Optimal Symbolic Planning with Action Costs and Preferences

Stefan Edelkamp
TZI, Universitit Bremen, Germany
edelkamp @tzi.de

Abstract

This paper studies the solving of finite-domain
action planning problems with discrete action
costs and soft constraints. For sequential optimal
planning, a symbolic perimeter database heuris-
tic is addressed in a bucket implementation of
A*. For computing net-benefits, we propose sym-
bolic branch-and-bound search together with some
search refinements. The net-benefit we optimize is
the total benefit of satisfying the goals, minus the
total action cost to achieve them. This results in
an objective function to be minimized that is a lin-
ear expression over the violation of the preferences
added to the action cost total.

1 Introduction

Optimal planning for actions with costs is a natural require-
ment for many practical applications, while preference con-
straints influence the plan benefit [Gerevini et al., 2009].

The trade-off between the benefit of the goals and the ef-
forts to achieve them has lead to maximizing the net-benefit,
i.e., the total benefit for the satisfaction of the goals, minus
the action cost total.

Hence, we consider sequential optimal planning, minimiz-
ing total action costs, as well as planning for optimal net-
benefits, where additionally the satisfaction of preferences
has to be maximized.

We globally assume discrete and finite-domain variables
for modeling action costs and inside linear expressions. This
implies that while the total benefit is bounded a priori, the
action cost total is not.

For computing sequential optimal plans, we apply sym-
bolic search planning with binary decision diagrams (BDDs).
Firstly, we contribute bidirectional symbolic shortest-path
search that constructs and exploits symbolic perimeter data-
bases. Secondly, we include a proposal to deal with pref-
erence constraints in a new variant of symbolic branch-and-
bound search.

The paper is structured as follows. First, we briefly intro-
duce symbolic planning with BDDs. Next, we consider ac-
tion cost optimal planning and the construction and integra-
tion of symbolic perimeter databases. We recall branch-and-
bound search and extend the algorithm to cover action costs.

1690

Peter Kissmann
TU Dortmund, Germany
peter.kissmann @tu-dortmund.de

This guides us towards the algorithm for computing the opti-
mal net-benefit. In the experimental part, results in domains
of the international planning competition (IPC-2008) are pre-
sented together with additional ones based on a sparse matrix
representation for large action costs.

2 Symbolic Planning

Symbolic search is based on Boolean satisfiability. The idea
is to make use of Boolean functions to reduce the memory
blow-up for growing state sets.

There are different options to come up with an encod-
ing of states for a problem. We implemented the approach
of Edelkamp and Helmert [1999], which automatically trans-
forms the propositional planning problem into a so-called
SAS™ problem on finite domain variables, clustering atoms
that are mutually exclusive [Helmert, 2008].

Based on such a fixed-length binary planning state encod-
ing, a characteristic function is used to represent a set of
states. As the mapping between the set of states and the char-
acteristic function is a bijection, the latter can be identified
with the state set it represents. Actions can also be formalized
as relations, characterizing sets of predecessor and successor
state pairs. The transition relation Trans for the entire prob-
lem is the disjunction of individual state transition relations
Trans,, with a € A being an action.

What we are interested in is to compute the image
Ve (3. States(x) A Trans,(x,2")) of a planning state set
represented by the characteristic function States. The re-
sult is a representation of all states reachable in one step.
The inverse operation, called the preimage is defined as
Ve (32’ States(x") A Trans, (z,x")).

Note that in symbolic search we have two sets of states, one
(x) for the current states and another (z’) for the successor
states. The image takes a set of states from x and generates its
successors in x’. To continue the search, we use the replace
function 3z’. States(z') A (xr = z’), which transforms the
successor states represented by Srates from z’ back to .

BDDs [Bryant, 1986] are an efficient data structure for rep-
resenting and manipulating the relations. To evaluate a given
input, a path is traced from the root node to one of the sinks,
quite similar to the way decision trees are used. What distin-
guishes BDDs from decision trees is the use of certain reduc-
tions, detecting unnecessary variable tests and isomorphisms

Algorithm 1 Symbolic Version of Dijkstra’s Algorithm.

Input: Symbolic state space planning problem with relations
Init(z), Goal(x), and Trans,(x,x")
Output: Optimal solution path

Open[0](z) « Init(z)
forall f € {0,1,2,...}
Min(z) — Open|[f}(x)
if (Min(x) A Goal(z) # 1)
return ConstructPlan(Min(x) A Goal(x))
forallic {1,...,C}
Sucei(x') <V e a,e(a)=i 3%- Min(x) A Transq(z, z')
Succ;(z) «— 3z’ Succ;(z') A (x = ')
Openlf + i](z) < Open[f + i](x) V Succ;(x)

in subgraphs. This leads to a unique and compact representa-
tion for many planning domains [Ball and Holte, 2008].

BDDs have been used for propositional action plan-
ning [Cimatti et al., 1997]. The first symbolic variant of
A* search, called BDDA* [Edelkamp and Reffel, 1998], has
been proposed as a variant of Dijkstra’s algorithm. Hansen
et al. [2002] have proposed an alternative implementation
with ADDs (arithmetic decision diagrams), while Jensen et
al. [2008] have introduced branching partitions. A pro-
posal to deal with preference constraints has been proposed
by [Edelkamp, 2006] in a refinement to branch-and-bound
BDD-based search [Jensen et al., 2006].

Edelkamp [2002] has proposed BDDs to construct and rep-
resent pattern databases, which he called symbolic pattern da-
tabases.

2.1 Shortest Path Search

Sequential action cost optimal planning covers classical pro-
positional, non-temporal planning with actions having asso-
ciated non-negative costs (not necessarily uniform).

The symbolic adaptation of Dijkstra’s single-source
shortest-paths search [1959] in Algorithm 1 relies on discrete
action costs in {1,...,C}. For fractional numbers it is of-
ten possible to rescale the problem. A priority queue data
structure provides access to states in the search frontier with
increasing action cost total. As we deal with discrete costs,
we partition the priority queue into buckets Open|0], Open|[1],
Open|2], etc. [Dial, 1969]. Open|[0] is initialized to the repre-
sentation of the initial state. Unless a goal state is reached, in
each iteration we first choose the next f-value together with
all states in the priority queue having this value. Then for
each action a € A with cost ¢(a) = 4 the transition relation
Trans,(x, ') is applied to determine the BDD representing
the subset of all successor states that can be reached with cost
i. In order to attach a new f-value to this set, we append the
result to bucket f + 7.

The algorithm finds an optimal solution if one exists. If
all previous layers remain in main memory, sequential solu-
tion reconstruction is sufficient. To do this, ConstructPlan is
given the BDD representing the reached goal states. Starting
at these, it performs a backward search in the space of the
previous layers. It finds an action leading from a state S in

1691

a previous layer ¢ to one of the reached goals, then another
from a state in another previous layer j < ¢ to .S and so on,
until the initial state is reached. If layers are eliminated as in
breadth-first heuristic search [Zhou and Hansen, 2004], addi-
tional relay layers have to be maintained. The relay layers are
then used for divide-and-conquer solution reconstruction.

For large values of C, multi-layered bucket and radix-heap
data structures are appropriate, as they improve the time for
scanning intermediate empty buckets [Ahuja ef al., 1990].
For covering zero-cost actions, we invoke another symbolic
BFS to compute the closure for each bucket: once a zero-cost
action is encountered for a bucket to be expanded, a zero-cost
fixpoint is computed. This results in the representation of all
states that are reachable by applying one non-zero cost action
followed by a sequence of zero-cost actions.

2.2 Perimeter Search

Perimeter search [Dillenburg and Nelson, 1994] tries to
reap the benefits of front-to-front evaluations in bidirectional
search, while avoiding the computational efforts involved in
re-targeting the heuristics towards a continuously changing
search frontier. The search direction changes only once. It
conducts a cost-bounded best-first search starting from the
goal nodes; the nodes on the final search frontier, called
the perimeter, are stored in a lookup table. Then a forward
search employs a front-to-front evaluation with respect to
these nodes.

Although larger perimeters provide better heuristics, they
take increasingly longer to compute. As computational re-
quirements for constructing and storing the states inside the
perimeter are considerable, a symbolic representation pays
off. When a memory or time limit is reached, the cost-layers
of the perimeter search (flushed on disk) yield a heuristic par-
titioning of the search space that is both admissible and con-
sistent. Perimeter heuristics (usually) require full duplicate
detection. States outside the perimeter are assigned to the
next possible value of the largest goal cost value obtained so
far.

For BDD-based construction of a symbolic perimeter
database, we execute the symbolic version of Dijkstra’s al-
gorithm (Algorithm 1) in reverse direction, starting from the
abstract goal, successively computing preimages.

A* using the symbolic perimeter database heuristics
Heur[0], Heur[1], ..., Heur[maxy] is depicted in Algorithm
2. Here, Dijkstra’s Open list becomes a matrix for the g and i
values, with g being the distance from the start, / the heuristic
estimate on the distance to a goal. The search starts at bucket
[0, ko] (ho is the estimated distance from the initial state to
the goal) and expands the f = g + h diagonals in increasing
order. Once a bucket [g, h] is expanded, its successors with
heuristic value h’ are inserted into another bucket [g + i, ']
for actions with cost i.

To handle larger action cost values, we use a hash map in-
stead of a matrix, as the matrix might become sparse but too
large to fit in main memory.

3 Total Benefit

In optimal planning with preferences, see, e.g., in the pa-
pers of van den Briel ef al. [2004] or Smith [2004], we no

Algorithm 2 Symbolic Version of A*.

Algorithm 3 Symbolic Version of Breadth-First BnB.

Input: Symbolic state space planning problem with relations
Init(z), Goal(x), and Trans,(x,x")
Output: Optimal solution path

forall h € {0,..., maxy}
Open|0, h|(x) « Init(x) N\ Heur[h](x)
forall f € {0,1,2,...},9€{0,...,f}
Min(z) — Openlg, | — g)(z)
if (Min(z) A Goal(x) # L)
return ConstructPlan(Min(z) A\ Goal(x))
foralli € {1,...,C}
Sucei(z') — V e ,e(a)=i 3%- Min(z) A Transq(z, z')
Succ;(x) «— 3'. Succ; (') A (x = 2')
forall h € {0,... , maxy}
Openlg + i, h|(z) < Open|g + i, h|(z)V
Succ;(x) N Heur[h](z)

longer have a monotonically increasing cost function to be
minimized. Hence, we hardly can omit states with an evalu-
ation larger than the current one. Note that compiling of the
linear expression in the metric to the actions is not always
possible as preference violations are usually state dependent,
not action dependent, and not known before the start of the
algorithm.

3.1 Cost-Optimal BFS

Algorithm 3 displays the pseudo-code for a breadth-first ex-
ploration, incrementally improving an upper bound U on
the solution length. The set-based branch-and-bound search
strategy (see the paper of Jensen et al. [2006] for comparison)
hides the analysis of a layer, in which more than one goal is
contained (ConstructAndStorePlan). In this function one goal
state with minimum cost has to be filtered for solution recon-
struction from the set of goal states in the layer.

Based on the range of the variables in the domain metric
we search the interval between the minimum and maximum
value (min,, and max,,) from below. For the symbolic rep-
resentation of metric m, the minimal and maximal values of
m define the range that has to be encoded binary. The work
of Bartzis and Bultan [2006] implies that the BDD for repre-
senting a linear function can be constructed space- and time-
efficiently.

For preference constraints of type (preference p ¢p), we
associate a variable v, (denoting the violation of p), such that
min(v,) = 0 and max(v,) = 1. Hence, for o, > 0 we
have min,,, = »_ o, - min(v,) = 0 and max,, = > -
max(vp) = >, .

Maximization problems can be transformed easily into
minimization problems. Also, adding a constant offset does
not change the set of optimal plans. If we define ®, (v, z) :=
(vp & —¢p), then the formula A, @, (v, z) can be used to
evaluate all preferences together in one operation.

Algorithm 3 incrementally improves an upper bound U
on the plan cost. The search frontier Open — denoting the
current BFS layer — is tested for an intersection with the
boolean formula representing the goal. This intersection is

1692

Input: Problem with transition relations Trans,, a € A
Cost function m to be minimized, preferences @,
Output: Cost-optimal plan

U +— max,, +1
Bound(v) — \/{ i, (v = i)
Closed(z) « Open(x) « Init(z)
loop
if (Open(z) = L) or (U = min,,)
return RetrieveStoredPlan
Intersection(x) < Open(x) N Goal(z)
Eval(v, x) < Intersection(x) A N\, ®p(v, x)
Metric(v, z) < Eval(v,x) A Bound(v)
if (Metric(v,x) # 1)
U + min,,
while ((Eval(v,z) A (v
U—~U+1
ConstructAndStorePlan(Eval

Bound(v) «— \/Ejz_nim (v=1
Succ(x') — \/ e 4 Fx. Trans,(z, x
Succ(x) «— Iz’ Succ(z’) A (x = x
Open(x) « Succ(x) A —~Closed(x)
Closed(x) <« Closed(x) \V Succ(x)

U)=1)

(v,2) A (v =U))
)

)) A Open(x)

/
!/

not processed if it does not contain any state that improves
the current bound. This is achieved by the conjunction of
the intersection with an indicator function Bound for the cur-
rent search interval. As there can be many different goal
states contained in the remaining set, the planning process
then determines a state in the intersection that has mini-

mal cost. This is achieved by intersecting with v = ¢, for
i € {min,,,...,U — 1} with U being the old bound.
The algorithm applies full duplicate detection. Only

clearly inferior states in Intersection are neglected. Eventu-
ally, the Open list runs empty or the upper bound equals the
lower one (U = min,,) and the best plan stored is an optimal
one.

3.2 Cost-Optimal Search with Action Costs

Following the approach of Dijkstra’s algorithm, integrating
action costs (without being optimized in the objective func-
tion) is rather straight-forward. Instead of breadth-first levels,
we now generate levels for each possible cost value. This is
implemented in Algorithm 4.

The algorithm mimics Algorithm 3 with the exception that
its buckets are organized along total action cost instead of
total number of plan steps. Without pruning wrt. the upper
bound U, the algorithm would traverse the entire planning
state space, expanding each possible planning state exactly
once. Only inferior states are omitted when stopping the in-
crease of U or terminating in case U = min,,,. Otherwise, the
Open list runs empty, which is detected if C' adjacent buckets
are empty (no action cost exceeds C', such that the successors
are within C' adjacent buckets). Subsequently, the best plan
stored is the optimal one.

Algorithm 4 Cost-First BnB Planning Algorithm.

Algorithm 5 Net-Benefit Planning Algorithm.

Input: Problem with Trans,, and action costs c(a), a € A
Cost function m to be minimized, preferences ®,,
Output: Cost-optimal plan

U «— max,, +1
Bound(v) — /s, (v =)
Open|min,,|(x) « Init(zx)
for all f € {min,,, min,, +1, min,, +2,...}
Openlf](x) — Open[f](x) A= /1= Openli](x)
if (\/_;_c Openli] = L) or (U = min,,,)
return RetrieveStoredPlan
Intersection(x) <« Open(z) A Goal(x)
Eval(v, z) < Intersection(x) A N\, ®p(v, x)
Metric(v, z) < Eval(v,z) A Bound(v)
if (Metric(v,z) # 1)
U <+ min,,
while ((Eval(v,z) A (v=U)) = 1)
U—~U+1
ConstructAndStorePlan(Eval(v,xz) A (v =U))
Bound(v) /i, (v =1)
forallic {1,...,C}
Suce; ((ﬂ/) — \/aG.A,c(a
Succ;(x) «— 3z'. Succ; (') N (x = 2')
Open|f + i](z) < Open[f + i](x) V Succ;(z)

)i 3. Open|f|(z) A Trans,(z, z')

This cost-first version of the branch-and-bound planning
procedure does not contribute much to the existing portfolio.

It mainly serves as an intermediate step towards net-benefit
optimization, our next topic. The metric m () is independent
of the action cost. Only inferior states are pruned. The two
computed plans share the same optimal cost value, but are not
necessarily the same.

Figure 1 illustrates that the search space is stretched along
the benefit (the buckets that are generated in the search pro-
cess are filled with states, goal states are highlighted with a
second circle).

Total—Cost

Steps

[ooo(o)oogoo\
[0 0 o(0)o oo o0
©

[0 0 0 0(0)o 0 o(0)o O]
[0 0 0©)o(©)]]
[c0o00 00000
[o 0 0(©)o o O]

0 0 0(0)o 0 o(0)o()o
[©)o 0(0)9]

[0 o) 000

Figure 1: Breadth-First and Cost-First BnB Layers.

Input: Problem with Trans,, and action costs c(a), a € A
Cost function m to be minimized, preferences @,
Output: Cost-optimal plan

U +— max,, +1
Vo0
Bound(v) «— \/Ejz_n}m v=1
Open|min,,|(x) < Init(x)
for all f € {min,,,, min,, +1, min,, +2,...}
Openlf]() — Openlf)(x) A= VI Openi](x)
if (\/._;_c Openli] = L) or (U = min,,)
return RetrieveStoredPlan
Intersection(x) < Open(z) N Goal(x)
Eval(v, x) « Intersection(x) A)\, ®,(v, x)
Metric(v, z) — FEval(v,z) A Bound(v)
if (Metric(v,z) # 1)
U’ «+ min,,
while ((Eval(v,z) A (v=U"))=1L)and (U + f < V)
U—U+1
if(U'+f<V)
V<U+Tf
U~V —-f
ConstructAndStorePlan(Eval(v, z) A (v =U"))
Bound(v) «— \/g:_nhnm (v="1)
foralli e {1,...,C}
Succi(z') — V e a,0(a)=i I2- Open[f](z) A Trans,(z, 2')
Succ;(x) — 3x'. Suce; (') N (z = 2')
Open|f + i](z) < Open|[f +i|(x) V Succ;(z)

4 Net-Benefit

Planning for optimized net-benefits trades utility received by
achieving soft goals for the total cost of the actions used to
achieve them.

For the sake of brevity, we assume no scaling of the total
cost value. Let benefit(r) = > a,v,. Then the metric we
consider is m(w) = benefit(m) + total-cost(w). Integrating
total-cost into the cost metric using BDD arithmetic is not
possible as the value fotal-cost is not bounded from above.
Fortunately, with the bucket to be expanded we already have
the current f-value for evaluating fotal-cost at hand. This
allows us to use a different upper bound in the branch-and-
bound algorithm.

The pseudo-code of the algorithm is presented in Algo-
rithm 5. With V' we denote the best solution obtained so far
according to the evaluation of m(), which improves over
time. As the f-value increases monotonically, we can also
adapt V' to improve over time. The pseudo-code also adapts
a small refinement, by observing that the upper bound U for
benefit() is bounded by V, which is effective if the impact
total-cost is small.

As with the other branch-and-bound algorithm, the net-
benefit procedure looks at all goal states that are not domi-
nated. The state space is traversed cost-first with growing f-

value. For finding the best solutions we observe that all states
in one bucket have the same f-value. Since fofal-cost(w) =
f, this allows to stop searching for the best goal state once one
has been found from below by only looking at benefit(m). We
ensure that no inferior plan with a value smaller than the cur-
rently best is stored. Testing U’ + f < V twice is mandatory:
first, to avoid progressing too far and, secondly, to decide,
which of the two while-conditions is satisfied.

When looking at U, we observe that the f-value moni-
toring fotal-cost(m) increases monotonically. This allows to
reduce the contribution of benefit(r) stored in U to V' — f.
Moreover, if U = min,, = 0, all preference constraints are
fulfilled and the remaining quantity will only grow. There-
fore, we terminate the search.

S Experiments

Next, we evaluate the algorithms on the problems of the last
international planning competition IPC'. To enforce domain-
independency of the planners, the strict rules of the competi-
tion included the submission of the planner sources prior to
the presentation of the domains, on which the planners were
run. Moreover, to enable progress for the field, source codes
have been published after the competition. There was a time-
out of 30 minutes and a memory limit of 2 GB for each of the
30 problems of each domain.

Our planner, called GAMER, finished first in both optimiz-
ing tracks (sequential and net-benefit).

To evaluate the improvements in GAMER we implemented
afterwards (especially the use of a hash map to handle large
action costs), we performed the same experiments on our ma-
chine?, which is slightly slower than the one used in the com-
petition. We provide cumulative bar charts for both tracks,
with one bar for each of the participating planners.

Figure 2 shows the results in the sequential optimal track?.
We set the timeout for backward search to construct the
perimeter database to 15 minutes, at which the process that
writes immediate results to disk is killed, and forward sym-
bolic A* search is invoked.

As the competition version failed completely in the parc-
printer domain, which has very large action costs, we con-
ducted results using the sparse A* matrix representation to
cope with these. The new implementation (Gamer) was run
on each domain and gives a comparable performance to the
old one (Gamer (comp)), but solves some instances of this
domain for a better overall performance.

Concerning the runtime, our approach often is slower than
the competitors’, which is surely due to the 15 minute time-
out we used for the database construction. In the non-trivial
problems, this backward search did not come to an end be-
fore the timeout, while the forward search could be finished
in a shorter time. Anyway, the 15 minutes seem reasonable,
as this way up to half the time is spent in backward direction
and the rest in forward direction.

!'See http://ipc.informatik.uni-freiburg.de

>Two AMD Opteron 250 processors with 2.4 GHz.

3For the description of the benchmark domains and the com-
petitors as well as detailed runtime results we refer to the above-
mentioned web page.

1694

Figure 3 depicts the results in the net-benefit optimal track.
As there were no domains with large action costs, we have
visualized the outcome of the competition only.

The results show a clear advantage of our symbolic algo-
rithm. The two competitors either exploit disk-space (Mips
XXL), or enumerate all possible preference violations and run
an ordinary planner on each of the sub-instances generated
(hsp*p)*.

Here, GAMER is faster than the competitors in the more
complex cases (sometimes seconds vs. minutes). In the two
domains Transport and Woodworking we were slower than
hsp*p but still a lot faster than MIPS-XXL in most cases,
which might be due to the fact that the latter uses external-
memory algorithms and thus tends to longer runtimes.

6 Conclusion and Discussion

We have proposed a state-of-the-art optimal planning ap-
proach that is capable of solving possibly oversubscribed
planning domains with action costs and preference con-
straints, competing against each other in a linear objective
function. The limitations we impose are finite domain vari-
ables for modeling action costs and preference violation in
the objective function.

The symbolic algorithms perform variants of uni- and bidi-
rectional breadth-first search with no problem abstraction.
This representational advantage of using BDDs outperformed
the attempts of coming up with a suitable admissible (prob-
lem relaxation) heuristic working well across larger sets of
benchmark domains.

One additional conclusion is that for step- and cost-optimal
planning BDD-based planning seems to have an advantage to
SAT-based technology [Kautz and Selman, 1996], which has
dominated the area of optimal planning in the last decade.

An option worth trying are symbolic implementations of
partial pattern databases [Anderson et al., 2007].

Acknowledgements

We thank DFG for support in the project ED 74/3. We also
acknowledge the hard work from various sides within the de-
terministic track of the 2008 international planning competi-
tion.

References

[Ahuja et al., 1990] R. K. Ahuja, K. Mehlhorn, J. B. Orlin,
and R. E. Tarjan. Faster algorithms for the shortest path
problem. Journal of the ACM, 37(2):213-223, 1990.

[Anderson et al., 2007] K. Anderson, R. Holte, and
J. Schaeffer. Partial pattern databases. In SARA, Lecture
Notes in Computer Science, pages 20-34. Springer, 2007.

[Ball and Holte, 2008] M. Ball and R. C. Holte. The com-
pression power of symbolic pattern databases. In ICAPS,
pages 2—11, 2008.

* According to Patrik Haslum, the author of hsp*p, the number of
problems with soft goals in Peg-Solitaire is too large, so that hsp*p
can parse it but not solve it.

base
CFDP ¢

co-plan
CPT3

Planner

[J Woodworking
B Transport

Gamer (comp) N] Sokoban
Gamer I iBGiiinnsiinia | W Scanalyzer
B Peg-Solitaire
hsp*0 [
sp B Parc-Printer
hsp*f - I Rl Openstacks
Mips XXL 222224 I Elevators
0 20 40 60 80 100 120

Number of solutions found

Figure 2: Performance Results on the Competition Domains in the Sequential Optimal Track.

[J Woodworking

Planner

hsp*p ([T

B Transport

..........

B Peg-Solitaire

Number of solutions found

Openstacks
M Elevators
[Crew Planning

40 50 60 70

Figure 3: Performance Results on the Competition Domains in the Net-Benefit Optimal Track.

Effi-
STTT,

[Bartzis and Bultan, 2006] C. Bartzis and T. Bultan.
cient BDDs for bounded arithmetic constraints.
8(1):26-36, 2006.

[Bryant, 1986] R. E. Bryant.
boolean function manipulation.
Computing, 35(8):677-691, 1986.

[Cimatti et al., 1997] A. Cimatti, E. Giunchiglia, F. Giunchi-
glia, and P. Traverso. Planning via model checking: A de-
cision procedure for AR. In ECP, Lecture Notes in Com-
puter Science, pages 130—142. Springer, 1997.

[Dial, 1969] R.B. Dial. Shortest-path forest with topological
ordering. Communications of the ACM, 12(11):632-633,
1969.

[Dijkstra, 1959] E. W. Dijkstra. A note on two problems in
connection with graphs. Numerische Mathematik, 1:269—
271, 1959.

[Dillenburg and Nelson, 1994] J. F. Dillenburg and P. C. Nel-
son. Perimeter search. Artificial Intelligence, 65(1):165—
178, 1994.

[Edelkamp and Helmert, 1999] S. Edelkamp and M. Hel-
mert. Exhibiting knowledge in planning problems to min-
imize state encoding length. In ECP, Lecture Notes in
Computer Science, pages 135—-147. Springer, 1999.

[Edelkamp and Reffel, 1998] S. Edelkamp and F. Reffel.
OBDDs in heuristic search. In K7, pages 81-92, 1998.

[Edelkamp, 2002] S. Edelkamp. Symbolic pattern databa-
ses in heuristic search planning. In AIPS, pages 274-293,
2002.

[Edelkamp, 2006] S. Edelkamp. Cost-optimal symbolic

planning with state trajectory and preference constraints.
In ECAI, pages 841-842, 2006.

Graph based algorithms for
IEEE Transaction on

[Gerevini et al., 2009] A. E. Gerevini, P. Haslum, D. Long,
A. Saetti, and Y. Dimopoulos. Deterministic planning in
the fifth international planning competition: PDDL3 and
experimental evaluation of the planners. Artificial Intelli-
gence, 173(5-6):619-668, 2009.

[Hansen et al., 2002] E. A. Hansen, R. Zhou, and Z. Feng.
Symbolic heuristic search using decision diagrams. In
SARA, Lecture Notes in Computer Science, pages 83-98.
Springer, 2002.

[Helmert, 2008] M. Helmert. Understanding Planning
Tasks: Domain Complexity and Heuristic Decomposi-
tion, volume 4929 of Lecture Notes in Computer Science.
Springer, 2008.

[Jensen et al., 2006] R. Jensen, E. Hansen, S. Richards, and
R. Zhou. Memory-efficient symbolic heuristic search. In
ICAPS, pages 304-313, 2006.

[Jensen et al., 2008] R. M. Jensen, M. M. Veloso, and R. E.
Bryant. State-set branching: Leveraging BDDs for heuris-
tic search. Artificial Intelligence, 172(2-3):103-139, 2008.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing
the envelope: Planning propositional logic, and stochastic
search. In AAAI, pages 1194-1201, 1996.

[Smith, 2004] D. Smith. Choosing objectives in over-
subscription planning. In ICAPS, pages 393-401, 2004.

[van den Briel et al., 2004] M. van den Briel, R. Sanches,
M. B. Do, and S. Kamphampati. Effective approaches for
partial satisfaction (over-subscription) planning. In AAAI
pages 562-569, 2004.

[Zhou and Hansen, 2004] R. Zhou and E. A. Hansen.
Breadth-first heuristic search. In ICAPS, pages 92-100,
2004.

1695

