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Abstract

Traditional AI search methods search in a state
space typically modelled as a directed graph. Pro-
hibitively large sizes of state space graphs make
complete or optimal search expensive.

A key observation, as exemplified by the SAS+
formalism for planning, is that most commonly
a state-space graph can be decomposed into sub-
graphs, linked by constraints. We propose a novel
space reduction algorithm that exploits such struc-
ture. The result reveals that standard search algo-
rithms may explore many redundant paths. Our
method provides an automatic way to remove such
redundancy. At each state, we expand only the
subgraphs within a dependency closure satisfying
certain sufficient conditions instead of all the sub-
graphs. Theoretically we prove that the proposed
algorithm is completeness-preserving as well as
optimality-preserving. We show that our reduction
method can significantly reduce the search cost on
a collection of planning domains.

1 Introduction

State-space search is a fundamental and pervasive approach
for AI. The state space is typically modelled as a directed
graph. A cost can be associated with each edge in the graph
and the search tries to identify the path with the minimum
total cost from an initial state to a goal state.

A key observation that motivates this paper is that most
often the state-space is not a random graph. Rather, in most
domains, the state space graph can be viewed as part of the
Cartesian product of multiple smaller subgraphs. In SAS+
formalism [Bäckström & Nebel, 1995; Jonsson & Bäckström,
1998] of planning, a state is represented by the assignments
to a set of multi-valued variables, and the state-space graph is
derived from the Cartesian product of the domain transition
graphs (DTGs), one for each variable.

The key question is, if a state-space graph can be decom-
posed as the Cartesian product of subgraphs, can we make
the search faster by exploiting such structure?
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Given the large size of the search space, exploiting de-
composition of planning domains has long been of interests
to planning researchers. There are several lines of existing
work:

1) The automated hierarchical planning [Knoblock, 1994;
Lansky & Getoor, 1995] methods utilize hierarchical factor-
ing of planning domains, but they typically do not scale well
since they require extensive backtracking across subdomains.

2) To avoid the cost of backtracking, the factored planning
approach [Amir & Engelhardt, 2003; Brafman & Domshlak,
2006] finds all the subplans for each subproblem before merg-
ing some of them into one solution plan. However, as enumer-
ating all subplans requires huge memory and time complex-
ity, the practicability of factored planning has not been fully
established [Kelareva et al., 2007]. Our own empirical results
suggest that the cost of factored planning can be exceedingly
high. Also, the iterative deepening scheme that increments
the length of the subplans poses additional complexity and
compromises optimality.

3) Decomposition of planning domains has also been used
to derive better heuristics [Helmert, 2006; Helmert, Haslum,
& Hoffmann, 2007] inside a heuristic search planner. How-
ever, as revealed by recent work [Helmert & Röger, 2008],
an admissible search with even almost perfect heuristics may
still have exponential complexity. Hence, it is important to
improve other components of the search algorithm that are
orthogonal to the design of better heuristics.

The main contribution of this paper is a completeness-
preserving reduction technique, the expansion core (EC)
method, that can be combined with search algorithms on
SAS+ planning domains. The key idea of EC is that, by re-
stricting the set of actions to be expanded at each state, we are
in effect removing a lot of redundant ordering of actions. For
example, for a given state s, if for any solution path from s
that places an action a before b, there exists another solution
path from s that places b before a, then it reduces the search
space to remove the ordering a → b and only consider those
plans that place b before a.

Technically, the EC method modifies the way each node is
expanded during the search. When searching in a Cartesian
product of subgraphs, expanding a node amounts to expand-
ing executable actions in all the subgraphs, which we reveal is
often wasteful. EC expands a subset of subgraphs that form a
dependency closure and still maintains the completeness and
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optimality of search.
The partial order based reduction idea behind EC has been

studied in the model checking community to address the state
space explosion problem [Valmari, 1998]. However, clean
and domain-independent reduction ideas for planning are few.
Symmetry detection [Fox & Long, 1999] is one such idea that
can be used to reduce redundant partial orderings in planning.
We discuss later that our algorithm is different from symme-
try detection.

This paper is organized as follows. We first give basic def-
initions in Section 2. We then propose the EC method in Sec-
tion 3. We report experimental results in Section 4 and give
conclusions in Section 5.

2 Background

A SAS+ planning task is defined on a set of state variables
X = {x1, · · · , xN}, each with a domain Dom(xi); and a set
of actions O, where each action o ∈ O is a tuple (pre(o),
eff(o)), where pre(o) defines some partial assignments of
the state variables and eff(o) defines a set of value transi-
tions (vi, v

′
i), vi ∈ Dom(xi) ∪ {unknown}, v′i ∈ Dom(xi).

A complete assignment of the state variables is a state.
We can write a state s as s = (s1, . . . , sN ), where each
si ∈ Dom(xi) is the assignment to variable xi. For each
state s, an action o is executable if s agrees to the par-
tial assignments in pre(o) and the first component of each
element of eff(o). Applying o to s leads to a new state
s′ = result(s, o) where the value of xi is changed to v′i for
each (vi, v

′
i) ∈ eff(o) and other state variables keep their

value. result(s, o) is undefined if o is not executable at S.
vi can take value from Dom(xi) or be ”unknown”, which
means the action will lead to state v′i regardless of the value
of xi. The planning task is to find an executable sequence of
actions that transits a state (s0) to a partial assignment to state
variables (a goal state).

A task can also specify a optimality criterion. In this pa-
per we assume that each action has a positive cost and the
task is to minimize the total action costs. Optimal search al-
gorithms such as A∗ can optimize this preference using ad-
missible heuristics.

Each state variable xi, i = 1, · · · , N is associated with a
domain transition graph (DTG) Gi, a directed graph with
vertex set V (Gi) = Dom(xi) and edge set E(Gi). An edge
(vi, v

′
i) belongs to E(Gi) if and only if there is an action o

with (vi, v
′
i) ∈ eff(o), in which case we say that o is associ-

ated with the edge ei = (vi, v
′
i) (denoted as o � ei). A DTG

Gi is goal-related if the partial assignments that define the
goal states include an assignment in Gi.

Definition 1 An action o is associated with a DTG Gi (de-
noted as o � Gi) if o is associated with any edge in Gi.

3 Expansion Core (EC) Method

Now we propose our search space reduction method. We
characterize standard search algorithms by Algorithm 1. Dif-
ferent search algorithms differ by the remove-first() operation
which fetches one node from the open list. Algorithm 1 is
depth-first search (DFS) when open is a FILO queue, breadth

Algorithm 1: State space search

Input: State space graph G
Output: p, an optimal solution path
closed ← an empty set;1

insert the initial state s0 into open;2

while open is not empty do3

s ← remove-first(open);4

if s is a goal state then process solution path(s);5

if s is not in closed then6

add s to closed;7

open ← insert(expand(s), open);8

first search (BFS) when open is a FIFO queue, best-first
search (including A∗) when open is a priority queue ordered
by an evaluation function.

We define a reduction method as a method to expand
only a subset of the set expand(s) in Algorithm 1 for each
state s during the search. Normally a reduction method can
be combined with any implementation of remove-first() and
any heuristic function to form various algorithms. While the
strategies for remove-first() and the design of heuristic func-
tions have been heavily studied, the possible reduction of
expand() has been rarely studied in planning.

The standard definition of expand(s), for a state s in a
SAS+ task, is the set of states reachable from s by executing
one action. Let the set of executable actions at s be exec(s),
we have expand(s) = {result(s, o)|o ∈ exec(s)}.

Definition 2 For a SAS+ task, for each DTG Gi, i =
1, . . . , N , for a vertex v ∈ V (Gi), an edge e ∈ E(Gi) is
a potential descendant edge of v (denoted as v � e) if 1) Gi

is goal-related and there exists a path from v to the goal state
in Gi that contains e; or 2) Gi is not goal-related and e is
reachable from v. A vertex w ∈ V (Gi) is a potential descen-
dant vertex of v (denoted as v � w) if 1) Gi is goal-related
and there exists a path from v to the goal state in Gi that con-
tains w; or 2) Gi is not goal-related and w is reachable from
v.

In a preprocessing phase, for each DTG Gi, we may de-
cide for all vertex-edge pair (v, e), v ∈ V (Gi), e ∈ E(Gi),
whether v � e in time polynomial to |V (Gi)|+ |E(Gi)|. The
algorithm checks, for each (v, e), e = (u, w), whether v can
reach u and w can reach the goal state, if any. We have v � e
if both can be achieved. The v � w relationship of all vertex
pairs can be decided similarly.

Definition 3 For a SAS+ task, for each action o ∈ O, we
define need(o) as the set

need(o) = pre(o) ∪ {vi|(vi, v
′
i) ∈ eff(o)}.

Intuitively, pre(o) is the set of prevailing preconditions,
while need(o) is the set of all preconditions, including the
second subset in the equation which we call transitional
preconditions. Note that, we do not include ”unknown” in
need(o) since it does not really require a precondition.

Definition 4 For a SAS+ task, given a state s =
(s1, · · · , sN ), for any 1 ≤ i, j ≤ N, i �= j, we call si a
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Figure 1: A SAS+ task with four DTGs. The dashed arrows show preconditions (prevailing and transitional) of each edge (action). Actions
are marked with letters a to f. We see that b and e are associated with more than one DTG.

potential precondition of the DTG Gj if there exist o ∈ O
and ej ∈ E(Gj) such that

sj � ej, o � ej , and si ∈ need(o) (1)

Definition 5 For a SAS+ task, given a state s =
(s1, . . . , sN ), for any 1 ≤ i, j ≤ N, i �= j, we call si a
potential dependent of the DTG Gj if there exists o ∈ O,
ei = (si, s

′
i) ∈ E(Gi) and wj ∈ V (Gj) such that

sj � wj , o � ei, and wj ∈ need(o) (2)

Definition 6 For a SAS+ task, for a state s = (s1, . . . , sN ),
its potential dependency graph PDG(s) is a directed graph in
which each DTG Gi, i = 1, · · · , N corresponds to a vertex,
and there is an edge from Gi to Gj , i �= j, if and only if si is
a potential precondition or potential dependent of Gj .

Definition 7 For a directed graph H , a subset C of V (H)
is a dependency closure if there do not exist v ∈ C and w ∈
V (H) − C such that (v, w) ∈ E(H).

Figure 1 illustrates the above definitions. In PDG(s), G1

points to G2 as s1 is a potential precondition of G2 and G2

points to G1 as s2 is a potential dependent of G1. We also see
that G1 and G2 form a dependency closure of PDG(s).

Given PDG(s), we first find the strongly connected com-
ponents (SCCs) of it. If each SCC is contracted to a single
vertex, the resulting graph is a directed acyclic graph S. We
observe that each SCC in S with a zero out-degree forms a
dependency closure.

The expansion core (EC) method can be described as fol-
lows. In the expand(s) operation, instead of expanding ac-
tions in all the DTGs, we only expand actions in DTGs that
belong to a dependency closure of PDG(s) under the condi-
tion that not all DTGs in the dependency closure are at a goal
state. The operation is described as follows.

Definition 8 The EC method modifies the expand(s) opera-
tion in Algorithm 1 to:

expandr(s) =
⋃

i∈C(s)

{
result(s, o)

∣∣∣∣o ∈ exec(s) ∧ o � Gi

}
,

where C(s) ⊆ {1, · · · , N} is an index set satisfying:

1) The DTGs {Gi, i ∈ C(s)} form a dependency closure in
PDG(s); and

2) there exists i ∈ C(s) such that Gi is goal-related and si

is not the goal state in Gi.

The set C(s) can always be found for any non-goal state s
since PDG(s) itself is always such a dependency closure. If
there are more than one such closure, theoretically any de-
pendency closure satisfying the above conditions can be used
in EC without losing completeness. In practice, we choose
the one with the minimum number of DTGs.

3.1 Theoretical analysis

We define some generic properties of reduction methods be-
fore analyzing the EC method. For a SAS+ task, its state-
space graph is a directed graph G in which each state s is a
vertex and there is an edge (s, s′) if and only if there exists an
action o such that result(s, o) = s′. For a reduction method,
we can get a reduced state-space graph in which there is an
edge (s, s′) only if s′ will be expanded as a child of s by
the reduction method. For EC, the EC-reduced state-space
graph Gr is a directed graph in which each state s is a vertex
and there is an edge (s, s′) if and only if s′ ∈ expandr(s).

For a SAS+ task, a solution sequence in a state-space
graph G is a pair (s0, p), where s0 is a non-goal state,
p = (a1, . . . , ak) is a sequence of actions, and, let si =
result(si−1, ai), i = 1, . . . , k, (si−1, si) is an edge in G for
i = 1, . . . , k and sk is a goal state.

Definition 9 A reduction method is completeness-preserving
if for any solution sequence (s0, p) in the state-space graph,
there also exists a solution sequence (s0, p′) in the reduced
state-space graph.

Definition 10 A reduction method is cost-preserving (re-
spectively, action-preserving) if, for any solution sequence
(s0, p) in the state-space graph, there also exists a solution
sequence (s0, p′) in the reduced state-space graph satisfying
that p′ has the same total action cost as p does (respectively,
p′ is a re-ordering of the actions in p).

Clearly, action-preserving implies cost-preserving, which
implies completeness-preserving.

Theorem 1 The EC method is action-preserving.

Proof. We prove that for any solution sequence (s0, p) in the
state-space graph G, there exists a solution sequence (s0, p′)
in the EC-reduced state-space graph Gr such that p′ is a re-
ordering of actions in p. We prove this fact by induction on
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k, the length of the path p. In our proof, si
j denotes the value

of the DTG Gj at state si.
When k = 1, let a be the only action in p, for any goal-

related DTG Gi such that s0
i is not the goal in Gi, we must

have a � Gi. According to the second condition in Defini-
tion 8, since C(s0) must include the index of a goal-related
DTG whose state is not the goal (let it be j), we have that
a � Gj and that result(s0, a) ∈ expandr(s

0). Thus, (s0, p)
is also a solution sequence in Gr. The EC method is action-
preserving in the base case.

When k > 1, consider a solution sequence (s0, p) in G:
p = (a1, . . . , ak). Let si = result(si−1, ai), i = 1, . . . , k.

We consider two cases.
a) If there exists l ∈ C(s0) such that a1 � Gl, then s1 ∈

expandr(s
0) and (s0, s1) is in Gr. Let p∗ = (a2, · · · , ak),

then (s1, p∗) is also a solution sequence in G. According
the induction assumption, there exists a solution sequence
(s1, p∗∗) in Gr such that p∗∗ is a re-ordering of the actions
in p∗. Therefore, a1 followed by p∗∗ is a solution sequence
(starting from s0) in Gr and is a re-ordering of p.

b) If there exists no l ∈ C(s0) such that a1 � Gl, let
aj be the first action in p such that there exists m ∈ C(s0)
and aj � Gm. Such an action must exist because of the
second condition in Definition 8. Consider the sequence
p∗ = (aj , a1, · · · , aj−1, aj+1, · · · , ak).

For any h ∈ {1, · · · , N} such that s0
h ∈ need(aj), Gm

will point to Gh in PDG(s0) since s0
m is a potential dependent

of Gh. Since m ∈ C(s0), we have h ∈ C(s0). Hence, none
of the preconditions of aj is in Gi, i /∈ C(s0). On the other

hand, s0
i = sj−1

i , ∀i ∈ C(s0) and all the preconditions of aj

are satisfied at at sj−1. Thus, all the preconditions of aj are

satisfied at s0 and aj can be executed at s0.

Let s′ = result(s0, aj). We know (a1, · · · , aj−1) is
an executable action sequence starting from s′. This is
true because none of a1, · · · , aj−1 has a precondition in a
DTG that aj is associated with (otherwise Gm will point

to that DTG, forcing that DTG to be in C(s0), which
is a contradiction to the way we choose aj . Therefore,
moving aj before (a1, · · · , aj−1) will not make any of
their preconditions unsatisfied. Further, since executing
(a1, · · · , aj) and (aj , a1, · · · , aj−1) from s0 lead to the same
state, aj+1, · · · , ak is an executable action sequence after
(aj , a1, · · · , aj−1) is executed.

From the above, we see (s0, p∗) is a solution sequence in
G. Let p∗∗ = (a1, · · · , aj−1, aj+1, · · · , ak), (s′, p∗∗) is a
solution sequence in G. From the induction assumption, we
know there is a sequence p′ which is a re-ordering of p∗∗,
such that (s′, p′) is a solution sequence in Gr. Since s′ ∈
expandr(s

0), we have that aj followed by p′ is a solution

sequence from s0 and is a re-ordering of p∗, which is a re-
ordering of p. Thus, the EC method is action-preserving. �

Since the EC method is action-preserving, it is also cost-
preserving and completeness-preserving.
Example. An example is shown in Figures 2 and 3. Figure 2
shows a SAS+ task, where a1 is the initial state and e5 is
the goal state. In Figure 3, a) and b) show the original and
EC-reduced search space, respectively. We see that EC sig-
nificantly reduces the space. For example, at node a1, since

50

a d
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b c
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3
4

5

G1

G2

20 35 15

5

25

30

35

40

Figure 2: A SAS+ task with two DTGs. Action costs are shown on
edges. All edges are distinct actions, except that (b, c) and (2, 4) are
the same action. The dashed arrows show precondition of actions.

a is not a potential dependent or precondition of G2, we can
only expand G1 instead of expanding both DTGs. As another
example, at b4, 4 is a potential precondition of G1, but b is
not a potential dependent or precondition of G2. So at b4, G1

is a dependency closure and we only expand G1. In our case,
there is no executable action in G1 at b4 and we can safely
conclude that b4 cannot reach the goal although there is an
executable action in G2. The reason is that, if expanding G2

can make true certain preconditions for actions in G1, then b
would be a potential dependent of G2 and G2 would be in the
dependency closure.

In the original space, the optimal cost 145. In the EC-
reduced space we can still find an optimal path (in bold) with
cost 145, which validates the correctness of the EC method.

EC allows us to search on the reduced graph Gr. Since
expandr() is always a subset of expand(), we have
|E(Gr)| ≤ |E(G)|. Further, although |V (Gr)| = |V (G)|, the
vertices reachable from the initial state may be much fewer in
Gr, as shown in Figures 3. The number of vertices is reduced
from 16 to 10 and number of edges from 21 to 9.

Theorem 2 For a SAS+ task, a complete search with the
EC method is still complete; an optimal search with the EC
method is still optimal.

Proof. Since the EC method is completeness-preserving, if
there is a solution path in G, there is also a solution path in
Gr, which will be found by a complete search with the EC
method. Since the EC method is cost-preserving, an optimal
search with the EC method will find an optimal path in Gr,
which is also an optimal path in G. �

Theorem 3 For an admissible A∗ search on a SAS+ task,
for nodes with f < f∗ where f∗ is the cost of the optimal
plan, the A∗ search with the EC method expands no more
such nodes than the original A∗ search does.

Theorem 3 can be easily seen. For each node v that A∗

with the EC method expands, if its f = g + h is less than
the optimal cost, it must also be expanded by the original A∗.
A node with f < f∗ will always be expanded by A∗ but
may not be expanded when EC is used, as shown in Figure 3.
Hence, an A∗ search with the EC method is guaranteed to
expand at most as many nodes as A∗ except possibly through
tie-breaking among nodes with f = f∗.

For inadmissible search, although it is hard to give a similar
result as Theorem 3, empirical study shows that EC typically
also reduces the search cost.

We give a couple of additional comments below.
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Figure 3: Comparison of the original and EC-reduced search space for solving the problem in Figure 2.

Symmetry. Symmetry detection is another way for reduc-
ing the search space [Fox & Long, 1999]. From the view of
node expansion on a SAS+ formalism for planning, we can
see that symmetry removal is different from EC. For exam-
ple, consider a domain with three objects A1, A2, and B,
where A1 and A2 are symmetric, and B has no interaction
with A1 or A2. In this case, symmetry removal will expand
DTGs for (A1 and B) or (A2 and B), whereas EC will only
expand the DTG for B since the DTG for B forms a depen-
dency closure. Intuitively, symmetric removal finds that it is
not important whether A1 or A2 is used since they are sym-
metric, whereas EC finds that it is not important whether B is
used before or after Ai, i = 1, 2 since there is no dependency.

Limitations. EC is most effective for the case where the
DTGs are ”directional” and the inter-DTG dependencies are
not dense. It may not be useful for problems where the DTGs
are strongly connected and there is a high degree of inter-
DTG dependencies. For example, it is not useful for the 15-
puzzle where each piece corresponds to a DTG which is a
clique. Since each move excludes any other piece on the tar-
get position, any action in a DTG depends on all the other
DTGs. Thus, the potential dependency graph is a clique for
all the states and EC cannot give any reduction.

4 Experimental Results

We test on STRIPS problems in the recent International Plan-
ning Competitions (IPCs): IPC3, IPC4, and IPC5. We use a
preprocessor in Fast Downward (FD) [Helmert, 2006] to con-
vert a STRIPS problem into a SAS+ instance with multiple
DTGs. Each instance is assigned 300 seconds to solve.

In our implementation, to save time for computing the
expandr() set for each state, we use a preprocessing phase
to precompute some reachability information of those DTGs
that do not depend on others. For every pair (vi, Gj), vi ∈
Dom(xi), we precompute if vi is a potential dependent or
potential precondition of Gj .

Table 1 shows the results of applying EC to an A∗ search
with the admissible HSP heuristic [Bonet & Geffner, 2001].
Table 2 shows the results of applying EC to the Fast Down-
ward planner with the casual graph (CG) heuristic and with-
out the helper action heuristic. Both HSP and HSP+EC give
the same plan length since they are both optimal (according
to Theorem 2). For CG and CG+EC, their solution lengths
are similar. For instances in Table 2, they give the same plan
length in 21% of the cases, CG gives shorter plans in 41%
of the cases, and CG+EC gives shorter plans in 38% of the
cases.

From the tables, we see that EC can reduce the search cost,
in terms of time and the number of generated nodes, signifi-
cantly for most domains, although the degree of reduction is
domain-dependent. The numbers of expanded nodes are also
largely reduced, although not shown in the table due to space
limit. The reduction is very significant for some domains and
is more than 100 times for some instances. We do not show
results on three domains where the EC method gives no re-
duction: pipesworld, freecell, and storage.

To gain some insights on why the EC method performs
better for certain domains, we examine the causal graph
(CG) [Helmert, 2006] of each domain. The CG is a graph
where each vertex is a DTG and the edges represent depen-
dencies among DTGs. For each CG, we find its strongly con-
nected components (SCCs) and contract each SCC into a ver-
tex. We find that for domains where EC is very effective (such
as rovers and satellite), their CG can be decomposed into
multiple SCCs (for example, 9 SCCs for satellite02), while
for domains where EC is not useful (such as pipesworld and
freecell), their CG is just one single SCC.

From Table 1 and Table 2, we also see that the EC method
gives significant reduction for both admissible (HSP) and in-
admissible (CG) heuristics. It seems that the degree of reduc-
tion that EC can give is more related to the domain struc-
ture than to the quality of heuristics. We explain this obser-
vation by the following. The goal of the EC method is to
avoid trying redundant partial orderings of actions. For ex-
ample, at a state s, if the action orderings b → a and a → b
are determined to be redundant by the EC method, then EC
will choose to expand only one ordering, say a → b. Us-
ing a better heuristic may not help prune one of those two
orderings. Let sa = result(s, a), sb = result(s, b), and
sab = result(sa, b) = result(sb, a). Normally, we would
have f(sa) ≤ f(sab) and f(sb) ≤ f(sab) if the heuristic is
consistent. Hence, sa and sb will both be expanded before sab

is expanded and the search will essentially try both b → a and
a → b even if the heuristic is highly accurate. This is essen-
tially the same reasoning used in [Helmert & Röger, 2008] to
explain why an almost perfect heuristic may still lead to high
search costs. The EC method is orthogonal to the design of
heuristics and can reduce redundant orderings.

5 Conclusions

We have proposed EC, a completeness-preserving reduction
method for SAS+ planning which provides an automatic way
to reduce the search space without losing completeness and
optimality. EC is a general principle for removing redun-
dancy in search and does not require any parameter tuning.
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ID
HSP+EC HSP

ID
HSP+EC HSP

Time Node Time Node Time Node Time Node

zeno02 0.01 93 0.01 127 zeno03 0.08 4679 0.08 5762

zeno04 0.16 9585 0.14 10215 zeno05 1.59 157406 1.55 185715

zeno06 11.11 1395342 11.3 1624301 zeno07 11.4 1379764 11.69 1628619

rovers01 0.01 949 0.01 2043 rovers02 0.01 254 0.01 1019

rovers03 0.05 2869 0.03 5724 rovers04 0.02 935 0.01 2399

rovers05 44.51 3768608 - - rovers07 231.9 15093217 - -

rovers5-01 0.01 949 0.01 2043 rovers5-02 0.01 254 0.01 1019

rovers5-03 0.05 2869 0.03 5724 rovers5-04 0.02 935 0.01 2399

rovers5-05 45.68 3768608 - -

tpp01 0.01 5 0.01 8 tpp02 0.01 8 0.01 34

tpp03 0.01 11 0.01 188 tpp04 0.01 14 0.01 1130

tpp05 1.35 53715 0.34 72689

satellite01 0.01 367 0.01 437 satellite02 0.07 5820 0.04 6724

satellite03 0.54 31123 1.13 151351 satellite04 6.38 781393 16.13 3894047

depots01 0.01 725 0.01 1000 depots02 1.01 17613 1.07 17903

pathways1 0.01 146 0.01 162 pathways2 0.06 2600 0.03 2890

pathways3 1.48 47852 0.37 82588 pathways4 22.4 597628 12.86 2112481

driverlog01 0.01 293 0.01 373 driverlog02 2.32 192915 1.99 417835

driverlog03 0.09 15302 0.09 22685 driverlog04 12.87 1430792 26.29 4794197

driverlog05 135.78 14806514 144.22 24223525 driverlog06 6.22 650872 8.25 1289283

driverlog07 20.36 1960212 77.76 10115601

Table 1: Comparison of an A∗ search with the HSP heuristic and
HSP+EC. We give CPU time in seconds and number of generated
nodes. ”-” means timeout after 300 seconds.

EC is orthogonal to and can be combined with the develop-
ment of other components of search such as heuristics and
search control strategies.
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