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Abstract
Unsupervised learning of morphology is an impor-
tant task for human learners and in natural lan-
guage processing systems. Previous systems fo-
cus on segmenting words into substrings (taking ⇒
tak.ing), but sometimes a segmentation-only anal-
ysis is insufficient (e.g., taking may be more ap-
propriately analyzed as take+ing, with a spelling
rule accounting for the deletion of the stem-final
e). In this paper, we develop a Bayesian model
for simultaneously inducing both morphology and
spelling rules. We show that the addition of
spelling rules improves performance over the base-
line morphology-only model.

1 Introduction
In natural language, words are often constructed from multi-
ple morphemes, or meaning-bearing units, such as stems and
suffixes. Identifying the morphemes within words is an im-
portant task both for human learners and in natural language
processing (NLP) systems, where it can improve performance
on a variety of tasks by reducing data sparsity [Goldwater and
McClosky, 2005; Larkey et al., 2002]. Unsupervised learning
of morphology is particularly interesting, both from a cog-
nitive standpoint (because developing unsupervised systems
may shed light on how humans perform this task) and for
NLP (because morphological annotation is scarce or nonex-
istent in many languages). Existing systems, such as [Gold-
smith, 2001] and [Creutz and Lagus, 2005], are relatively
successful in segmenting words into constituent morphs (es-
sentially, substrings), e.g. reporters ⇒ report.er.s. However,
strategies based purely on segmentation of observed forms
make systematic errors in identifying morphological relation-
ships because many of these relationships are obscured by
spelling rules that alter the observed forms of words.1 For
example, most English verbs take -ing as the present continu-
ous tense ending (walking), but after stems ending in e, the e
is deleted (taking), while for some verbs, the final stem con-
sonant is doubled (shutting, digging). A purely segmenting
system will be forced to segment shutting as either shut.ting

1Human learners encounter an analogous problem with phono-
logical rules that alter the observed forms of spoken words.

or shutt.ing. In the first case, shutting will be correctly identi-
fied as sharing a stem with words such as shut and shuts, but
will not share a suffix with words such as walking and run-
ning. In the second case, the opposite will be true. In this
paper, we present a Bayesian model of morphology that iden-
tifies the latent underlying morphological analysis of each
word (shut+ing)2 along with spelling rules that generate the
observed surface forms.

Most current systems for unsupervised morphological
analysis in NLP are based on various heuristic methods and
perform segmentation only [Monson et al., 2004; Freitag,
2005; Dasgupta and Ng, 2006]; [Dasgupta and Ng, 2007] also
infers some spelling rules. Although these can be effective,
our goal is to investigate methods which can eventually be
built into larger joint inference systems for learning multi-
ple aspects of language (such as morphology, phonology, and
syntax) in order to examine the kinds of structures and bi-
ases that are needed for successful learning in such a system.
For this reason, we focus on probabilistic models rather than
heuristic procedures.

Previously, [Goldsmith, 2006] and [Goldwater and John-
son, 2004] have described model-based morphology induc-
tion systems that can account for some variations in morphs
caused by spelling rules. Both systems are based on the Min-
imum Description Length principle and share certain weak-
nesses that we address here. In particular, due to their com-
plex MDL objective functions, these systems incorporate
special-purpose algorithms to search for the optimal morpho-
logical analysis of the input corpus. This raises the possibility
that the search procedures themselves are influencing the re-
sults of these systems, and makes it difficult to extend the
underlying models or incorporate them into larger systems
other than through a strict 1-best pipelined approach. Indeed,
each of these systems extends the segmentation-only system
of [Goldsmith, 2001] by first using that system to identify a
segmentation, and then (in a second step), finding spelling
rules to simplify the original analysis. In contrast, the model
presented here uses standard sampling methods for inference,
and provides a way to simultaneously learn both morpholog-
ical analysis and spelling rules, allowing information from
each component to flow to the other during learning. We

2In what follows, we use ‘+’ to indicate an underlying morpheme
boundary, and ‘.’ to indicate a surface segmentation.
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show that the addition of spelling rules allows our model to
outperform the earlier segmentation-only Bayesian model of
[Goldwater et al., 2006], on which it is based.

In the remainder of this paper, we begin by reviewing the
baseline model from [Goldwater et al., 2006]. We then de-
scribe our extensions to it and the sampler we use for infer-
ence. We present experiments demonstrating that the com-
bined morphology-spelling model outperforms the baseline.
Finally, we discuss remaining sources of error in the system
and how we might address them in the future.

2 Baseline segmentation model
We take as our baseline the simple model of morphology de-
scribed in [Goldwater et al., 2006], which generates a word
w in three steps:

1. Choose a morphological class c for w.

2. Choose a stem t conditioned on c.

3. Choose a (possibly empty) suffix f conditioned on c.

Since t and f are assumed to be conditionally independent
given c, we have

P (c, t, f) = P (c)P (t | c)P (f | c) (1)

and P (w) =
∑

(c,t,f :t.f=w) P (c, t, f) where the sum is over
all stem-suffix combinations that can be concatenated to form
w. This model is of course simplistic in its assumption that
words may only consist of two morphs; however, for the test
set of English verbs that was used by [Goldwater et al., 2006],
two morphs is sufficient. A similar model that allows multiple
morphs per word is described in [Goldsmith, 2001].

Goldwater et al. present the model above within a Bayesian
framework in which the goal is to identify a high-probability
sequence of classes, stems, and suffixes (c, t, f) given an ob-
served sequence of words w. This is done using Bayes’ rule:

P (c, t, f |w) ∝ P (w | c, t, f)P (c, t, f) (2)

Note that the likelihood P (w | c, t, f) can take on only two
possible values: 1 if the observed words are consistent with
t and f , and 0 otherwise. Therefore, the prior distribu-
tion over analyses P (c, t, f) is crucial to inference. As in
other model-based unsupervised morphology learning sys-
tems [Goldsmith, 2001; Creutz and Lagus, 2005], Goldwa-
ter et al. assume that sparse solutions – analyses containing
fewer total stems and suffixes – should be preferred. This is
done by placing symmetric Dirichlet priors over the multino-
mial distributions from which c, t, and f are drawn:

θc |κ ∼ Dir(κ) c | θc ∼ Mult(θc) (3)
θt|c | τ ∼ Dir(τ) t | θt|c ∼ Mult(θt|c)

θf |c |φ ∼ Dir(φ) f | θf |c ∼ Mult(θf |c)

where θc, θt|c, and θf |c are the multinomial parameters for
classes, stems, and suffixes, and κ, τ , and φ are the respec-
tive Dirichlet hyperparameters. We discuss below the signif-
icance of the hyperparameters and how they can be used to
favor sparse solutions. Under this model, the probability of a

Word Analysis
abandon abandon.
abandoned abandon.ed
abandoning abandon.ing
abandons abandon.s
abate abat.e
abated abat.ed
abates abat.es
abating abat.ing

Figure 1: Example output from the baseline system. Stem-
final e is analyzed as a suffix (or part of one), so that the
morphosyntactic relationships between pairs such as (aban-
don,abate) and (abandons, abates) are lost.

particular analysis can be computed as

P (c, t, f) =
N∏

i=1

P (ci | c−i) · P (ti | t−i, c−i, ci)

·P (fi | f−i, c−i, ci) (4)

where N is the total number of words and the notation x−i

indicates x1 . . . xi−1. The probability of each factor is com-
puted by integrating over the parameters associated with that
factor. For example,

P (ci = c | c−i, κ) =
∫

P (ci = c | θc)P (θc | c−i, κ) dθc

=
n

(−i)
c + κ

n(−i) + Cκ
(5)

where n
(−i)
c is the number of occurrences of c in c−i, n(−i)

is the length of c−i (= i − 1), and C is the total number of
possible classes. The value of the integration is a standard
result in Bayesian statistics [Gelman et al., 2004], and can be
used (as Goldwater et al. do) to develop a Gibbs sampler for
inference. We defer discussion of inference to Section 4.

While the model described above is effective in segment-
ing verbs into their stems and inflectional suffixes, such a
segmentation misses certain linguistic generalizations, as de-
scribed in the introduction and illustrated in Figure 1. In order
to identify these generalizations, it is necessary to go beyond
simple segmentation of the words in the input. In the follow-
ing section, we describe an extension to the above generative
model in which spelling rules apply after the stem and suf-
fix are concatenated together, so that the stem and suffix of
each word may not correspond exactly to a segmentation of
the observed form.

3 Accounting for spelling rules
To extend the baseline model, we introduce the notion of a
spelling rule, inspired by the phonological rules of Chomsky
and Halle [1968]. Each rule is characterized by a transfor-
mation and a context in which the transformation applies. We
develop two models, one based on a two-character context
formed with one left context character and one right context
character, and the other based on a three-character context
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with an additional left context character. We assume that
transformations only occur at morpheme boundaries, so the
context consists of the final one or two characters of the (un-
derlying) stem, and the first character of the suffix. For ex-
ample, shut+ing, take+ing, sleep+s have contexts ut i, ke i,
ep s. Transformations can include insertions, deletions, or
empty rules, and always apply to the position immediately
preceding the morpheme boundary, i.e. deletions delete the
stem-final character and insertions insert a character follow-
ing the stem-final character.3 So the rule ε → t / ut i
produces shutting, e → ε / ke i produces taking, and
ε → ε / ep s produces sleeps. Our new model extends
the baseline generative process with two additional steps:

4. Choose the rule type y (insertion, deletion, empty) con-
ditioned on x(f, t), the context defined by t and f .

5. Choose a transformation r conditioned on y and x(f, t).
which gives us the following joint probability:

P (c, t, f, y, r) =
P (c)P (t|c)P (f |c)P (y|x(f, t))P (r|y, x(f, t)) (6)

As above, we place Dirichlet priors over the multinomial
distributions from which y and r are chosen. Our expec-
tations are that most rules should be empty (i.e., observed
forms are usually the same as underlying forms), so we use
a non-symmetric Dirichlet prior over rule types, with η =
(ηD, ηI , ηE) being the hyperparameters over insertion, dele-
tion, and empty rules, where ηE is set to a much larger value
than ηD and ηI (we discuss this in more detail below). In ad-
dition, at most one or two different transformations should oc-
cur in any given context. We encourage this by using a small
value for ρ, the hyperparameter of the symmetric Dirichlet
prior over transformations.

4 Inference
We sample from the posterior distribution of our model
P (c, t, f ,y, r |w) using Gibbs sampling, a standard Markov
chain Monte Carlo (MCMC) technique [Gilks et al., 1996].
Gibbs sampling involves repeatedly sampling the value of
each variable in the model conditioned on the current values
of all other variables. This process defines a Markov chain
whose stationary distribution is the posterior distribution over
model variables given the input data. Because the variables
that define the analysis of a given word are highly dependent
(only certain choices of t, f, y and r are consistent), we use
blocked sampling to sample all variables for a single word at
once. That is, we consider each word wi in the data in turn,
consider all possible values of (c, t, f, y, r) comprising a con-
sistent analysis A(wi) of wi, and compute the probability of
each full analysis conditioned on the current analyses of all
other words. We then sample an analysis for the current word
according to this distribution and move on to the next word.
After a suitable burn-in period, the sampler converges to sam-
pling from the posterior distribution.

3Permitting arbitrary substitution rules allows too much freedom
to the model and yields poor results; in future work we hope to
achieve better results by using priors to constrain substitutions in
a linguistically plausible way.

Computing the conditional probability of A(wi) is straight-
forward because the Dirichlet-multinomial distributions we
have constructed our model from are exchangeable: the prob-
ability of a set of outcomes does not depend on their ordering.
We can therefore treat each analysis as though it is the last one
in the data set, and apply the same integration over parame-
ters that led to Equation 5. The full sampling equations for
A(wi) are shown in Figure 2.

Our model contains a number of hyperparameters. Rather
than setting these by hand, we optimize them by maximiz-
ing the posterior probability of each hyperparameter given all
other variables in the model. For example, to maximize τ we
have

τ� = argmax
τ

P (τ |κ, τ, φ, ρ, η, η, ηE , ηI , ηD, c, t, f, y, r)

(8)

= argmax
τ

∏
c

∏
t Γ(nt,c + τ 1

T )
Γ(

∑
t nt,c + τ)

Γ(τ)∏
t Γ(τ 1

T )
(9)

which can be optimized iteratively using the following
fixed point algorithm [Minka, 2003]:

(τ)new := (τ)
∑

c

∑
t

1
T Ψ(nt,c + τ) − 1

T Ψ(τ)∑
c Ψ(

∑
t nt,c + τT ) − Ψ(τT )

(10)

5 Experiments
In this section, we describe the experiments used to test our
morphological induction system. We begin by discussing our
input data sets, then present two distinct evaluation methods,
and finally describe the results of our experiments.

5.1 Data
For input data we use the same data set used by [Goldwater
et al., 2006], the set of 7487 English verbs found in the Penn
Wall Street Journal (WSJ) corpus [Marcus et al., 1993]. En-
glish verbs provide a good starting point for evaluating our
system because they contain many regular patterns, but also a
number of orthographic transformations. We do not include
frequency information in our input corpus; this is standard
in morphology induction and has both psychological [Pierre-
humbert, 2003] and mathematical justifications [Goldwater et
al., 2006].

5.2 Evaluation
Although evaluation measures based solely on a gold stan-
dard surface segmentation are sometimes used, it should be
clear from our introduction that this kind of measure is not
sufficient for our purposes. Instead, we use two different
evaluation measures based on the underlying morphological
structure of the data. Both of our evaluation methods use
the English portion of the CELEX database [Baayen et al.,
1995] to determine correctness. It contains morphological
analyses of 160,594 different inflected wordforms based on
52,446 uninflected lemmata. Each morphological analysis
includes both a surface segmentation as well as an abstract
morphosyntactic analysis which provides the functional role
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P (A(wi) = (c, t, f, y, r) |A(w−i), κ, τ, φ, η, ρ)
∝ I(wi = r(t.f)) · P (c, t, f, y, r |A(w−i), κ, τ, φ, η, ρ)
∝ P (c | c−i, κ) · P (t | t−i, c, τ) · P (f | f−i, c, φ) · P (y |y−i, t, f , η) · P (r | r−i, t, f ,y, ρ)

=
n

(−i)
c + κ

n(−i) + κC
· n

(−i)
t,c + τ

n
(−i)
c + τT

· n
(−i)
f,c + φ

n
(−i)
c + φF

·
n

(−i)
y,x(t,f) + ηy

n
(−i)
x(t,f) + ηD + ηI + ηE

·
n

(−i)
r,y,x(t,f) + ρ

n
(−i)
y,x(t,f) + ρR

(7)

Figure 2: Equations used in sampling to compute the probability of of the analysis A(wi) of wi, conditioned on A(w−i),
the analyses of all other words in the data set. We use the notation x−i here to indicate x1 . . . xi−1, xi+1 . . . xN . I(.) is a
function taking on the value 1 when its argument is true, and 0 otherwise. κ, τ, φ, η, ρ are the hyperparameters for the Dirichlet
distributions associated with classes, stems, suffixes, rule types, and rules, respectively; and C, T, F, R specify the total number
of possible values for classes, stems, suffixes, and rules. Note that for y = delete or empty, there is only one possible rule, so
R = 1 and the final factor cancels out. For y = insert, R = 26.

Found CX string CX abstract UF string
walk+ε walk.ε 50655+i walk+ε
walk+ing walk.ing 50655+pe walk+ing
walk+ed walk.ed 50655+a1S walk+ed
forget+ε forget.ε 17577+i forget+ε
forget+ing forget.ting 17577+pe forget+ing
forgot+ε forgot.ε 17577+a1S forgot+ε
forget+s forget.s 17577+e3S forget+s
state+ε state.ε 44380+i state+ε
stat+ing stat.ing 44380+pe state+ing
state+ed state.d 44380+a1S state+ed
stat+es state.s 44380+e3S state+s
stat+ion station.ε 44405+i station.ε
jump+ed jump.ed 24596+a1S jump+ed

Table 1: An example illustrating the resources used for eval-
uation and our two scoring methods. We suppose that Found
is the analysis found by the system. CX string is the segmen-
tation of the surface form given in CELEX. CX abstract is
the abstract morpheme analysis given in CELEX (with each
stem represented by a unique ID, and each suffix represented
by a code such as pe for present participle), used to compute
pairwise precision (PP) and pairwise recall (PR). UF string is
the underlying string representation we derived based on the
two CELEX representations (see text), used to compute UF
accuracy (UFA). UF strings that do not match those found
by the system are shown in bold. In this example, scores for
stems are 10/13 (UFA), 8/10 (PP), and 8/15 (PR). Scores for
suffixes are 11/13 (UFA), 9/12 (PP), and 9/16 (PR).

of any inflectional suffixes. For example, the word walking
is segmented as walk.ing, and is accompanied by a pe label
to denote the suffix’s role in marking it as a present tense (e)
participle (p). See Table 1 for further examples.

Our first evaluation method is based on the pairwise re-
lational measure used in the recent PASCAL challenge on
unsupervised morpheme analysis.4 Consider the proposed
analysis walk+ing and its corresponding gold standard en-
try 50655+pe. Assuming that this analysis is correct, any
other correct analysis that shares the stem walk should also
share the same stem ID 50655, and likewise for the suffixes.

4http://www.cis.hut.fi/morphochallenge2007/

By comparing the pairwise relationships in the system out-
put and the gold standard, we can compute pairwise preci-
sion (PP) as the proportion of proposed pairs that are correct,
and pairwise recall (PR) as the proportion of true pairs that
are correctly identified. This is reported separately for stems
and suffixes along with the F-Measures of each, calculated as
F = 2∗PP∗PR

PP+PR .
Our second evaluation method is designed to more directly

test the correctness of underlying forms by using the analyses
provided in CELEX to reconstruct an underlying form (UF)
for each surface form. To identify the underlying stem for a
word, we use the lemma ID number, which is the same for all
inflected forms and specifies the canonical dictionary form,
which is identical to the stem. To identify the underlying suf-
fix, we map each of the suffix functional labels to a canonical
string representation. Specifically, pe ⇒ ing, a1S ⇒ ed,
e3S⇒ s, and all other labels are mapped to the empty string
ε. When the CELEX surface segmentation of an inflected
form has an empty suffix, indicating an irregular form such
as forgot.ε, we use the surface segmentation as the UF. We
can then compute underlying form accuracy (UFA) for stems
as the proportion of found stems that match those in the UFs,
and likewise for suffixes.

5.3 Inference and hyperparameters
Our inference procedure alternates between sampling the
variables in the model and updating the hyperparameters. For
both the baseline and spelling-rule system, we ran the algo-
rithm for 5 epochs, with each epoch containing 10 iterations
of sampling and 10 iterations of hyperparameter updates. Al-
though it is possible to automatically learn values for all of the
hyperparameters in the model, we chose to set the values of
the hyperparameters over rule types by hand to reflect our in-
tuitions that empty rules should be far more prevalent than in
insertions or deletions. That is, the hyperparameter for empty
rules ηE should be relatively high, while the hyperparameters
determining insertion and deletion rules, ηI and ηD, should
be low (and, for simplicity, we assume they are equal). Re-
sults reported here use ηE = 5, ηI = ηD = .001 (although
other similar values yield similar results). All other hyperpa-
rameters were learned.

The remaining model parameters are either determined by
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Word Segmentation Rule
walk walk. ε → ε lk #
walked walk.ed ε → ε lk d
walking walk.ing ε → ε lk i
forget forget. ε → ε et #
forgetting forget.ing ε → t et i
forgot forgot. ε → ε ot #
forgets forget.s ε → ε et s
state state. ε → ε te #
stating state.ing e → ε te i
stated state.d ε → ε te d
states state.s ε → ε te s
stationed stationed. ε → ε ed #
jumped jump.ed ε → ε mp e

Figure 3: Induced Analyses. Incorrect analyses are shaded.

Freq Rule Context
132 e → ε te i
59 e → ε re i
50 e → ε le i
49 e → ε se i
43 s → ε es d
35 e → ε ze i
33 e → ε ge i
32 e → ε ce i
31 e → ε ve i
26 e → ε de i

Freq Rule Context
22 e → ε ne i
15 e → ε me i
15 ε → e sh s
14 ε → e ss s
14 e → ε ke i
12 ε → e ch s
12 ε → e at s
10 ε → p op i
10 ε → p ip e
9 ε → p ap i

Figure 4: Commonly Induced Rules by Frequency.

the data or set by hand. For the WSJ verbs data set the num-
ber of possible stems, T = 7, 306, 988, and the number of
possible suffixes, F = 5, 555, are calculated by enumerating
all possible segmentation of the words in the data set and ac-
counting for every possible rule transformation. We set the
number of classes C = 1 and the minimum stem length to
three chararacters. Enforcing a minimum stem length ensures
that even in the case of the most minimal stem and the appli-
cation of an insertion rule, the underlying stem will still have
two characters to form the left context.

5.4 Results
Quantitative results for the two systems are shown in Table
2, with examples of full analyses shown in Figure 3 and the
most commonly inferred spelling rules in Figure 4. Overall,
the augmented models dramatically outperform the baseline
on the UFA stem metric, which is is not surprising consider-
ing that it is the introduction of rules that allows these mod-
els to correctly capture stems that may have been improperly
segmented in the baseline (Figure 1).

However, the baseline performs better on suffix UFA by a
fair margin. There are at least two contributing factors caus-
ing this. First, the addition of spelling rules allows the model
to explain some suffixes in alternate undesirable ways. For
instance, the -ed suffix is often analyzed as a -d suffix with an
e-insertion rule, or, as in the case of symbolized, analyzed as a
-d suffix with an s-deletion rule. The latter case is somewhat
attributable to data sparsity, where the base form, symbolize,
is not found in the data. In these circumstances it can be
preferable to analyze these as symbolizes. with an empty rule,

and symbolizes+d with the erroneous s-deletion rule (Figure
4), so that they share the same stem. These analyses would
not be likely using a larger data set.

Second, the presence of derivational verbs in the data is
a contributing factor because they are not analyzed correctly
in the inflectional verbs section of CELEX, which forms our
gold standard. Consider that the baseline provides the most
succinct analysis of suffixes, positing just four (-ε, -s, -ed, and
-ing), whereas the three-character-context model induces five
(the same four with the addition of -d). The two-character-
context model, the worst-performing system on suffix UFA,
learns an additional five suffixes (-e, -es, -n, -ize, and -ized).
Not all of these additional forms are unreasonable; -ize and -n
are both valid suffixes, and -ized is the remainder of a correct
segmentation. However, because suffixes like -ize are deriva-
tional (they change the part-of-speech of the root they attach
to), they are not considered as part of the canonical dictionary
of our gold standard. In this situation the UFA metric there-
fore provides an upper-bound for the baseline, but a lower-
bound for augmented systems.

The pair-wise metrics are also susceptible to this problem,
but continue to support the conclusions reached previously
on overall system performance. The baseline slightly out-
performs the three-character-context model in stem PP, but
compares quite poorly in stem PR, and in stem PF. It again
performs better than the augmented models on suffix tasks.
Worth noting is that the errors made according to this metric
are a small set of very pervasive mistakes. For instance, im-
properly segmenting -ed suffixes as -d suffixes or segmenting
a stem-final e as its own suffix together contribute to more
than half of all erroneous suffixes proposed by this model.

In addition to improved performance on the morphology
induction task, our system also produces a probabalistic rep-
resentation of the phonology of a language in the spelling
rules it learns. The most frequently learned rules (Table 4) are
largely correct, with just two spurious rules induced. While
many of these are linguistically redundant because of the
overspecification of their contexts, most refer to valid, desir-
able orthographic rules. Examples of these are e-deletion in
various contexts (state+ing ⇒ stating ), e-insertions (pass+s
⇒ passes), and consonant doubling when taking the -ing suf-
fix (forget+ing ⇒ forgetting, spam+ing ⇒ spamming).

6 Conclusion
As we noted in the introduction, one of the difficulties of un-
supervised morphology induction is that spelling rules often
act to obscure the morphological analyses of the observed
words. A few previous model-based systems have tried to
deal with this, but only by first segmenting the corpus into
morphs, and then trying to identify spelling rules to sim-
plify the analysis. To our knowledge, this is the first work
to present a probabilistic model using a joint inference proce-
dure to simultaneously induce both morphological analyses
and spelling rules. Our results are promising: our model is
able to identify morphological analyses that produce more ac-
curate stems than the baseline while also inducing a number
of spelling rules that correctly characterize the transforma-
tions in our data.
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Stems Suffixes
Model PP PR PF UFA PP PR PF UFA
Baseline .610 . .647 .628 .580 .461 .722 .563 .921
Two-Character-Context .473 .667 .445 .656 .423 .472 .446 .753
Three-Character-Context .584 .911 .712 .786 .415 .578 .483 .856

Table 2: Performance of the baseline model and two augmented models, measured using pairwise precision (PP), pairwise
recall (PR), pairwise F-measure (PF), and underlying form accuracy (UFA).

Of course, our model is still somewhat preliminary in sev-
eral respects. For example, a single stem and suffix is in-
sufficient to capture the morphological complexity of many
languages (including English), and substitution rules should
ideally be allowed along with deletions and insertions. Ex-
tending the model to allow for these possibilities would cre-
ate many more potential analyses, making it more difficult to
identify appropriate solutions. However, there are also many
sensible constraints that could be placed on the system that
we have yet to explore. In particular, aside from assuming
that empty rules are more likely than others, we placed no
particular expectations on the kinds of rules that should occur.
However, assuming some rough knowledge of the pronunci-
ation of different letters (or a phonological transcription), it
would be possible to use our priors to encode the kinds of
transformations that are more likely to occur (e.g., vowels
to vowels, consonants to phonologically similar consonants).
We hope to pursue this line of work in future research.
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