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Abstract

This paper deals with evolutionary clustering,
which refers to the problem of clustering data with
distribution drifting along time. Starting from a
density estimation view to clustering problems,
we propose two general on-line frameworks. In
the first framework, i.e., historical data depen-
dent (HDD), current model distribution is designed
to approximate both current and historical data dis-
tributions. In the second framework, i.e., histor-
ical model dependent (HMD), current model dis-
tribution is designed to approximate both current
data distribution and historical model distribution.
Both frameworks are based on the general exponen-
tial family mixture (EFM) model. As a result, all
conventional clustering algorithms based on EFMs
can be extended to evolutionary setting under the
two frameworks. Empirical results validate the two
frameworks.

1 Introduction

Clustering is a fundamental problem in machine learning and
data mining. Conventional clustering algorithms, such as
k-means [Hartigan and Wong, 1979] and spectral cluster-
ing [Ng et al., 2002], focus on static data and assume all
the data are I.I.D. (Independent and Identically-Distributed)
samples from one underlying distribution. However, in lots of
dynamic applications, data come from different time epochs.
Due to concept drifting or noise varying, the distribution of
epoch data often drifts along time. For example, contents un-
der the topic “life style” in a Bulletin Board System (BBS)
often differ from those of one year ago while not deviating
too much. The clustering task on this kind of data raised the
problem of evolutionary clustering [Chakrabarti et al., 2006].
In this case, the final target is to provide a set of partitions,
one for each time epoch. In addition, as the data distributions
of adjacent epochs are close to each other, the clustering re-
sults of epochs should be smooth along time.

We should distinguish evolutionary clustering from incre-
mental clustering [Charikar et al., 1997]. Incremental clus-
tering gives a single partition for all the data, although the
data enter into the algorithm sequentially. Two properties are
emphasized in incremental clustering, the first is the one-pass

manner of the access to data, and the second is the equiv-
alence between the original non-incremental algorithm and
the corresponding incremental one.

The necessity of evolutionary clustering lies in two aspects.
First, when distribution drifts, applying a conventional clus-
tering algorithm to overall data may not be appropriate. Sec-
ond, if we apply a conventional clustering algorithm indepen-
dently to each epoch data, the smoothness of clustering re-
sults along time can not be preserved. The second aspect can
be realized from two facts. (1) For non-deterministic clus-
tering algorithms relying on initialization, such as k-means,
Gussian Mixture Model (GMM), etc., the clustering results of
adjacent epochs may be quite different from each other due
to local optima, even when the two distributions are almost
the same. (2) For deterministic clustering algorithms, such as
spectral clustering and agglomerative hierarchical clustering,
data noise may lead to different clustering results between
adjacent epochs.

Evolutionary clustering can be off-line or on-line1. Two
off-line methods have been proposed by [Wang et al., 2007]

and [Ahmed and Xing, 2008].

The first on-line method is proposed by [Chakrabarti et al.,
2006]. In their approach, the smoothness property is ensured
by adding a temporal loss to the original loss of static clus-
tering. The temporal loss penalizes the deviation of current
clustering result from the historical. Using the approach, they
proposed an evolutionary k-means algorithm: each center at
epoch i should be matched to the nearest center at i − 1 as a
pair, and distances between all pairs of centers were summed
as the temporal loss. As pointed out in [Chi et al., 2007], this
heuristic approach could be unstable, i.e., sensitive to small
perturbation on the centers. Using the same idea, [Chi et
al., 2007] extended spectral clustering to evolutionary setting.
Moreover, [Tang et al., 2008] extended evolutionary spectral
clustering further to multi-relational clustering. However, in
[Chi et al., 2007] and [Tang et al., 2008], data to be clus-
tered at different time epochs should be identical, i.e., data of
epochs are “snapshots” of the same set of objects at different
time. These kind of methods have difficulties to deal with
the scenario when data of different epochs are arbitrary I.I.D.

1When doing clustering at epoch i, in off-line setting, the overall
data of all epochs are available, while in on-line setting, only the
data before epoch i are available.
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samples from different underlying distributions. However, in
many cases, we desire a good solution which is able to deal
with the variation of data size and cluster number.

In this paper, we focus on the on-line setting when data of
different epochs need not be identical. Starting from a density
estimation view to clustering, we propose two general frame-
works. In the first framework, i.e., historical data depen-
dent (HDD), current model distribution is designed to approx-
imate both current and historical data distributions. In the
second framework, i.e., historical model dependent (HMD),
current model distribution is design to approximate both cur-
rent data distribution and historical model distribution. Both
frameworks are based on the general exponential family mix-
ture (EFM) model. As a result, all conventional clustering
algorithms based on EFMs can be extended to evolutionary
setting under the two frameworks. Experiments on both syn-
thetic and real data sets demonstrate the validation of the two
frameworks.

2 Notations and Preliminaries

X = (x1, · · · ,xn) denotes observed data, which are i.i.d
samples from an unknown underlying distribution F (x) (with

density f(x)). About the superscript, x(i) denotes an item at

time epoch i, while x
[t] denotes an item at the t’th step in an

iterating algorithm. Ef [·] is the expectation under distribu-
tion f .

2.1 Exponential Family Mixture (EFM)

An exponential family is a probability distribution set FΨ,
from which each density function can be expressed in the
form

pΨ(x; θ) = exp {〈θ, T (x)〉 −Ψ(θ)} p0(T (x)) (1)

where θ, T (x), and Ψ(θ) are called natural parameter, nat-
ural statistic, and cumulant function, respectively.

[Banerjee et al., 2005] stated that each exponential family
distribution can be uniquely expressed using Bregman diver-
gence

pΨ(x, θ) = exp {−dφ(T (x), μ(θ))} bφ(T (x)) (2)

where φ and bφ are functions uniquely determined by Ψ, dφ

is the Bregman divergence derived from φ, and μ is the ex-
pectation parameter μ(θ) = EpΨ(x,θ)[T (x)]. Parameters μ
and θ are linked by

μ(θ) = ∇θΨ, and θ(μ) = ∇μφ. (3)

For some widely used exponential families, the specific forms
of above parameters can be found in [Banerjee et al., 2005].

A mixture model refers to a parametric distribution model
with the following form:

p(x;Ξ) =
∑C

z
αzp(x; θz), with

∑
z
αz = 1 (4)

where C is the component number, z ∈ C = {1, · · · , C} is
the component indicator variable, and Ξ = {αz, θz}C

z=1 are
model parameters. When the components are taken in an ex-
ponential family FΨ, we get the general exponential family
mixture (EFM) model. Typical examples of EFMs are GMM,
multinomial mixture model (MMM), etc., with different def-
initions on Ψ or dφ.

2.2 Clustering as Density Estimation

From the view of statistical learning theory, density estima-
tion is to find a model distribution p(x;Ξ) minimizing an ex-
pected loss (risk) (Fisher-Wald setting) [Vapnik, 2000]:

L(Ξ) = −

∫
log p(x;Ξ)dF (x) = −Ef [log p(x;Ξ)] (5)

on the unknown true distribution F (x). Notice that L(Ξ)) +∫
f(x) log f(x)dx = KL(f ||p), where KL(·||·) denotes

Kullback-Leibler (KL) divergence between two distributions.
So density estimation is equivalent to minimizing the KL di-
vergence between f(x) and p(x;Ξ).

A mixture model as Eq. (4) can be adopted to estimate
f(x). Based on this mixture model, it’s well known that L
is difficult to minimize, and what will be minimized actually
is a variational convex upper bound [Beal, 2003]:

L(p(x;Ξ)) = −

∫
log

[ ∑
z
αzp(x; θz)

]
dF (x)

≤ −

∫ ∑
z

[
qx(z) log

αzp(x; θz)

qx(z)

]
dF (x)

= −

∫ ∑
z
[qx(z) log (αzp(x; θz))] dF (x)

︸ ︷︷ ︸
E(qx(·),Ξ)

(6)

+

∫ ∑
z
qx(z) log qx(z)dF (x)︸ ︷︷ ︸

H(qx(·))

= G(qx(·),Ξ)

where qx(·) is a distribution of z determined by x. The “≤”
is derived from Jensen’s inequality, with the “=” holding iff
qx(·) = p(·|x;Ξ).

The well known EM procedure is used to minimize the
variational bound G:

E-step: q[t+1]
x

(·) ← arg minqx(·) G(qx(·),Ξ[t]) (7)

M-step: Ξ[t+1] ← arg minΞ E(q[t+1]
x

(·),Ξ)

In E-step, qx(·) actually gives a solution to clustering. If
no additional constraints are enforced upon qx(·), the optimal
solution is

q[t+1]
x

(·) = p(·|x,Ξ[t]). (8)

We call this case soft-clustering, e.g., GMM. If we constrain
∀z ∈ C, qx(z) ∈ {0, 1}, then the optimal solution is

q[t+1]
x

(z) = I[z=arg maxz p(z|x;Ξ[t+1])], ∀z ∈ C. (9)

We call this case hard-clustering, e.g., k-means. The su-
periority of soft-clustering is that in each E-step, the upper

bound G is touched by the original loss L, i.e., L(Ξ[t]) =

G(q
[t+1]
x (·),Ξ[t]), while in hard-clustering, this property does

not hold. However, when p(x;Ξ) is an EFM model, us-
ing the Bregman divergence expression (Eq. (2)), hard-
clustering (Eq. (9)) is efficient to compute.

In M-step, when p(x;Ξ) is an EFM model, simply using
Lagrangian method [Beal, 2003], we obtain the closed form
of the solution: ∀z ∈ C,

α[t+1]
z = Ef [qx(z)] (10)
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and

μ[t+1]
z = ∇θz

Ψ
∣∣
θ
[t+1]
z

=
Ef

[
q
[t+1]
x (z)T (x)

]

Ef

[
q
[t+1]
x (z)

] .(11)

Then θ
[t+1]
z can be obtained by Eq. (3). In fact, using Eq. (2),

we do not need θ
[t+1]
z in the EM iterations.

Typical examples of clustering via EFMs are GMM clus-
tering and k-means.

3 Frameworks

Now consider the setting of on-line evolutionary clustering.

At each time epoch i, new data X
(i) = (x

(i)
1 , . . . ,x

(i)
ni )

arrives, and a partition on X
(i) is desired. The underly-

ing distribution is denoted as F (i)(x) (with density f (i)(x)).
For each epoch, f (i) is approximated by an EFM model

p(i)(x;Ξ(i)) =
∑Ci

z α
(i)
z p(x; θ

(i)
z ). The expectation parame-

ter of the component p(x; θ
(i)
z ) is μ

(i)
z . The component num-

bers Ci need not be the same at different epochs.

Following [Chakrabarti et al., 2006; Chi et al., 2007],
an first-order Markovian property is assumed for the evolv-
ing behavior. Therefore, we only need to consider adjacent
epochs i and i+1. From now on, they will be simply denoted
as epochs “1” and “2”.

From the density estimation view to clustering, the loss
of static clustering via an EFM is the divergence between
data distribution f and the EFM model distribution p(x;Ξ).
In evolutionary setting, the data distributions f (1) and f (2)

are assumed close to each other. If model distributions p(1)

and p(2) are their good estimates respectively, naturally, cur-

rent model distribution p(2) should neither deviate much from
historical data distribution f (1) nor historical model distribu-
tion p(1). This viewpoint results in our two general frame-
works for on-line evolutionary EFM: Historical Data Depen-
dent (HDD) and Historical Model Dependent (HMD).

The general form of loss function for HDD is

Lhdd = (1− λ) dist(f (2), p(2)) + λdist(f (1), p(2)) (12)

where the temporal loss dist(f (1), p(2)) ensures current

model distribution p(2) dose not deviate much from histori-
cal data distribution f (1).

The general form of loss function for HMD is

Lhmd = (1− λ) dist(f (2), p(2)) + λdist(p(1), p(2)) (13)

where the temporal loss dist(p(1), p(2)) ensures current

model distribution p(2) dose not deviate much from histori-
cal model distribution p(1).

In both frameworks, parameter λ reflects the preference to
historical data/model. The dynamic evaluation of λ will be
discussed in Sec. 3.3.

3.1 Historical Data Dependent (HDD)

Since the loss of static clustering via an EFM is the KL di-
vergence between true distribution f and the EFM model
distribution p(x;Ξ), we also define the temporal loss as

dist(f (1), p(2)) = KL(f (1)||p(2)), then we get the specific

form of loss for HDD:

Lhdd = (1− λ)KL(f (2)||p(2)) + λKL(f (1)||p(2))

With constant item ignored, it can be easily written as

Lhdd(Ξ
(2)) = −

∫ [
(1 − λ)f (2)(x)

+ λf (1)(x)
]
log p(2)(x;Ξ(2))dx

Notice that (1 − λ)f (2)(x) + λf (1)(x) induces another dis-

tribution, denoted by f̃λ(x). Then we have

Lhdd(Ξ
(2)) = −Ef̃λ

[log p(2)(x;Ξ(2))] (14)

Comparing Eq. (14) with Eq. (5), we can see that HDD is
essentially to estimate the density of the deduced distribution

f̃λ(x) using an EFM. The same EM procedure as Eq. (8, 9,
10, 11) can be used:
E-step: ∀z ∈ C, for soft-clustering

q[t+1]
x

(z) = p(z|x;Ξ(2),[t]), (15)

and for hard-clustering

q[t+1]
x

(z) = I[z=arg maxz p(z|x;Ξ(2),[t])] (16)

M-step: ∀z ∈ C,

α(2),[t+1]
z = Ef̃λ

[q[t+1]
x

(z)] (17)

μ(2),[t+1]
z =

Ef̃λ
[q

[t+1]
x (z)T (x)]

Ef̃λ
[q

[t+1]
x (z)]

(18)

where Ef̃λ
[·] = (1−λ)Ef(2) [·] +λEf(1) [·]. Notice that, for

i = 1, 2, Ef(i) [q
[t+1]
x (z)] and Ef(i) [q

[t+1]
x (z)T (x)] are the

estimators of α
(i)
z and μ

(i)
z on f (i), respectively. Above result

means that, in each M-step, the estimator of parameters Ξ
(2)

on f (2) is adjusted by the same estimator on f (1), to ensure

that the estimated model distribution p(x;Ξ(2)) approximates

both f (1) and f (2) well.

3.2 Historical Model Dependent (HMD)

In the framework of Eq. (13), an intuitive choice of

dist(p(1), p(2)) is also the KL divergence. However, KL di-
vergence between two EFMs can not be exactly calculated,
and approximate sampling methods are needed, which are
time exhausted. We seek other divergence measures.

Rather than KL divergence, Earth Mover Dis-
tance (EMD) [Rubner et al., 1998] is another divergence
measure between two distributions, which is frequently
used to measure divergence between mixture models. EMD
between two mixture models is defined as:

dEMD(p(1), p(2)) = min
w

∑
l,z

wlzd(p(x; θ
(1)
l ), p(x; θ(2)

z ))

s.t. wlz ≥ 0,
∑

z
wlz = α

(1)
l ,

∑
l
wlz = α(2)

z (19)

where d(p(x; θ
(1)
l ), p(x; θ

(2)
z )) is a predefined diver-

gence measure between two components. In this
paper, KL divergence is adopted, as KL divergence

KL(p(x; θ
(1)
l )||p(x; θ

(2)
z )) between the two components

from a same exponential family has a closed form

Ψ(θ(2)
z )−Ψ(θ(1)

z )−
〈
θ(2)

z − θ(1)
z ,∇θΨ

∣∣
θ
(1)
z

〉
.
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The loss function of HMD will be written as

Lhmd = (1− λ)KL(f (2), p(2)) + λdEMD(p(1), p(2)).

According to Eq. (19), minimizing Lhmd is equivalent to

min
Ξ(2),w

L′
hmd(Ξ

(2),w) = (1− λ)KL(f (2)(x), p(2)(x;Ξ(2)))

+λ
∑

l,z
wlz KL(p(x; θ

(1)
l ), p(x; θ(2)

z ))

s.t. wlz ≥ 0,

C1∑
l

wlz = α(2)
z ,

C2∑
z

wlz = α
(1)
l ,

C2∑
z

α(2)
z = 1

Similar to Eq. (6), L′
hmd has a variational upper bound:

L′
hmd(w,Ξ(2)) ≤ G(qx(·),Ξ(2),w)

H(qx(·)) + E(qx(·),Ξ(2)) +D(w,Ξ(2))

whereH(qx(·)) = (1− λ)
∑

z Ef(2) [qx(z) log qx(z)],

E(qx(·),Ξ(2)) = −(1− λ)
∑

z
Ef(2) [qx(z) log α(2)

z ]

− (1− λ)
∑

z
Ef(2) [qx(z)(〈θ(2)

z , T (x)〉 −Ψ(θ(2)
z ))]

and D(w,Ξ(2)) =
∑

l,z wlz KL(p(x; θ
(1)
l ), p(x; θ

(2)
z )).

Alternative optimization is used to minimize G:

w-step: With qx(·) and Ξ
(2) fixed, minimize G w.r.t. w:

w
[t+1] = arg min

w
D(w,Ξ(2),[t]) (20)

s.t. wlz ≥ 0,
∑C1

l
wlz = α(2),[t]

z ,
∑C2

z
wlz = α

(1),[t]
l ,

which is just the computation of EMD and can be efficiently
solved by linear programming.

q-step: With w and Ξ
(2) fixed, minimize G w.r.t. qx(·):

q[t+1]
x

(·) = arg minqx(·) E(qx(·),Ξ(2),[t]) +H(qx(·))

The result is identical to Eq. (15,16). The property for soft-
clustering still holds here: in each q-step, the upper bound is

touched, i.e., L′
hmd(w,Ξ(2)) = G(q

[t+1]
x (·),Ξ(2),w).

Ξ-step: With w and qx(z) fixed, minimize G w.r.t. Ξ
(2):

Ξ
(2),[t+1] = argminΞ(2) E(q[t+1]

x
(·),Ξ(2)) +D(w[t+1],Ξ2)

s.t.
∑

z
α(2)

z = 1

Using Lagrangian method, we can obtain the closed form of
the optimal solution for this step: ∀z ∈ C

α(2),[t+1]
z = Ef(2) [q[t+1]

x
(z)] (21)

μ(2),[t+1]
z =

(1− λ)Ef(2) [q
[t+1]
x (z)T (x)] + λ

∑
l w

[t+1]
lz μ

(1)
l

(1 − λ)Ef(2) [q
[t+1]
x (z)] + λ

∑
l w

[t+1]
lz

The result means that, in each Ξ-step, the estimators of ex-

pectation parameters μ
(2)
z on current data distribution f (2)

are directly adjusted by the estimators μ
(1)
l of last epoch.

In fact, the evolutionary k-means in [Chakrabarti et
al., 2006] is a special case of HMD with approximately
computing of dEMD in w-step. The EFM used in k-
means is the mixture of spherical Gaussians with iden-
tical constant variance σ2 and prior 1

C
: p(x;Ξ) =

1
C

∑
zN (x; μz , σ

2I). Then the objective function in

Eq. (20) is D = 1
2σ2 minw

∑
l,z wlz‖μ

(1)
l − μ

(2)
z ‖2, with the

same constraints on w as those in Eq.(19, 20). [Chakrabarti

et al., 2006] approximate D by
∑

z ‖μ
(2)
z − μ

(1)
g(z)‖, where

g(z) = argminl ‖μ
(2)
z − μ

(1)
l ‖, which means, they assigned

each current component to the nearest center at last epoch,
then summed the distances between them as the divergence
between two mixtures. Based on HMD, we can extend the
approach of [Chakrabarti et al., 2006] to all the EFMs, result-
ing in the approximate HMD algorithm, which is different
from HMD in w-step (Eq. (20)):

w
[t+1]
lz = α(2),[t]

z · I
[l=arg minl KL(p(x;θ

(1)
l

),p(x;θ
(2)
z ))]

(22)

However, as pointed out in [Chi et al., 2007], this approach
could be unstable, i.e., sensitive to small perturbation on the
centers.

In both frameworks, the assumption is that epoch data are
arbitrary I.I.D. samples from the corresponding epoch distri-
bution, accordingly, the data sizes of different epochs need
not be the same. Additionally, in both frameworks, cluster
numbers Ci of different epochs are not assumed to be the
same, consequently, both frameworks are able to deal with
the variation of cluster number. Moreover, using different
specific exponential families, both frameworks can produce a
large family of evolutionary clustering algorithms.

3.3 Dynamic evaluation of λ

Parameter λ reflects the preference to historical data/model,
which should be determined by the dependency between the
adjacent data distributions. If current data distribution devi-
ates much from the historical, then the impact of historical
data/model should be suppressed. A mechanism for dynamic
evaluation of λ is required. However, this problem has not
been studied in previous works [Chakrabarti et al., 2006;
Chi et al., 2007; Tang et al., 2008].

[Gretton et al., 2007] proposed a non-parametric test statis-
tic to check the dependency between two distributions based
on two sets of i.i.d samples. The empirical estimation of

the test statistic is τ(X(1),X(2)) = 1
n2

1

∑n1

i,j k(x
(1)
i ,x

(1)
j ) −

2
n1n2

∑n1,n2

i,j k(x
(1)
i ,x

(2)
j ) + 1

n2
2

∑n2

i,j k(x
(2)
i ,x

(2)
j ) , where

k(·, ·) is an universal kernel. In this paper, the RBF kernel

k(x, y) = exp{− ‖x−y‖2

σ2 } is used. In fact, τ measures the
discrepancy between the two distributions.

Using the test statistic, we can evaluate λ(i) as:

λ(i) = λ0 exp {−β · τ(X(i),X(i−1))} (23)

where λ0 ∈ [0, 1] reflects a basic preference to historical
data/model, and β reflects the sensitive to variation of the test
statistic.

3.4 Comparisons between HDD and HMD

Now we give a comparison analysis to the two frameworks.
HDD is efficient in computing and allows users to change the
component family FΨ in the EFM model, e.g., from GMM to
MMM, while HMD does not allow that. What’s more, HMD
needs more time to compute EMD, especially when cluster
numbers are large. However, in general, if the basic assump-

tion holds that f (1) and f (2) are close, HMD will perform
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better than HDD in preserving the smoothness of clustering
results, which will be explained below.

When statically clustering via an EFM, estimation of p(2)

on f (2) produces a solution p0 stuck in a local minimum of

loss dist(f (2), p(2)), as illustrated in Fig. 1 (a.2, b.2).

Figure 1: Comparison between HDD and HMD

In HDD, as f (1) and f (2) are assumed close to each other,
static loss dist(f (2), p(2)) and temporal loss dist(f (1), p(2))
are also close to each other (Fig.1 (a.1, a.2)). Then the overall
loss Lhdd, the weighted sum of the two losses, is also close
to them (Fig.1 (a.3)). Then the candidate solution p0 in static
setting (Fig.1 (a.2)) will still be stuck in a nearby local mini-
mum (p∗) in evolutionary setting (Fig.1 (a.3)).

In HMD (Fig.1 (b)), the candidate solution p0 in static set-
ting can be heavily penalized by the large loss resulting from

a large deviation from p(1) (the large loss dist(p(1), p0)) in
evolutionary setting. The penalty can drag out the solution
from p0 and push it toward another minimum more close to

p(1).

4 Experiments

We demonstrate the validation of the two frameworks by
experiments on three typical clustering algorithms based
on EFMs, i.e., GMM, k-means, and multinomial mixture
model (MMM). Evolutionary GMM is tested on a synthetic
data designed by ourselves. Evolutionary k-means and evo-
lutionary MMM are tested on a real text data set.

4.1 Data sets

The GMM data set are samples from an evolving 2D GMM
model with noise. In 20 epochs, all the parameters of GMM
model are slowly evolving. Data size is also varying. Five
epochs and the overall data are illustrated in Fig. 2. This data
set will be used to provide experiential evidences to the com-
parison analysis in Sec. 3.4. We will also demonstrate the
necessity of dynamic evaluation of λ on this data set.

The real data set is “NSF Research Awards Abstracts” 2,
which consists of the abstracts describing NSF awards for
basic research, covering 14 years from 1990 to 2003. We
extract the field “NSF program” indicating the research area
as the class label. A subset containing the top 10 classes cov-
ering 13 years (1990-2002) is selected as our experimental

2http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

data. This subset consists of 19,728 documents with 15,412
identical words. There are 10 classes in the first 9 years, and
9 classes in the following 4 years. For evolutionary k-means,
the tf-idf feature is used, while for evolutionary MMM, the
word count feature is used.

4.2 Algorithms

Besides HDD and HMD, another two algorithms are consid-
ered: first, the static baseline, i.e. clustering via an EFM in-
dependently at each epoch, denoted as IND; second, the ap-
proximate HMD as Eq. (22), denoted as APP-HMD. In evo-
lutionary k-means, the APP-HMD reduces to the algorithm
of [Chakrabarti et al., 2006].

We cannot compare with PCQ and PCM of [Chi et al.,
2007], as they cannot deal with the case when epoch data are
arbitrary I.I.D. samples from epoch distributions, as pointed
out in Sec. 1.

Besides the four algorithms, to illustrate the necessity of
dynamic evaluating λ, we also run HDD and HMD with static
λ on GMM data, which will be denoted as HDD-S and HMD-
S, respectively.

4.3 Criterions

The clustering quality at each epoch will be measured by Nor-
malized Mutual Information (NMI), which is a widely used
criterion for clustering. High value on NMI reflects good con-
sistency with the true class label. The temporal smoothness of
clustering results will be measured by the two types of tempo-

ral loss: KL(f (1)||p(2)) and dEMD(p(1), p(2)). They will be
called data measured temporal loss (DTL) and model mea-
sured temporal loss (MTL), respectively. Low DTL and MTL
reflect good smoothness of clustering results along time.

4.4 Methodology

For all algorithms, the data epochs are traversed through by
N (=50) times. In one traverse, at each epoch, an identical ini-
tialization generated randomly is imposed to all algorithms.
Then the criterions, e.g., NMI, DTL, MTL are calculated at
each epoch. The mean and standard deviation of the criteri-
ons at each epoch are calculated across the N runs.

On GMM data, we demonstrate the necessity of dynamic
evaluation of λ by another experiment: we replace the 16th
epoch with the 4th epoch, which makes the epoch distribution
change abruptly at the 16th and 17th epochs. We run HDD-S
and HMD-S and compare the performance of them with that
of HDD and HMD.
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Figure 2: Synthetic GMM data set
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Figure 3: Results of experiments

4.5 Results

The results are illustrated in Fig. (3). In general, compared
to IND, HDD and HMD enhance the clustering quality at
each epoch, i.e., higher mean value and much lower devia-
tion value on NMI (Fig.3(a), 3(d), 3(g)), meanwhile, HDD
and HMD better preserve the smoothness of clustering re-
sults along time, i.e., much lower mean and deviation value
on DTL (Fig. 3(e), 3(b), 3(h)) and MTL (Fig. 3(f), 3(c), 3(i)).
APP-HMD does not perform well, the results on NMI are
even worse than those of IND on GMM data.

Results on GMM data (Fig.3(g),3(h),3(i)) provide evi-
dences to our analysis in Sec.3.4. Due to local optima, IND
gives results with large deviation (large value on deviation of
NMI, mean of DTL and mean of MTL). HDD is easy to be
stuck by the same local optima, resulting in the almost same
result as that of IND. HMD gives the best performance.

Fig. 3(j) demonstrates the necessity of dynamic evaluation
of λ: at 16th and 17th epochs, due to the abrupt change of data
distribution, with static λ(= λ0), the historical data/model
harms current clustering. However, dynamic evaluation of λ
as Eq. (23) gives rather low value of λ at the two epochs,

suppressing the impact of historical data/model. For clarity,
only mean values on NMI are plot in Fig. 3(j).

5 Conclusion

We deal with the problem of evolutionary clustering where
distribution of data evolves along time. We propose two gen-
eral density estimation based online frameworks. They give
uniform evolutionary solutions to all the conventional cluster-
ing algorithms based on EFMs.
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