
Detection of Imperative and Declarative Question-Answer Pairs
in Email Conversations

Helen Kwong
Stanford University, USA
hhkwong@stanford.edu

Neil Yorke-Smith
SRI International, USA
nysmith@ai.sri.com

Abstract
Question-answer pairs extracted from email threads
can help construct summaries of the thread, as well
as inform semantic-based assistance with email.
Previous work dedicated to email threads extracts
only questions in interrogative form. We extend the
scope of question and answer detection and pair-
ing to encompass also questions in imperative and
declarative forms, and to operate at sentence-level
fidelity. Building on prior work, our methods are
based on learned models over a set of features that
include the content, context, and structure of email
threads. For two large email corpora, we show
that our methods balance precision and recall in ex-
tracting question-answer pairs, while maintaining a
modest computation time.

1 Introduction
Studies of email overload show that the “tyranny of email”
negatively impacts work performance and tangibly weighs
upon organizations and even national economies [Dabbish
and Kraut, 2006]. Various software tools have been devel-
oped to ameliorate email overload. At one extreme, some
refactor the role and workflow of email (e.g., interweaving
it with explicit task management [Belotti et al., 2005], se-
mantically understanding actions pertaining to a message and
assisting the user to perform them [Freed et al., 2008]). Oth-
ers seek to improve email client software with nuggets of AI
(e.g., auto-filing messages into folders, detecting missing at-
tachments, summarizing email threads) [Dredze et al., 2008].

One reason for the ubiquity of email is its nature as asyn-
chronous, unstructured, written, multi-party communication.
Research has sought to automatically derive summaries of
email threads and embed them in email clients [Ulrich et al.,
2008]. Summaries can be extractive, i.e., selected fragments
of the thread, or generative, ranging from as sophisticated as
a high-level synopsis to as simple as a table of respondent
frequencies. One potent form of generative summarization is
identification of the questions (explicit or implicit) present in
the thread and the answers to them, if any.

We consider the related problems of identifying questions
in an email thread (possibly between multiple parties), and
linking them to possible answers later in the thread. Our work

is part of an effort to endow an email client with a range of
usable smart features by means of AI technology.

Prior work that studies the problems of question identifi-
cation and question-answer pairing in email threads has fo-
cused on interrogative questions, such as “Which movies do
you like?” However, questions are often expressed in non-
interrogative forms: declarative questions such as “I was
wondering if you are free today”, and imperative questions
such as “Tell me the cost of the tickets”. Our sampling from
the well-known Enron email corpus finds about one in five
questions are non-interrogative in form. Further, previous
work for email threads has operated at the paragraph level,
thus potentially missing more fine-grained conversation.

We propose an approach to extract question-answer pairs
that includes imperative and declarative questions. Our main
contributions are: (1) analysis of prior question-answer (Q-A)
pairing algorithms on more diverse email corpora (e.g., En-
ron), (2) an improved non-learning method for question de-
tection, (3) extension of both learning and non-learning meth-
ods for answer detection to include non-interrogative ques-
tions and to operate at sentence-level fidelity, and (4) analysis
of performance with more stringent metrics.

2 Related Work
Shrestha and McKeown [2004] describe an approach for de-
tecting question-answer pairs in email threads for the pur-
pose of summarization. For question detection, Shrestha
and McKeown (henceforth S&M) learn a classification model
based on parts-of-speech (POS) features, training it on a tran-
scribed telephone speech corpus. The focus is on detecting
questions in interrogative form only.

For question-answer linkage, S&M work at the paragraph
level. They learn a classification model based on features
over original (i.e., non-quoted) paragraphs. The features
include standard informational retrieval measures, such as
stop words, cosine similarity, and euclidean distance, features
from thread structure, such as the number of interleaved mes-
sages, and features based on the set of candidate answer para-
graphs, such as the number of candidates. The classifier is
trained and tested on an ACM student corpus annotated by
two human annotators.

Cong et al. [2008] examine question and answer detection
and pairing for online forums. These forums bear many simi-
larities to email threads, as well as several key distinguishing

1519



characteristics. For instance, over 90% of forum threads con-
tain Q-A knowledge (more than for email), the number of
participants is often higher, multiple questions and answers
are often highly interleaved, quoting is used in different ways,
and message reply relationships are usually unavailable.

The approach of Cong et al. (henceforth CWLSS) for ques-
tion detection is based on characterizing questions and non-
questions by extracting labelled sequence patterns (LSPs)—
as opposed to POS analysis only—and using the discovered
patterns as features to learn a classification model for question
detection. For online forums, they find the LSP-based clas-
sifier outperforms the S&M POS-based classifier. CWLSS
develop a graph-based propagation method for question-
answer linkage, leveraging the linkage structure within fo-
rum threads, and combine it with syntactic and classification-
based methods for answer identification.

Besides email threads and online forums, there also has
been work on extracting question-answer pairs in multi-party
dialogue [Kathol and Tur, 2008]. While extraction of ques-
tions in meeting transcripts could be similar to that in email
text, the structure of email threads is very different from that
of meeting speech. For example, while question detection
is relatively more simple in email than in speech, the asyn-
chronous nature of email and its rich context (e.g., quoting)
makes question-answer pairing relatively more difficult.

Harder still than automated answer detection is automated
question answering. While question-answering systems serve
purposes very different from ours, ideas from the literature on
question answering can be of benefit.

3 Algorithms
The starting point for our work is an email thread. Given a
set of messages, thread reassembly is the task of extracting
the individual threads [Yeh and Harnly, 2006]; we assume
this procedure has been performed.

3.1 Question Detection
Question detection serves the greater purpose for us of
question-answer linkage. We consider three algorithms for
question detection that work at the sentence level, i.e., the
algorithms look at each sentence in an email thread and clas-
sify each as either a question or not. To serve question-answer
linkage, we seek an algorithm that exhibits a sufficiently high
F1 score (the geometric mean of precision and recall) on real
data, coupled with a low running cost.

Naı̈ve A baseline question detection algorithm had been
implemented in our email assistant. Algorithm Naı̈ve em-
ploys regular expressions to classify sentences that end with
a question mark as questions, except for sentences that fit the
pattern of a URL. A common extension is to detect 5W-1H
question words (Who, What, Where, When, Why, or How).

S&M The state-of-the-art in question detection in email
threads is the work of Shrestha and McKeown [2004]. Algo-
rithm S&M uses Ripper [Cohen, 1996] to learn a model that
classifies each sentence as a question or a non-question, based
on parts-of-speech features. The scope of the S&M algorithm
is detection of questions in interrogative form only.

There are two broad possibilities to create a more general
question detector: a method based on learning, as S&M, or
not, as Naı̈ve. We chose to examine whether the performance
a simpler, non-learning, method would suffice.

Regex Like the Naı̈ve question detector, algorithm Regex
is also based entirely on regular expressions. A sentence is
detected as a question if it fulfills any of the following:

• It ends with a question mark, and is not a URL.
• It contains a phrase that begins with words that fit an in-

terrogative question pattern. This is a generalization of
5W-1H question words. For example, the second phrase
of “When you are free, can you give me a call” is a
strong indicator that the sentence is a question.1 This
condition is designed to catch sentences that should end
with a question mark but were not typed with one.

• It fits the pattern of common questions that are not in the
interrogative form. For instance, “Let me know when
you will be free” is one such question.

Our hand-crafted database contains approximately 50 pat-
terns; it was assembled rapidly. The alternative approach is
to learn patterns; CWLSS take this approach, and present a
generalized learned classification model to acquire patterns.

3.2 Answer Detection and Q-A Pairing
Traditional document retrieval methods can be applied to
email threads, by treating each message or each candidate an-
swer as a separate document. However, as has been observed
in the direct application of information retrieval literature for
extractive email summarization, these methods, such as co-
sine similarity, query likelihood language models, and KL-
divergence language models, do not on their own exploit the
content, context, and structural features of email threads.

We again consider three algorithms: one initially imple-
mented in our email assistant, one identified as state-of-the-
art in the literature (S&M), and a new heuristic-based algo-
rithm of our construction that builds upon the literature.

Naı̈ve Q-A We again regard the Naı̈ve question-answer
pairing algorithm as a baseline method. It is based on detect-
ing answer types, and subsequent simple matching of ques-
tion and answer sentences by type. Given an email thread,
the algorithm iterates through each original (i.e., unquoted)
sentence2 and determines whether it is a question using the
Naı̈ve question detector described above. For each detected
question, it guesses the expected answer type based on reg-
ular expression patterns. For example, Naı̈ve categorizes a
question that begins with “Are you” as a yes/no question. For
each question, the algorithm looks at each original sentence
in every subsequent email in the thread for a sentence that fits
the expected answer type. For example, the sentence “I think
so” fits a yes/no question. The first sentence that fits the ex-
pected answer type of a detected question is naı̈vely paired as
the answer to that question (i.e., a sentence is paired as the an-
swer to at most one question). The underlying heuristic is that

1There is an improvement to S&M, discussed below, that breaks a sentence into
comma-delimited phrases, in an effort to catch such cases.

2While quoted material is used in email to respond to segments of earlier messages,
the usage of this practice varies; it is much more common in online forums.

1520



earlier questions are answered earlier than later questions; the
asynchronous nature of conversations in email threads means
the assumption does not hold in general.

The classification of question types is: yes/no, essay (why
and how questions), what, when, where, who, number, and
choice (e.g., “Is it a house or a flat?”). However, when the
Naı̈ve algorithm looks for an answer to a question, the only
types of answers captured are yes/no, essay, and what.

S&M Q-A For answer detection and question-answer pair-
ing, S&M again use Ripper to learn a classification model.
They work at the paragraph level. For training purposes, a
paragraph is considered a question segment if it contains a
sentence marked by the human annotator as a question, and
a paragraph is considered an answer segment to a question
paragraph if it contains at least one sentence marked by the
human annotator as an answer to the question. The candi-
date answer paragraphs of a question paragraph are all the
original paragraphs in the thread subsequent to the message
containing the question paragraph. Candidate answer para-
graphs that do not contain sentences marked as an answer by
the annotator are used as negative examples.

As noted earlier, the features that the S&M algorithm uses
include standard textual analysis features from information
retrieval, features derived from the thread structure, and fea-
tures based on comparison with other candidate paragraphs.

Heuristic Q-A We present a portfolio of heuristic algo-
rithms that operate at the sentence level. The algorithms use
a common set of features that extends those considered by
S&M. The first algorithm variant uses hand-picked parame-
ter values, the second (like S&M) learns a classification model
(also using Ripper), while the third algorithm learns a linear
regression model. We examine for questions each content
sentence, i.e., each original sentence that is not classified as a
greeting or signature line. (Culling greetings and signatures
improves performance by as much as 25%.) Any question de-
tector could be used; we use the Regex algorithm described
earlier. For each question, we obtain a set of candidate an-
swers according to the following heuristic. A candidate an-
swer is a content sentence in a subsequent message in the
thread that is: (1) not from the sender of the question email,
and (2) an individual’s first reply to the question email, (3)
not one of the detected question sentences.

Our heuristic algorithms score each of the candidate an-
swers based on a weighted set of features. In variants that
employ learning, we use the same set of features (described
below) to train answer detectors, and to train Q-A pairing
classifiers that assign each candidate answer a probability that
it is the answer to a given question. We attribute the highest-
scoring or most probable candidate (appropriately) as the an-
swer to a given question, assuming that the score or proba-
bility is above a minimum threshold (default 0.5). Finally,
we limit the number of questions to which an answer can be
assigned; for the experiments reported, we use a limit of two.

The set of features we use for answer detection and
question-answer pairing is a combination of textual features,
structural features, entity tags, and expected answer types.
Let Q be a question in message mQ and A be a candidate
answer found in message mA. The features are as follows.

1. Number of non stop words in Q and A (S&M feature a)
2. Cosine similarity between Q and A (part of S&M feat. b)
3. Cosine similarity between Q and A, after named entity

tagging, stemming, and removal of stop words
4. Number of intermediate messages between mQ and mA

(S&M feature c)
5. Ratio of the number of messages in the thread prior to

mQ to the total number of messages, and similarly for
mA (S&M feature d)

6. Number of candidate answers that come before A (sim-
ilar to part of S&M feature f)

7. Ratio of the number of candidate answers that come be-
fore A to the total number of candidate answers (S&M
feature g)

8. Whether mA is the first reply to mQ

9. Whether Q is a question addressed to the sender of mA:
for example, “Bill, can you clarify?” is addressed to a
user whose name or address includes “bill”

10. Semantic similarity between the sentences Q and A

11. Whether A matches the expected answer type of Q

We thus include most of the features found to be use-
ful in S&M. We omit S&M feature e, since it is superseded
by our feature 8, and S&M feature h, since it relies on
In-Reply-To header information which is surprisingly of-
ten not available [Yeh and Harnly, 2006] (for instance, it is
not available in the Enron corpus), and moreover since the
intent of this feature is superseded by taking the best-scoring
match in Heuristic.

Computation of the features is mostly straightforward. We
find that cosine similarity suffices and do not use also eu-
clidean distance (unlike S&M feature b). We compute seman-
tic similarity between question and candidate answers based
on WordNet relations [Pirrò and Seco, 2008].

The most difficult feature to capture is the last: expected
answer type. The algorithm Naı̈ve detects answer type by
the crude means of regular expressions. This suffices for
yes/no questions. We built a named entity recognizer that
identifies and classifies proper names, places, temporal ex-
pressions, currency, and numbers, among other entities. The
recognizer tags phrases in message bodies. Thus, for a when
question, a match occurs if any phrases in the candidate an-
swer are tagged as times or dates. We do not attempt to detect
by type essay, what, and choice answers.

4 Empirical Analysis
We undertook experiments to assess the behaviour of the al-
gorithms described in the previous section. The algorithms
were implemented in Java 1.6, and the experiments were per-
formed on an Intel Core 2 Duo 2.20GHz machine with 2GB
memory, running Windows Vista.

4.1 Methodology and Datasets
What makes a segment of text a question or not, and what
constitutes an answer to a question, are both subjective judg-
ments. We follow prior works in information retrieval to train
(where relevant) and test algorithms in our experiments on
human-annotated datasets.

1521



Algorithm Precision Recall F1-score Time (ms)

Naı̈ve 0.956 0.918 0.936 0.0254
S&M 0.623 0.865 0.724 48.30
Regex 0.954 0.964 0.959 0.243

Table 1: Question detection, interrogative questions only

Algorithm Precision Recall F1-score Time (ms)

Naı̈ve 0.958 0.786 0.863 0.0286
S&M 0.662 0.823 0.734 45.90
Regex 0.959 0.860 0.907 0.227

Table 2: Question detection, including non-interrogative questions

In contrast to email summarization, where standardized
datasets now exist [Ulrich et al., 2008], there are unfortu-
nately no annotated email corpora available for question-
answer pairing. The ACM student corpus used by S&M
and the annotations upon it are not available for reasons
of privacy. This state of affairs differs to online forums,
also, in many of which the community rate the posts to a
thread, thus providing ready and large datasets [Cong et al.,
2008]. However, while not annotated with questions—or at
least not with sufficient fidelity on question types—nor with
question-answer pairings, extensive email corpora are avail-
able. We used the widely-studied Enron corpus [Klimt and
Yang, 2004] and the Cspace corpus [Minkov et al., 2005].

4.2 Question Detection
Data and Metrics To evaluate the question detection algo-
rithms Naı̈ve, S&M, and Regex (Section 3.1), we created a
test dataset of sentences as follows. We randomly selected
10,000 sentences from emails from the Enron corpus and the
Cspace corpus. A human annotator looked at each sentence
and marked all questions until 350 questions were marked.
For each question the annotator also marked its sentence form
as interrogative, declarative, imperative, or other. Out of the
350 questions, about 80% were marked as interrogative, 11%
as imperative, 5% as declarative, and 4% as other. In addi-
tion to these 350 question sentences, we randomly selected
350 sentences out of those that had been passed over as non-
questions to obtain a collection of 700 sentences in total.3

We measured the precision, recall, and F1-score for each
of the three algorithms, on a restricted set with only the in-
terrogative questions and the 350 non-questions, and on the
complete set of 700 sentences. The Naı̈ve and Regex algo-
rithms do not require training, while the S&M algorithm had
been previously trained on the transcribed telephone speech
corpus [Shrestha and McKeown, 2004].4 Thus all 700 sen-
tences were used for testing purposes.

3We chose a 50-50 distribution in order to perform a similar evaluation as S&M; a
more natural distribution would have many more non-questions. Increasing the number
of non-questions can be expected to leave recall unchanged, since it depends more on
non-interrogative questions than non-questions. By contrast, precision can be expected
to fall across the algorithms, supposing each question-detection algorithm mis-classifies
a fixed fraction of non-questions as false positives.

4We maintain the same training as the original so to directly compare results. If
trained on email data, the precision of S&M can be expected to improve. However, its
training requires POS-tagged data; we were not aware of POS-tagged email corpora.
Further, available trained POS taggers are mostly trained on traditional text, whereas
email data has been described as more similar to speech.

Algorithm Precision Recall F1-score

5W-1H 0.690 0.151 0.248
Naı̈ve 0.978 0.780 0.868
S&M 0.873 0.873 0.871
CWLSS 0.971 0.978 0.975

Table 3: Question detection on online forums, including non-
interrogative questions [Cong et al., 2008]

Results The results are shown in Tables 1 and 2. We can see
that S&M performs relatively less well than the other two al-
gorithms on both datasets. The fact that its precision is so low
is at first surprising, because it is reported that the S&M algo-
rithm achieves high precision [Shrestha and McKeown, 2004;
Cong et al., 2008]. The difference may be understood in that
S&M tested only on questions in interrogative form and state-
ments in declarative form, whereas we tested on questions in
any form and non-questions in any form. Examples of non-
questions that are not in declarative form, that S&M incor-
rectly detected as questions, are “Brian, just get here as soon
as you can” and “Let’s gear up for the game”.5

The results for the two regular expression algorithms are
more expected. Both perform very well on interrogative ques-
tions only, emphasizing that question detection is not so chal-
lenging a task. Both have lower recall scores on the over-
all set, since non-interrogative questions are harder to detect.
Since S&M does not consider declarative or imperative ques-
tions, its performance is essentially the same on both datasets.
As expected, Regex achieves higher recall than Naı̈ve be-
cause of its greater sophistication. Although the runtime in-
creases by one order of magnitude, the absolute runtime re-
mains modest. The tables report the mean runtimes of the
algorithms in milliseconds per sentence. The median time
per sentence for both Regex and Naı̈ve is essentially zero;
for S&M it is 18.5ms. POS tagging is the main reason for
the considerable extra time taken by S&M. The variance of
Regex is greater than Naı̈ve: 8.61 and 0.185ms respectively
(full dataset, including non-interrogative questions). S&M ex-
hibits considerable variance of 1750ms.

Table 3 reports results from Cong et al. [2008]. Although
these results are on a different dataset and for online forums
rather than email threads, we give them for comparison. It
can be seen that Naı̈ve based on 5W-1H words performs very
poorly, while Naı̈ve based on question marks (as our Naı̈ve)
has similar performance as to our experiments. The notable
difference is S&M, which exhibits the higher precision also
reported by S&M. However, Naı̈ve continues to perform as
well as S&M in these reported experiments.

The LSP-based classifier learned by CWLSS—algorithm
CWLSS—detects interrogative and non-interrogative ques-
tions. It is found to outperform Naı̈ve and S&M, and, albeit
on different datasets, has higher scores than Regex. However,
and again comparing unfairly across datasets, Regex still has
scores better than S&M, particularly precision. The use of
CWLSS for email threads is to be explored.

5The precision reported in CWLSS may be understood because they trained their
S&M question detector on the same kind of online forum data as they were testing,
instead of phone speech data as S&M and ourselves. As noted above, training S&M on
email corpora was infeasible without POS tagging.

1522



Algorithm Abbreviation

S&M original SMQA
S&M with Regex SMQA-regex
S&M with Regex and highest prob. SMQA-highest
Naı̈ve type matching Naı̈ve
Heuristic hand-tuned, random selection Random
Heuristic hand-tuned Heuristic
Heuristic by classifier Heuristic-C
Heuristic by linear regression Heuristic-LR

Table 4: Question-answer pairing methods

LCS SM
Algorithm Precision Recall F1-score Precision Recall F1-score

SMQA 0.0138 0.0829 0.0232 0.0761 0.4782 0.1297
SMQA-regex 0.1157 0.1144 0.1145 0.4358 0.4922 0.4609
SMQA-highest 0.2861 0.2817 0.2835 0.4981 0.5142 0.5048
Naı̈ve 0.1690 0.0452 0.0708 0.5045 0.1276 0.1998
Random 0.2797 0.2695 0.2735 0.4738 0.4896 0.4799
Heuristic 0.4618 0.4408 0.4538 0.5818 0.5710 0.5749
Heuristic-C 0.4545 0.4373 0.4439 0.5747 0.5750 0.5715
Heuristic-LR 0.4534 0.4280 0.4379 0.5711 0.5642 0.5647

Table 5: Question-answer pairing, Annotator 1

Altogether, we find that the F1-score of Regex of above 0.9
over all question types to be sufficient to move to consider the
more challenging task of question-answer pairing.

4.3 Answer Detection and Q-A Pairing
We now turn to our primary focus, answer detection and
question-answer pairing for both interrogative and non-
interrogative questions in email threads.

Data and Metrics We again randomly drew email threads
from the Enron and Cspace corpora. Four human annotators
marked the questions and corresponding answers (if any) in a
set of email threads. Two of the annotators (whom we refer to
as Annotators 1 and 2) each annotated about 90 threads con-
taining question and answer pairs; two annotated significantly
fewer. There were 23 Q-A threads that every annotator anno-
tated (the intersection set). The Fleiss kappa statistic for iden-
tifying question paragraphs was 0.69, and the kappa statistic
for linking answer paragraphs with question paragraphs was
0.77. These numbers are close to the numbers reported in
prior studies and indicate decent inter-annotator agreement.6

We used two metrics to evaluate the quality of the question-
answering pairing. The first metric we employed is the
paragraph-based metric used by Shrestha and McKeown
[2004] (which we will call SM). This metric is fitting only if
we segment messages at the paragraph level. Thus we devel-
oped a more stringent metric (which we will call LCS) based
on the longest common substring of words. Two text seg-
ments are considered the same under LCS if the length of
their longest common substring is greater than half the length
of the longer segment. We consider two Q-A pairs to be the
same if their question segments are the same by LCS and their
answer segments are also the same by LCS. We measure pre-
cision, recall, and F1 score by both SM and LCS metrics.

6Between Annotators 1 and 2, kappa for question detection and Q-A pairing were
0.74 and 0.83 respectively; there were 61 Q-A threads they both annotated.

LCS SM
Algorithm Precision Recall F1-score Precision Recall F1-score

SMQA 0.0506 0.2568 0.0842 0.0934 0.4213 0.1519
SMQA-regex 0.2101 0.2245 0.2166 0.3832 0.3693 0.3756
SMQA-highest 0.1979 0.1665 0.1805 0.4429 0.3068 0.3582
Naı̈ve 0.2615 0.0473 0.0779 0.4544 0.0909 0.1482
Random 0.1117 0.1013 0.1059 0.4187 0.3120 0.3521
Heuristic 0.2444 0.2012 0.2195 0.5376 0.3655 0.4259
Heuristic-C 0.2058 0.1717 0.1854 0.5238 0.3621 0.4202
Heuristic-LR 0.2396 0.1814 0.2039 0.5335 0.3459 0.4113

Table 6: Question-answer pairing, Annotator 2

Methods Table 4 summarizes the nine algorithms we stud-
ied. The first three algorithms evaluated are variants on S&M:
SMQA represents the original, unimproved S&M algorithm
described in Section 3.2 (i.e., S&M question detection, and
S&M’s learned classifier), SMQA-regex replaces the S&M
question detector with our better-performing Regex question
detector, and SMQA-highest makes the further refinement of
taking the most probable answer paragraph instead of any
candidate answer paragraph that has over 0.5 probability.

Algorithms Naı̈ve and Heuristic were described in Sec-
tion 3.2. The three variants of Heuristic employ hand-tuned
weights over the features, a learned classifier, and a linear
regression model, respectively. Finally, the question-answer
pairing algorithm Random retrieves the list of candidate an-
swer sentences as hand-tuned Heuristic. However, it then sim-
ply picks a random candidate answer. Thus Random allows
us to determine the merits of our three pairing strategies.

Results We took the data from Annotators 1 and 2 and per-
formed 5-fold cross validation for each annotator’s dataset.
Tables 5 and 6 give the precision and recall results. It can
be seen that the three variants of our Heuristic algorithm per-
form significantly better than the S&M and Naı̈ve algorithms
on the two annotators’ individual data. However, SMQA ex-
hibits superior recall on Annotator 2’s data, while Naı̈ve has
slightly winning precision under LCS. There is little differ-
ence between the three Heuristic variants. The relative perfor-
mances of SMQA-highest and Heuristic-C is understood from
the primary differences between them: the feature sets, and
the operation of the latter at the sentence level rather than
the paragraph level. The much lower LCS scores that our
algorithms have for Annotator 2 can be explained in that An-
notator 1 tended to mark short, single-sentence question and
answer segments, whereas Annotator 2 tended to mark longer
segments; our algorithms extract only sentences as questions
and answers, not longer pieces of text. Thus both metrics
have value in assessing the algorithms.

We experimented with permutations of Heuristic’s method-
ology. Removing its second condition, i.e., to consider only
the first reply from each individual, provides improvement in
some cases, at the cost of significantly larger runtime. Vary-
ing the heuristic on the number of questions to which an an-
swer may pertain can modestly increase F1-score; the best
overall setting on our dataset is 3. For Heuristic-LR, taking
the best answer with probability over 0.8 is better than our
default threshold of 0.5. As expected, taking all answers with
probability over 0.5 (rather than the best), as S&M, does not
improve the performance of any Heuristic variant.

The average processing time per thread is given in Table 7,

1523



Algorithm Mean Variance Median

SMQA 1450 1480000 1340
SMQA-regex 69.7 4570 62.0
SMQA-highest 57.6 4570 32.0
Naı̈ve 0.0769 0.0710 0
Random 2.46 67.9 0
Heuristic 296 84100 172
Heuristic-C 372 130000 249
Heuristic-LR 256 62300 171

Table 7: Question-answer pairing computation times (ms)

in terms of number of milliseconds per thread. Mean thread
length is 5.2 email messages; mean sentences per message is
13.9. We can see that the median amount of time taken by
all the algorithms, except for SMQA, is extremely low, but
that our Heuristic variants take an order of magnitude more
time than our SMQA variants, but an order of magnitude less
than the original S&M. This relatively higher runtime, and
variance, is at the gain of the higher precision and recall.
Heuristic-C is the slowest of the three variants. The bulk of
the time for S&M is taken by question detection; for Heuristic,
it is finding semantic similarity (feature 10). Feature compu-
tation is reflected in the runtime of Naı̈ve versus Heuristic.

Learning and Features Learning curves (not shown for
reasons of space) show that, under both SM and LCS metrics,
both Heuristic-C and Heuristic-LR converge with a training set
of approximately 30 threads. The comparable-or-better per-
formance of hand-tuned Heuristic, after only modest effort in
tuning the feature weights, suggests that it is identification
of appropriate features that is more significant in this prob-
lem than the values of the weights. The similar performance
of the two learning variants, despite their different models,
lends support to this. However, automated acquisition of fea-
ture weights, since training is straightforward, does offer the
flexibility of adaption to characteristics of particular datasets.

A factor analysis of the relative benefit of features indi-
cates, on our benchmark corpora, the features that give great-
est benefit are numbers 2–7. Features 1 (stop words) and 9–
11 are also beneficial, but feature 8 (whether mA is the first
reply to mQ) has surprisingly little contribution. Although
visual inspection reveals that answers are frequently seen in
the first reply to mQ, we hypothesize that this occurrence is
accounted for by feature 4.

5 Conclusion and Future Work
Question-answer identification and pairing provides a gener-
ative summary of an email thread. For question detection,
on threads drawn from the Enron and Cspace corpora, we
find that the learning algorithm of Shrestha and McKeown
[2004] suffers from poor precision when exposed to non-
interrogative questions. A generalized expression matching
algorithm performs adequately with very low runtime. Future
work is to investigate the promise of the question detection
method of Cong et al. [2008] to email conversations.

For answer detection and question-answer pairing, we pre-
sented a generalization of Shrestha and McKeown’s feature-
based algorithm, and found that our heuristic-based method

balances precision and recall, while maintaining a modest
computation time. Future work is to (1) examine further the
interplay of sentence-level and paragraph-level features, (2)
more fully exploit named entity extraction, and (3) consider
explicitly thread structure by means of the induced graph of
message relationships, together with quoted material (com-
pare [Carenini et al., 2007]).

Acknowledgments We thank with appreciation the volunteers
who annotated the thread corpora. This material is based upon work
supported by DARPA under Contract No. FA8750-07-D-0185. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s).

References
[Belotti et al., 2005] V. Belotti, N. Ducheneaut, M. Howard,

I. Smith, and R. Grinter. Quality vs. quantity: Email-centric task
management and its relations with overload. Human-Computer
Interaction, 20(2/3):89–138, 2005.

[Carenini et al., 2007] G. Carenini, R. T. Ng, and X. Zhou. Summa-
rizing email conversations with clue words. In Proc. of WWW’07,
pages 91–100, 2007.

[Cohen, 1996] W. Cohen. Learning trees and rules with setvalued
features. In Proc. of AAAI-96, pages 709–716, 1996.

[Cong et al., 2008] G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and
Y. Sun. Finding question-answer pairs from online forums. In
Proc. of SIGIR’08, pages 467–474, 2008.

[Dabbish and Kraut, 2006] L. Dabbish and R. Kraut. Email over-
load at work: An analysis of factors associated with email strain.
In Proc. of CSCW’06, pages 431–440, 2006.

[Dredze et al., 2008] M. Dredze, V. R. Carvalho, and T. Lau, edi-
tors. Enhanced Messaging: Papers from the 2008 AAAI Work-
shop, Menlo Park, CA, 2008. AAAI Press.

[Freed et al., 2008] M. Freed, J. Carbonell, G. Gordon, J. Hayes,
B. Myers, D. Siewiorek, S. Smith, A. Steinfeld, and A. Toma-
sic. RADAR: A personal assistant that learns to reduce email
overload. In Proc. of AAAI-08, pages 1287–1293, 2008.

[Kathol and Tur, 2008] A. Kathol and G. Tur. Extracting ques-
tion/answer pairs in multi-party meetings. In Proc. of ICASSP’08,
pages 5053–5056, 2008.

[Klimt and Yang, 2004] B. Klimt and Y. Yang. The Enron cor-
pus: A new dataset for email classification research. In Proc.
of ECML’04, pages 217–226, 2004.

[Minkov et al., 2005] E. Minkov, R. Wang, and W. Cohen. Extract-
ing personal names from emails: Applying named entity recog-
nition to informal text. In Proc. of HLT-EMNLP’05, 2005.

[Pirrò and Seco, 2008] G. Pirrò and N. Seco. Design, implementa-
tion and evaluation of a new similarity metric combining feature
and intrinsic information content. In Proc. of ODBASE’08, 2008.

[Shrestha and McKeown, 2004] L. Shrestha and K. McKeown. De-
tection of question-answer pairs in email conversations. In Proc.
of COLING’04, pages 542–550, 2004.

[Ulrich et al., 2008] J. Ulrich, G. Murray, and G. Carenini. A pub-
licly available annotated corpus for supervised email summariza-
tion. In Proc. of AAAI’08 Workshop on Enhanced Messaging,
pages 77–81, 2008.

[Yeh and Harnly, 2006] J.-Y. Yeh and A. Harnly. Email thread re-
assembly using similarity matching. In Proc. of CEAS’06, 2006.

1524


