
Incremental Heuristic Search for Planning with Temporally Extended Goals and
Uncontrollable Events

Adi Botea∗

NICTA† and

the Australian National University

Canberra, ACT

André A. Ciré

Institute of Computing

University of Campinas

Brazil

Abstract

Planning with temporally extended goals and un-
controllable events has recently been introduced as
a formal model for system reconfiguration prob-
lems. An important application is to automatically
reconfigure a real-life system in such a way that its
subsequent internal evolution is consistent with a
temporal goal formula.

In this paper we introduce an incremental search
algorithm and a search-guidance heuristic, two
generic planning enhancements. An initial prob-
lem is decomposed into a series of subproblems,
providing two main ways of speeding up a search.
Firstly, a subproblem focuses on a part of the ini-
tial goal. Secondly, a notion of action relevance
allows to explore with higher priority actions that
are heuristically considered to be more relevant to
the subproblem at hand.

Even though our techniques are more generally
applicable, we restrict our attention to planning
with temporally extended goals and uncontrollable
events. Our ideas are implemented on top of a suc-
cessful previous system that performs online learn-
ing to better guide planning and to safely avoid po-
tentially expensive searches. In experiments, the
system speed performance is further improved by a
convincing margin.

1 Introduction

Many real-life systems, such as a power grid, a network of
water pipes, or the machinery inside a factory, need to be
configured such that their subsequent functioning, called the
nominal behaviour, is the desired one. The problem can be
formalized as an extended planning model, which handles
both temporal logic goals and events, transitions that are not
under the control of a planning agent. Configuration steps are
represented as actions under the control of the planning agent.
As soon as a configuration process completes, the system
starts to function on its own (nominal behaviour). Transitions

∗We thank the annonymous reviewers for their feedback.
†NICTA is funded through the Australian government’s baking

Australia’s ability initiative.

during the nominal behaviour are modelled as uncontrollable
events. The nominal behaviour is a non-deterministic pro-
cess. If several events are applicable in a state, only one of
them, selected at random, will occur. The planning task is to
configure a system in such a way that every possible evolu-
tion (event sequence) in the nominal behaviour is consistent
with a goal formula expressed in temporal logic.

Despite its importance, the problem of reconfiguring a sys-
tem to achieve a desired subsequent nominal behaviour has
received little attention in the AI literature. In addressing this
need, this paper presents the following main contributions.

We introduce an incremental planning algorithm based on
goal decomposition, and a search-guiding heuristic that esti-
mates the relevance of an action with respect to a goal. The
relevance heuristic is fast to compute at runtime, as all the
needed information can be obtained in a pre-processing step.
Even though our heuristic might seem somewhat simpler than
current heuristics used in classical planning, it has the ad-
vantage that it works for temporally extended goals. Adapt-
ing other heuristics from reachability goals to temporally ex-
tended goals that model the nominal behaviour is by no means
a trivial task.

The incremental algorithm and the relevance heuristic are
not limited to planning with temporal goals and uncontrol-
lable events. However, in this work we restrict our attention
to this planning model. Further application ideas are briefly
discussed in the future work section. Our enhancements are
implemented on top of an existing solver for planning with
temporal goals and uncontrollable events. The basic solver is
already fast, as it contains an online learning step that helps
guide the planning and avoid potentially expensive (model-
checking) searches. See a brief overview in Section 3. In ex-
periments, the enhancements presented in this paper further
improve the solver speed by a convincing margin.

2 Related Work

The area of configuration relates to composing pre-defined
parameterisable components in order to satisfy a set of con-
straints and some desired requirements [Mittal and Fray-
man, 1989; Sabin and Weigel, 1998]. AI approaches have
been established as central technologies to the configuration
paradigm, as they provide the appropriate formalism and ef-
ficient reasoning methods for coping with large configuration
systems and complex component interactions. A distinctive

1647

feature of our work is that we consider the future evolution of
the system as part of the task objective.

Planners such as TLPLAN [Bacchus and Kabanza, 2000]

use temporal logic to represent search control knowledge.
More recently, temporal logic has been used to express hard
and soft constraints (preferences) in a plan. Examples of sys-
tems that implement this paradigms are SGPLAN [Hsu et al.,
2006], MIPS [Edelkamp et al., 2006] and HPLAN-P [Baier
et al., 2007]. Temporal logic has been integrated in reactive
planning, where actions must respond to event occurrences
(e.g., [Barbeau et al., 1998]). Differently from these contri-
butions, the temporal information in our configuration prob-
lem refers only to transitions in the future nominal behaviour,
not to actions controllable by the planning agent. Moreover,
there is no goal state to reach in reactive planning, while our
model has a clear notion of a goal state.

The incremental search algorithm can be seen as a gen-
eralization of planning with goal agendas [Koehler, 1998].
Goal agendas require completeness conditions that often can-
not be satisfied in practice. For this reason, one of the most
popular goal agenda implementations, integrated in the FF
planning system [Hoffmann and Nebel, 2001], gives up on
completeness. In contrast, our approach is complete, as it al-
lows backtracking from one subproblem to another in case a
(local) solution was not found.

Our incremental planning approach fits into the broader
area of factored planning. The idea in factored planning is to
explore loose planning domain interactions in a divide-and-
conquer fashion, aiming at improving the search efficiency.
Recent approaches, such as [Amir and Engelhardt, 2003;
Kelareva et al., 2007], are based on a representation of the
subdomains into a tree-like structure that captures the inter-
actions among them. Brafman and Domshlak [2008] formal-
ize the concept of coupling in a multi-agent planning system,
and introduce a problem decomposition method based on a
partitioning of the set of actions. In contrast, we focus on an
iterative decomposition of the temporally extended goal.

Partitioning an initial pool of actions into relevant and ir-
relevant actions is a typical preprocessing step implemented
in most modern planning systems. The goal is to reduce the
search effort by ignoring actions that are either provably or
heuristically ruled out as irrelevant to the problem at hand.
Our relevance heuristic extends this idea to get a finer distinc-
tion between relevant actions. Actions are assigned relevance
scores that are useful to heuristically guide a search.

3 Background

The formal planning problem we address has been intro-
duced in previous work [Ciré and Botea, 2008]. We briefly
reproduce the definition. A planning task is a structure
〈S, s0, ϕ, γ, A, E〉 with S a finite state space, s0 ∈ S an initial
state, and ϕ a temporal logic formula that describes the goal.
The function γ : S × (A ∪ E) → S models deterministic
transitions in the state space. The transitions are partitioned
into a set of actions A (i.e., transitions under the control of
the planner), and a set of uncontrollable events E that define
the nominal behavior of a system. As in STRIPS planning,
each transition a has a set of preconditions pre(a), a set of

add effects add(a) and a set of delete effects del(a).
The state (sub)space P(s) generated from a given state s

by applying only actions is called the planning space of s.
Likewise, the (sub)space M(s) generated from s by applying
only events is called the model checking space of s.

The planning task is to find a finite sequence of actions
that can be applied to s0 and that reaches a goal state. A state
is a goal state if it satisfies ϕ. By definition, a state q ∈ S
satisfies a temporal logic formula φ iff every event sequence
that originates in q (i.e., is applicable to q) satisfies φ.

We add our contributions on top of an existing solver [Ciré
and Botea, 2008], which we’ll call CB in the rest of this paper.
A brief description and analysis of CB are necessary for a
better understanding of the remaining sections. CB performs
a global search in P(s0), the planning space of the initial state
s0. To check whether a state s ∈ P(s0) is a goal, a model
checking search is performed in M(s). If all event sequences
that originate in s are consistent with ϕ, then s is a goal state.
Otherwise, an online learning step analyzes event sequences
where ϕ does not hold. A condition c is extracted that holds in
s and explains the failure of ϕ along such an event sequence.
All states where c holds are guaranteed not be goal states.
All conditions c are disjunctively combined into the global
learned information I .

A main benefit of using I is the ability to eliminate un-
necessary model checking searches. There is no need to run
a model checking search in a state s where I holds, as s is
guaranteed not to be a goal state. As a second benefit, I can
guide the global search in the planning space. ¬I can be seen
as a weak form of a reachability goal, which indicates what
states to avoid instead of indicating what states to reach. An
additional complication raises from the fact that I evolves in
time, and therefore different states could be evaluated using
different reachability goals ¬I . For such reasons, ¬I is not
used not to compute heuristic estimates of the distance to a
goal state. It is used only to partition the planning space into
helpful states and rescue states [Hoffmann and Nebel, 2001;
Vidal, 2004], a process that we call helpful partitioning. As
a result, the savings achieved in the global search appear to
be more limited than the savings in the model checking com-
ponent. Our contributions, outlined in the following sections,
address this limitation.

4 Incremental Planning

The search in the planning space is decomposed into a series
of subproblems. Assume the global goal is expressed as a
conjunction of subformulas ϕ = ϕ1∧ϕ2 · · ·∧ϕn. A subprob-
lem is created for each subgoal φk = ϕ1 ∧ · · · ∧ ϕk. That is,
the algorithm tries to achieve the first subgoal, then achieve
the first two subgoals and so on. For each k ∈ {1 . . . n},
the corresponding subproblem is a local search Sk that starts
from a state that satisfies φk−1 and seeks a state that satisfies
φk. (Assume φ0 = true.) A state that satisfies φk is called a
local goal state for Sk. A local search Sk can be interrupted,
when searching in other subproblems becomes necessary, and
possibly resumed later. An interruption is performed to either
advance to the next subproblem or to backtrack to the previ-
ous subproblem. The search performed in a subproblem be-

1648

Figure 1: Example of incremental planning. Arrows indicate
advancing and backtracking from one subproblem to another.

tween two consecutive interruptions is called a search round.
All searches share a global closed list and a global transposi-
tion table for duplicate detection. Each subproblem Sk has its
own open list Ok. An open list Ok is ordered using the help-
ful partitioning as a main criterion and the relevance heuristic
value as a tie-breaker.

Figure 1 illustrates how incremental search works. A
search round for S1 is launched from s0 to seek a state where
ϕ1 is satisfied. As soon as a local goal state s1

g is found, S1

is interrupted. Its open list is not discarded, since this search
might be resumed in the future, as shown later in this exam-
ple. A search round for S2 is launched from s1

g to seek a
state where φ2 = ϕ1 ∧ ϕ2 is satisfied. In our example, as-
sume that, during this search round, S2 explores the entire
subtree of s1

g without finding a local goal state. Note that
this is equivalent to the O2 open list becoming empty. As no
local goal state was found in the most recent search round,
the algorithm backtracks to S1 and resumes it to seek another
state that satisfies ϕ1. As soon as a new local goal state q1

g

is found, it is added to O2 and S2 is resumed. Since the pre-
vious search round in S2 ended up with an empty open list,
the new search round is rooted in q1

g . The process continues
in this fashion until either a search round in Sn finds a solu-
tion (global success) or S1 ends up with an empty open list
(no global solution). The steps of the incremental search al-
gorithm are outlined more formally in Algorithm 1. See the
explanatory comments and the previous example to follow
the pseudocode more easily.

Algorithm 2 describes a search round in a subproblem. At
line 2, it enumerates candidate goal states, states that could
possibly satisfy the local temporal goal φk. Notice that a lo-
cal search is allowed to temporarily destroy the previous goal
φk−1, but in such a case it must re-achieve it in order to sat-
isfy the stronger goal φk. Processing a candidate goal state
(lines 5–11) is similar to how CB processes states in its global
search. As outlined in Section 3, a model checking search is
run to test whether the candidate goal state at hand is a (lo-
cal) goal state indeed (line 7). The model checking search is
safely skipped when possible (lines 5–6). If a model checking
search returns a failure, a new online learning step is triggered

Algorithm 1 Incremental planning.

1: I ← false {initialize learned info (global variable)}
2: k ← 1 {index of the subproblem at hand}
3: s0 → O1 {initialize open list of first subproblem}
4: s1

0 ← s0 {root of search in first subproblem is s0}
5: while true do
6: (sk

g , πk) ← SearchRoundInSubproblem(k) {return

both final state and plan}
7: if πk = nil then
8: k ← k − 1 {backtrack to previous subproblem}
9: if k = 0 then

10: return no global solution
11: else
12: if k = n then
13: return π1; π2; . . . ; πn {global success}
14: else
15: sk

g → Ok+1

16: sk+1

0 ← sk
g {root of new search round is sk

g}
17: k ← k + 1 {move on to next subproblem}

(line 11).

To enumerate candidate goal states (line 2), the planning
space P(sk

0) is explored, where sk
0 , the current local root, is

set as shown in Algorithm 1, lines 4 and 16. The exploration
is guided with both helpful partitioning and a new relevance
heuristic, described in detail in Section 5. As in CB, helpful
states have higher priority, and a rescue state is explored only
when no helpful states are currently contained in the open
list. This is similar to using a heuristic that can take only
two possible values (one value for helpful states and another,
lower-priority value for rescue states). A major limitation of
helpful partitioning is that it cannot distinguish further be-
tween states that belong to the same partition. For example,
all helpful states look equally good to the helpful partitioning
heuristic. For this reason, CB performs blind search as long
as the set of helpful states in the open list is not empty. We
address this by adding a secondary ordering criterion, given
by the relevance heuristic. The relevance heuristic can take
many possible values, and therefore states can potentially be
ordered much more precisely.

Algorithm 2 SearchRoundInSubproblem.

1: while true do
2: (sk

g , πk) ← GetNextCandidateGoalState() {πk is the

action sequence from sk
0 to sk

g}

3: if no state sk
g is found then

4: return (nil, nil) {no solution}
5: if sk

g |= I then

6: continue {no need for a costly mod. check. round}
7: ModelChecking(sk

g) {check if sk
g satisfies φk}

8: if model checking succeeds then
9: return (sk

g , πk)
10: else
11: I ← I ∨ ExtractInfo() {learning}

1649

As the closed list, the transposition table, and the learned
information I are global, the effort spent in a search round
can be reduced using data acquired in previous search rounds.
When expanding a state, successors that have been visited be-
fore, either in the current or in a different local search are
skipped. This ensures that, despite running multiple searches
in the global planning space, a state does not have to be ex-
panded more than once.

A global I allows to eliminate more model checking
searches. The global information I decomposes as I =
I1 ∨ I2 ∨ . . . In, where Ik is the information learned while
searching in the k-th subproblem, using φk as a local goal.
States s where Ik holds are guaranteed not to satisfy φk. If
the learned information were used only locally, then I would
be replaced with Ik at line 5 of Algorithm 2. As I is weaker
than Ik, the test at line 5 will succeed more often when I
is used, skipping more model checking searches. As argued
below, this choice has no negative effect on the completeness.

The incremental algorithm is sound and complete. The
soundness is obvious, as a global success is reported only
when a state that satisfies φn = ϕ1 ∧ · · · ∧ ϕn = ϕ is found.
To better emphasize the completeness, we point out that the
incremental algorithm can be seen as a global search algo-
rithm, except for two main differences: (1) there are multiple
open lists; and (2) when processing a state, the goal test is
performed for a goal formula ψ that can be weaker than the
global goal ϕ (i.e., ϕ = ψ ∧ α, with α an arbitrary formula).
We discuss each of these differences in turn.

The concatenation of the local open lists can be seen as a
global open list where pop and push operations can be per-
formed at arbitrary, yet well-specified locations. For exam-
ple, when searching in the k-th subproblem, only the portion
corresponding to Ok allows insertion and extraction opera-
tions. Clearly, such a global open list affects the direction in
which the planning space is explored, but has no impact on
the algorithm completeness.

The goal test for each visited state s is performed at lines
5 and 7–8 in Algorithm 2. If s is ruled out as a local goal
at line 5 (case 1), it means that s |= I , which is equivalent
to s |= I1 ∨ I2 ∨ . . . In and, further, to (∃j) : s |= Ij . The
last expression implies that s does not satisfy φj . Since ϕ =
φj ∧ ϕj+1 ∧ . . . ϕn, we obtain that s does not satisfy ϕ. If
s is ruled out as a local goal at lines 7–8 (case 2), we obtain
that s does not satisfy φk and, following a similar argument
as above, s does not satisfy ϕ. In either case, a state ruled out
as a (local) goal is guaranteed not to satisfy the global goal ϕ.
Therefore, we never miss out solutions and the completeness
is not affected.

5 Relevance Heuristic

Besides considering only a part of the global goal, a subprob-
lem keeps the search focused by using a heuristic measure
of how relevant actions are to the subproblem at hand. In-
formally, this relevance heuristic gives priority to actions that
guide the search towards either local goal states (exploitation)
or non-goal states where learning new information can be
successful (exploration). The latter scenario is useful to dis-
cover information that would speed up the rest of the solving

process. The sooner such information is learned, the greater
the potential savings are.

Given a subproblem, all actions are assigned numerical val-
ues as a measure of their relevance. As illustrated later in this
section, smaller values correspond to more relevant actions.
As no actions are ruled out as totally irrelevant, the algorithm
completeness is not affected. An action can have a different
relevance to two different subproblems. However, the rele-
vance of an action to a given subproblem is fixed from one
search round to another. Therefore, the relevance can be ob-
tained in a pre-processing step.

When computing the relevance, the only subproblem-
specific information given as an input parameter is a tem-
poral formula ψ. See details about how ψ is selected for
each subproblem later in this section. The relevance is com-
puted with an iterative, Dijkstra-like procedure called RC.
RC maintains a list of atoms L that is initialized to A(ψ),
the set of atoms in ψ, and gets extended with action and event
preconditions. Initially, each action (or event) a has its rel-
evance value rψ(a) set to ∞. At a given iteration i, zero
or more transitions (actions and events) a have their rele-
vance rψ(a) set to i and have their preconditions added to
L. For this to happen, a transition a must satisfy both follow-
ing conditions: (1) rψ(a) = ∞ and (2) add(a) ∩ L
= ∅ or
del(a)∩L1
= ∅. L1 is the subset of L that contains the atoms
in ψ and the preconditions of the events marked as relevant so
far: L1 = A(ψ) ∪ {p|(∃e ∈ E) : rψ(e) < ∞∧ p ∈ pre(e)}.
The process stops at an iteration iM where a fixpoint is
reached. All actions a with rψ(a) = ∞ get assigned a rel-
evance value of iM + 1.

By definition, we say that an action a impacts the formula
ψ if (add(a)∪del(a))∩L1
= ∅. This means that a can either
change the truth value of some atoms in ψ, or it can affect the
preconditions of an event sequence that can change the truth
value of some atoms in ψ.

In a local search round, relevant actions set the grounds
to apply actions that are even more relevant, up to the point
where a relevant action impacts the formula ψ. This strategy,
that guides the search towards making changes that impact
the formula ψ, is more desirable than searching in an area
where the changes in the current state have no relevance to
the goal at hand. One main advantage is that a state where ψ
holds is more likely to be achieved. Furthermore, the changes
in the current state produced by actions that impact ψ can
trigger more activations of the learning procedure and hence
end up in having more comprehensive information available.

For the subproblem Sk, the input parameter ψ given to RC
is set to ϕk instead of the entire subgoal φk = φk−1∧ϕk . We
have made this choice based of the following observations.
Since φk−1 is satisfied by searching in the previous subprob-
lems, the current search round should focus on achieving
ϕk without temporarily breaking φk−1, unless this is neces-
sary. In addition, computing the relevance with respect to
a smaller formula keeps a search more focused due to the
following monotonicity property. Consider two temporal for-
mulas ψ1 and ψ2 with A(ψ1) ⊆ A(ψ2). For a given rele-
vance value v, let Aψ(v) be the set of all actions whose rel-
evance with respect to ψ is v. Then it can easily be shown
that

⋃
i≤v Aψ1

(i) ⊆
⋃

i≤v Aψ2
(i). In other words, using a

1650

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

T
im

e
(s

)

Instance

CB Solver
Incremental Planning + Relevance (CB+I+R)

Figure 2: Time on a logarithmic scale.

smaller formula tends to build a smaller pool of actions that
have a higher priority, focusing the search more effectively.

6 Experimental Results

We have implemented the incremental algorithm and the rel-
evance heuristic in Java 1.6, on top of the CB solver [Ciré and
Botea, 2008]. The domain [Ciré and Botea, 2008] used in ex-
periments is available online at http://abotea.rise.
anu.edu.au/factory-benchmark/. An instance has
machines and repositories, as in a factory. Planning actions
add and remove connections between machines and reposito-
ries, and clean machines after having used certain raw prod-
ucts. Uncontrollable events include the automatic transfer of
raw material from repositories to machines, and the creation
of final products by combining specific raw materials. The
nominal behaviour (LTL goal) states that certain raw mate-
rials must never mix (otherwise the machine would break
down) and that certain finite products must eventually be pro-
duced. There are 350 instances, with the number of actions
and events ranging each from 50 to 150. The temporal for-
mula size ranges from 5 to 15 conjunctive clauses. As we
didn’t study goal ordering heuristics yet, sub-goals are con-
sidered in the order they appear in the input file.

The experiments are peformed on an Intel 3.2 GHz ma-
chine, with 4 GB RAM. The time is set to 30 minutes for
each instance. The planner stops as soon as the first solution
is found or the problem is proven to have no solution. The
experiments focus on a few directions. First, we compare the
CB solver with the enhanced solver. Then, we analyze how
each of our two main enhancements contribute to the perfor-
mance. Finally, the effect on the solution quality is evaluated.

To save room, we will focus only on instances where a so-
lution exists. For the remaining ones, there is no significant
difference in performance among the planners. This is ex-
pected to happen, since the numbers of visited nodes in plan-
ning are necessarily the same for all solvers in such instances.

Figure 2 compares the original CB and the enhanced solver
(CB+I+R). In very easy problems, both solvers are fast. Ex-
cept for some easy problems, CB is almost never faster. As
problems grow, the speed difference tends to increase, and
CB+I+R rarely needs more than 10 seconds to solve a prob-
lem in this set. The largest improvement over CB exceeds

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20 40 60 80 100 120 140 160 180

V
is

ite
d

N
od

es

Instance

CB Solver
Incremental Planning + Relevance (CB+I+R)

Figure 3: Visited nodes in planning.

 1

 10

 100

 1 10 100

C
B

+
I -

 T
ot

al
 T

im
e

(s
)

CB - Total Time (s)

Figure 4: Impact of incremental planning algorithm.

two orders of magnitude. This gain in performance is a result
of both visiting fewer states in the planning space, as shown
in Figure 3, and performing fewer model checking rounds.

Next we analyze the speed-up gain contributed by each
of the two enhancements individually. Figure 4 presents a
time comparison between global search (CB) and incremental
search (CB+I). Each data point corresponds to a problem in-
stance. The x-coordinate is the time required by CB, whereas
the y-coordinate corresponds to CB+I. If a data point is below
the diagonal, then CB+I is faster in that instance. Most data
points fall below the diagonal. The only cases when CB is
faster correspond to relatively easy instances.

To illustrate the impact of the relevance heuristic, Figure 5
presents a comparison between global search (CB) and global
search enhanced with the relevance heuristic (CB+R). Simi-
larly to the behaviour of the incremental algorithm (Figure 4),
the relevance heuristic significantly speeds up the solver in
many cases. Most instances that are challenging for CB be-
come quite easy with the heuristic in use.

Plan length is improved with a simple post-processing step.
Even though plans are generated as a totally ordered se-
quence, they can be generalized to a partial ordering, with
many possible total orderings. Our procedure attempts to re-
arrange a plan into a sequence that contains cycles (state rep-
etitions). The action sequence between two identical states is

1651

 1

 10

 100

 1 10 100

C
B

+
R

 -
 T

ot
al

 T
im

e
(s

)

CB - Total Time (s)

Figure 5: Impact of relevance heuristic.

Figure 6: Impact on plan length.

removed. The process continues as long as possible.

Figure 6 summarizes the differences in plan length between
CB and the three enhanced versions (CB+R, CB+I, CB+I+R).
Given an enahced solver version Y , the percentage distance
for an instance is computed as (sY −sCB)/sCB ∗100, where
sX is the plan length obtained by planner X after post-
processing. Even though the impact on plan length varies in
both directions, the enhanced planner versions tends to pro-
duce longer plans than CB. In two thirds of the cases, the
percentage distance stays within the [−50, 50] range. Cases
where it exceeds 100% (i.e., enhanced-planner solutions are
more than double in length) are rare. We leave a better study
of plan quality as future work.

7 Conclusion and Future Work

The problem of re-configuring a system, such that it subse-
quently functions as desired, can be formalized as a plan-
ning problem with temporal goals and uncontrollable events.
This paper introduces an incremental search algorithm and
a heuristic based on action relevance, two generally appli-
cable planning enhancements. We apply these to planning
with temporal goals and uncontrollable events. An existing
planner designed for this model, that can achieve an impres-
sive speed-up due to an online learning method, is used as
a benchmark in experiments. Our enhancements further im-

prove the speed considerably.
In the future, we plan to add goal ordering heuristics to the

incremental search approach, aiming at further speed-up and
better solution quality. The incremental algorithm and the rel-
evance heuristic can easily be adapted to classical planning.
We plan to use them in combination with existing heuristics,
e.g., by using the relevance heuristic as a secondary ordering
criterion, to break ties in the main heuristic.

References

[Amir and Engelhardt, 2003] E. Amir and B. Engelhardt.
Factored Planning. In IJCAI-03, pages 929–935, 2003.

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza.
Using Temporal Logics to Express Search Control Knowl-
edge for Planning. Artif. Intelligence, 16:123–191, 2000.

[Baier et al., 2007] J. Baier, F. Bacchus, and S. McIlraith. A
Heur. Search Approach to Planning with Temporally Ex-
tended Preferences. In IJCAI-07, pages 1808–1815, 2007.

[Barbeau et al., 1998] M. Barbeau, F. Kabanza, and R. St-
Denis. A Method for the Synthesis of Controllers to Han-
dle Safety, Liveness, and Real-Time Constraints. IEEE
Transact. on Automatic Control, 43(11):1453–1559, 1998.

[Brafman and Domshlak, 2008] R. I. Brafman and
C. Domshlak. From One to Many: Planning for
Loosely Coupled Multi-Agent Systems. In ICAPS-08,
pages 28–35, 2008.

[Ciré and Botea, 2008] A. A. Ciré and A. Botea. Learning in
Planning with Temporally Extended Goals and Uncontrol-
lable Events. In ECAI-08, pages 578–582, 2008.

[Edelkamp et al., 2006] S. Edelkamp, S. Jabbar, and
M. Nazih. Large-Scale Optimal PDDL3 Planning with
MIPS-XXL. In Booklet of IPC-5, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The
FF Planning System: Fast Plan Generation Through
Heuristic Search. JAIR, 14:253–302, 2001.

[Hsu et al., 2006] C. W. Hsu, B. W. Wah, R. Huang, and
Y. X. Chen. Handling Soft Constraints and Preferences
in SGPlan. In ICAPS Workshop on Preferences and Soft
Constraints in Planning, pages 54–57, 2006.

[Kelareva et al., 2007] E. Kelareva, O. Buffet, J. Huang, and
S. Thiébaux. Factored Planning Using Decomposition
Trees. In IJCAI-07, pages 1942–1947, 2007.

[Koehler, 1998] J. Koehler. Solving Complex Planning
Tasks Through Extraction of Subproblems. In AIPS-98,
pages 62–69, 1998.

[Mittal and Frayman, 1989] Sanjay Mittal and Felix Fray-
man. Towards a generic model of configuration tasks. In
IJCAI-89, pages 1395–1401, 1989.

[Sabin and Weigel, 1998] Daniel Sabin and Rainer Weigel.
Product configuration frameworks - a survey. IEEE Intel-
ligent Systems, 17:42–49, 1998.

[Vidal, 2004] V. Vidal. A Lookahead Strategy for Heuristic
Search Planning. In ICAPS-04, pages 150–159, 2004.

1652

