeful(C).

The following rule captures item 2 of Definition 5:

justified(C,I,S):- inprogress(C,I),
component(C,K,S),
inprogress(S,I),
not justified_before(C,S,I).

The above rules conjecture activities to justify actions. One
of the main components of the formalization “propagates”
this knowledge across time. This component has two parts
with respect to a time point i: one for inference about what
holds at times preceding i and the other for times later than i.
We start with the rules for reasoning about later time points.

The following two rules encode directly the definition of in
progress:

inprogress(S,I) :- starts(S,I).

inprogress(S,I) :- inprogress(S,I-1),
not ends(S,I).

The components of an activity become intended in sequence:
intended(C,I):- starts(S,I),

component(C,1,S).

intended(C2,I):- inprogress(S,I),
component(C2,K,S),
component(C1,K-1,S),
ends(C1,I),
justified(C1,I-1,S).

The component for inference at earlier time points includes
a rule saying that if an activity is in progress and it justifies
one of its components that is not the first, then it must have
been in progress in the previous time point:

inprogress(S,I):- inprogress(S,I+1),
intended(A,I+1),
component(A,K,S), K > 1,
justified(A,I+1,S).

From inferred action occurrences, it is possible to further in-
fer intentions of the agent before the action was executed, es-
pecially if the action is not self-justified. The following rules
say, roughly, that if the action is a component of an activity
and the activity has an earlier component, then either the ear-
lier component is intended in the preceding time point or the
action that occurred was intended in the preceding time point.

intended(A1,I):- inprogress(S,I+1),
occurs(A2,I+1),
component(A2,K,S),
component(A1,K-1,S),
justified(A2,I+1,S),
not -occurs(A1,I),
not intended(A2,I).

intended(A2,I):- inprogress(S,I+1),
occurs(A2,I+1),
component(A2,K,S),
component(A1,K-1,S),
justified(A2,I+1,S),
not intended(A1,I).

Finally, the following rules capture conditions (3–5) in Def. 6:
Condition (3):

:- inter(C,I,I1), not full_just(C,I,I1).

full_just(C,I,I1):- full_justified(C,C1,I,I1).

full_justified(C,C1,I,I1):- justified(C,I,C1).

full_justified(C,C1,I,I1):-
justified(C,I,C1), I < I1,
full_justified(C,C1,I+1,I1).

Condition (4):
:- ends(S,I+1), intended(C,I),

justified(C,I,S), not other_justified(C,I,S),
length(S,K), not component(C,K,S).

Condition (5):
:- intended(C,n).

In the last rule, n is a constant defined to be the maximum
length of the trajectories to be considered, as typically done
in ASP encodings of transition systems. In this case, however,
it is not really necessary to find a minimal n to find solutions,
since all actions must be justified. The only drawback of us-
ing too large an n is that the size of the grounded program
increases.

The above set of rules, plus a few more omitted for space
reasons, is denoted by Πar. A history H is encoded directly
as a set of facts and will be denoted by π(H). The translation
of a domain description AD is denoted by π(AD). For each
named activity (s, 〈c1, . . . , cm〉) π(AD) includes the facts:
activity(s). length(s,m).
component(c1,1,s). ... component(cm,m,s).

It also includes a fact purposeful(c) for each purposeful
action or named activity c. Dynamic causal laws, static causal
laws and executability propositions describe a transition sys-
tem that is encoded in the usual way for similar action lan-
guages. We omit those rules here.

One of the interesting aspects of this formalization is the
reasoning about state properties that is captured. The reasoner
may infer the values of fluents from intentions and action oc-
currences, for instance, that a precondition p of an action a
is false from the observation that a was intended but did not
occur. This is partly enabled by means of stating that in the
initial state any fluent for which there is no information may
be assumed true or it may be assumed false, as long as con-
sistency is preserved. This is captured by a pair of rules for
each fluent f :

1700



holds(f,1):- not holds(-f,1).
holds(-f,1):- not holds(f,1).

which results in multiple answer sets corresponding to the
various alternatives.
Intention of atomic actions is captured by a set ΠI including:

intended(A,I):- happened(A,I).

occurs(A,I):- intended(A,I), not -occurs(A,I).

intended(A,I+1):- intended(A,I), -occurs(A,I),
not -inteded(A,I+1).

inprogress(A,I):- starts(A,I).

inprogress(A,I):- inprogress(A,I-1),
not ends(A,I).

The complete formalization of an activity recognition
problem is given by π(AD,H) = ΠI∪Πar∪π(AD)∪π(H).
The models π(AD,H) induce trajectories as follows.

Definition 7 Let A be a subset of the literals of a given
program π(AD,H). A is said to define the trajectory
〈σ0, a1, σ1, . . . , σn, an〉 if σi = {l | holds(l, i) ∈ A} and
occurs(aj , j) ∈ A for all 0 ≤ i ≤ n and 1 ≤ j ≤ n

Theorem 1 For an action description AD and history H , a
trajectory P without concurrency (i.e. all actions are single-
tons or empty sets) is a model of H iff P is defined by an
answer set of the program π(AD,H).

Example 3 For the Cooking domain, using the facts:

intended(make_fettuccini,1).
happened(mix_chicken_marinara,3).

and max trajectory length of 4 yields an answer set with:

inprogress(cfm,1)
inprogress(cfm,2) inprogress(ccm,2)
inprogress(cfm,3) inprogress(ccm,3)
inprogress(cfm,4)
justified(make_fettuccini,1,cfm)
justified(make_marinara,2,ccm)
justified(make_marinara,2,cfm)
justified(mix_chicken_marinara,3,ccm)
justified(mix_fettuccini_marinara,3,cfm)
justified(mix_fettuccini_marinara,4,cfm)
occurs(make_fettuccini,1)
occurs(make_marinara,2)
occurs(mix_chicken_marinara,3)
occurs(mix_fettuccini_marinara,4)

5 Conclusion

We have introduced a new approach to activity recognition
based on a formal theory of actions and a notion of intended
actions. Our approach is based on using knowledge about
the intention and the occurrences of non-purposeful actions
to conjecture that more complex purposeful activities may be
occurring. In addition to A-type action language domain de-
scriptions with a transition system-based semantics, we pro-
vide a formalization in ASP. Some advantages of our ap-
proach are a strong temporal reasoning component that allows

taking into account observations about the dynamic proper-
ties of the world in addition to observations about action oc-
currences. It is also allows simultaneous activities, shared ac-
tions, use of observations about non-occurrence of actions,
and explicit statements about intention to execute actions.
Consequently, the set of queries that can be answered is also
much larger than in other approaches.

There are a number of directions the framework can be ex-
tended: adding probabilities using e.g. a language like P-log
[Baral et al., 2004]; recognition of failed actions and the per-
sistence of the intention to execute those; recognition that an
agent abandoned an activity in the middle of the execution.
We plan to look at this in future work.

References

[Avrahami-Zilberbrand and Kaminka, 2005] D. Avrahami-
Zilberbrand and G.A. Kaminka. Fast and complete
symbolic plan recognition. In IJCAI, 2005.

[Baral and Gelfond, 2000] C. Baral and M. Gelfond. Rea-
soning agents in dynamic domains. In J. Minker, editor,
Logic-Based Artificial Intelligence. Kluwer, 2000.

[Baral and Gelfond, 2005] C. Baral and M. Gelfond. Rea-
soning about intended actions. In AAAI, 2005.

[Baral et al., 2004] C. Baral, M. Gelfond, and N. Rushton.
Probabilistic reasoning with answer sets. LPNMR, 2004.

[Baral, 2003] C. Baral. Knowledge representation, reason-
ing and declarative problem solving. Cambridge Univer-
sity Press, 2003.

[Blaylock and Allen, 2006] N. Blaylock and J. Allen. Fast
hierarchical goal schema recognition. In AAAI, 2006.

[Bui et al., 2002] H.H. Bui, S. Venkatesh, and G. West. Pol-
icy recognition in the abstract hidden markov model. Jour-
nal of Artificial Intelligence Research, 2002.

[Demolombe and Hamon, 2002] R. Demolombe and E. Ha-
mon. What does it mean that an agent is performing a
typical procedure? In AAMAS, 2002.

[Geib and Goldman, 2005] C.W. Geib and R.P. Goldman.
Partial observability and probabilistic plan/goal recogni-
tion. In MOO Workshop, 2005.

[Gelfond and Lifschitz, 1990] M. Gelfond and V. Lifschitz.
Logic programs with classical negation. In ICLP, 1990.

[Goultiaeva and Lespeance, 2007] A. Goultiaeva and Y. Les-
peance. Incremental plan recognition in an agent program-
ming framework. In PAIR Workshop, 2007.

[Kautz and Allen, 1986] H. Kautz and J. Allen. Generalized
plan recognition. In AAAI, 1986.

[Niemelä and Simons, 1997] I. Niemelä and P. Simons.
Smodels–an implementation of the stable models and
well-founded semantics for normal logic programs. LP-
NMR’97.

[Pynadath and Wellman, 2000] D.V. Pynadath and M.P.
Wellman. Probabilistic state-dependent grammars for plan
recognition. In UAI, 2000.

1701


