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Abstract

Web-scale data has been used in a diverse range
of language research. Most of this research has
used web counts for only short, fixed spans of con-
text. We present a unified view of using web counts
for lexical disambiguation. Unlike previous ap-
proaches, our supervised and unsupervised systems
combine information from multiple and overlap-
ping segments of context. On the tasks of preposi-
tion selection and context-sensitive spelling correc-
tion, the supervised system reduces disambiguation
error by 20-24% over the current state-of-the-art.

1

Many problems in Natural Language Processing (NLP) can
be viewed as assigning labels to particular words in text,
given the word’s context. If the decision process requires
choosing a label from a predefined set of possible choices,
called a candidate set or confusion set, the process is often
referred to as disambiguation [Roth, 1998]. Part-of-speech
tagging, spelling correction, and word sense disambiguation
are all lexical disambiguation processes.

One common disambiguation task is the identification of
word-choice errors in text. A language checker can flag an
error if a confusable alternative better fits a given context:

Introduction

(1) The system tried to decide {among, between} the two
confusable words.

Most NLP systems resolve such ambiguity with the help of a
large corpus of text. The corpus indicates which candidate is
more frequent in similar contexts. The larger the corpus, the
more accurate the disambiguation [Banko and Brill, 2001].
Since no corpus is as large as the world wide web, many sys-
tems incorporate web counts into their selection process. For
the above example, a typical web-based system would query
a search engine with the sequences “decide among the” and
“decide between the” and select the candidate that returns the
most pages [Lapata and Keller, 2005]. Clearly, this approach
fails when more context is needed for disambiguation.

We present a unified view of web-scale approaches to lex-
ical disambiguation. Rather than using a single context se-
quence, we use contexts of various lengths and positions.
There are five 5-grams, four 4-grams, three trigrams and two
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bigrams spanning the target word in Example (1). We gather
counts for each of these sequences, with each candidate in the
target position. We first show how the counts can be used as
features in a supervised classifier, with a count’s contribution
weighted by its context’s size and position. We also propose
a novel unsupervised system that simply sums a subset of
the (log) counts for each candidate. Surprisingly, this system
achieves most of the gains of the supervised approach without
requiring any training data. Our systems outperform tradi-
tional web-scale approaches on the tasks of preposition selec-
tion, context-sensitive spelling correction, and non-referential
pronoun detection.

2 Related Work

Yarowsky [1994] defines lexical disambiguation as a task
where a system must “disambiguate two or more semantically
distinct word-forms which have been conflated into the same
representation in some medium.” Lapata and Keller [2005]
divide disambiguation problems into two groups: generation
and analysis. In generation, the confusable candidates are
actual words, like among and between. In analysis, we dis-
ambiguate semantic labels, such as part-of-speech tags, rep-
resenting abstract properties of surface words.

For generation tasks, a model of each candidate’s distribu-
tion in text is created. The models indicate which usage best
fits each context, enabling candidate disambiguation in tasks
such as spelling correction [Golding and Roth, 19991, prepo-
sition selection [Chodorow et al., 2007; Felice and Pulman,
20071, and diacritic restoration [Yarowsky, 1994]. The mod-
els can be large-scale classifiers or standard N-gram language
models (LMs). Trigram LMs have long been used for spelling
correction, an approach sometimes referred to as the Mays,
Damerau, and Mercer model [Wilcox-O’Hearn et al., 2008].
Gamon et al. [2008] use a Gigaword 5-gram LM for prepo-
sition selection. While web-scale LMs have proved useful
for machine translation [Brants et al., 2007], most web-scale
disambiguation approaches compare specific sequence counts
rather than full-sentence probabilities.

In analysis problems such as part-of-speech tagging, it is
not as obvious how a LM can be used to score the candidates,
since LMs do not contain the candidates themselves, only sur-
face words. However, large LMs can also benefit these appli-
cations, provided there are surface words that correlate with
the semantic labels. Essentially, we devise some surrogates



for each label, and determine the likelihood of these surro-
gates occurring with the given context. For example, Mi-
halcea and Moldovan [1999] perform sense disambiguation
by creating label surrogates from similar-word lists for each
sense. To choose the sense of bass in the phrase “caught a
huge bass,” we might consider tenor, alto, and pitch for sense
one and snapper, mackerel, and tuna for sense two. The sense
whose group has the higher web-frequency count in bass’s
context is chosen. Similarly, Bergsma et al. [2008] identify
whether the English pronoun it refers to a preceding noun (*it
was hungry”) or is used as a grammatical placeholder (it is
important to...”) by testing the frequency of other words in
place of it in the context. Since “he was hungry” is attested
in the corpus but “he is important to” is not, we conclude the
first instance is referential but the second is not.

Bergsma et al. [2008] also use learning to weight the counts
of different context sizes and positions. Their technique was
motivated and evaluated only for (binary) non-referential pro-
noun detection; we present a multi-class classification algo-
rithm for general lexical disambiguation problems, and eval-
uate it on both generation and analysis tasks. We also show
that a simple unsupervised system is competitive with super-
vised approaches requiring thousands of training examples.

3 Disambiguation with N-gram Counts

For a word in text, wg, we wish to assign a label, y;, from a
fixed set of candidates, Y = {y1,¥2...,yy|}. Assume that
our target word wg occurs in a sequence of context tokens:
W={w_4,w_3,w_o,w_1,Wg, w1, W, w3, wys }. The key to
improved web-scale models is that they make use of a vari-
ety of context segments, of different sizes and positions, that
span the target word wg. We follow Bergsma et al. [2008]
in calling these segments context patterns. The words that
replace the target word are called pattern fillers. Let the set
of pattern fillers be denoted by F' = {f1, fo, ..., fir|}. Re-
call that for generation tasks, the filler set will usually be
identical to the set of labels (e.g., for word selection tasks,
F=Y={among,between}). For analysis tasks, we must use
other fillers, chosen as surrogates for one of the seman-
tic labels (e.g. for WSD of bass, Y={Sensel, Sense2},
F={tenoralto,pitch,snapper,mackerel,tuna}).

Each length-N context pattern, with a filler in place of wy,
is an N-gram, for which we can retrieve a count. We re-
trieve counts from the web-scale Google Web 5-gram Cor-
pus, which includes N-grams of length one to five.! For each
target word wo, there are five 5-gram context patterns that
may span it. For Example (1) in Section 1, we can extract the
following 5-gram patterns:

system tried to decide wo

tried to decide wo the
to decide wg the two
decide wo the two confusable
wo the two confusable words
Similarly, there are four 4-gram patterns, three 3-gram pat-
terns and two 2-gram patterns spanning the target. With | F|
fillers, there are 14|F| filled patterns with relevant N-gram
counts. Here, F'={among, between}, so 28 counts are used.

! Available from the LDC as LDC2006T13.
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3.1 SUPERLM

We use supervised learning to train a classifier, h, to map a
target word and its context to a label, h : W — Y. Examples
are represented by features, ®(W). The learning algorithm
uses training examples to choose a set of weights, AY, for
each label, such that the weighted sum of the true label’s fea-
tures is higher than for other candidates. At test time, the
highest-scoring label is chosen:

h(W) = argmax A¥ - (W)
yey

1)

We use features for the logarithm of each of the 14|F| dif-
ferent counts. The weight on a count depends on the class
(label), the filler, the context position and its size, for a total
of 14|F||Y| count-weight parameters. For generation tasks,
the classifier tends to learn positive weight on features where
y=f, with higher absolute weights on the most predictive po-
sitions and lengths. If a pattern spans outside the current
sentence (when wy is close to the start or end), we use zero
for the corresponding feature value, but fire an indicator fea-
ture to flag that the pattern crosses a boundary.”> We call this
approach SUPERLM because it is SUPERvised, and because,
like an interpolated language model (LM), it mixes N-gram
statistics of different orders to produce an overall score for
each filled context sequence.

SUPERLM’s features differ from previous lexical disam-
biguation feature sets. In previous systems, attribute-value
features flag the presence or absence of a particular word,
part-of-speech, or N-gram in the vicinity of the target [Roth,
1998]. Hundreds of thousands of features are used, and prun-
ing and scaling are key issues [Carlson er al., 2001]. Perfor-
mance scales logarithmically with the number of examples,
even up to one billion training examples [Banko and Brill,
2001]. In contrast, SUPERLM’s features are all aggregate
counts of events in an external (web) corpus, not specific at-
tributes of the current example. It has only 14|F||Y| param-
eters, for the weights assigned to the different counts. Much
less training data is needed to achieve peak performance.

3.2 SumLM

We create an unsupervised version of SUPERLM. We pro-
duce a score for each filler by summing the (unweighted) log-
counts of all context patterns using that filler. For generation
tasks, the filler with the highest score is taken as the label. We
refer to this approach in our experiments as SUMLM. It can
be shown that SUMLM is similar to a Naive Bayes classifier,
but without counts for the class prior.

3.3 TRIGRAM

Previous web-scale approaches are also unsupervised. Most
use one context pattern for each filler: the trigram with the
filler in the middle: {w_1, f,w; }. |F| counts are needed for
each example, and the filler with the most counts is taken as

2Other features are possible. For generation tasks, we could also
include synonyms of the labels as fillers. Features could also be cre-
ated for counts of patterns processed in some way (e.g. converting
one or more context tokens to wildcards, POS-tags, lower-case, etc.),
provided the same processing can be done to the N-gram corpus.



the label [Lapata and Keller, 2005; Liu and Curran, 2006;
Felice and Pulman, 2007]. Using only one count for each
label is usually all that is feasible when the counts are gath-
ered using an Internet search engine, which limits the num-
ber of queries that can be retrieved. With limited context, and
somewhat arbitrary search engine page counts, performance
is limited. Web-based systems are regarded as “baselines”
compared to standard approaches [Lapata and Keller, 20051,
or, worse, as scientifically unsound [Kilgarriff, 2007]. Rather
than using search engines, higher accuracy and reliability can
be obtained using a large corpus of automatically downloaded
web documents [Liu and Curran, 2006]. We evaluate the tri-
gram pattern approach, with counts from the Google 5-gram
corpus, and refer to it as TRIGRAM in our experiments.

3.4 RATIOLM

Carlson et al. [2008] proposed an unsupervised method for
spelling correction that also uses counts for various pattern
fillers from the Google 5-gram Corpus. For every context pat-
tern spanning the target word, the algorithm calculates the ra-
tio between the highest and second-highest filler counts. The
position with the highest ratio is taken as the “most discrim-
inating,” and the filler with the higher count in this position
is chosen as the label. The algorithm starts with 5-grams and
backs off to lower orders if no 5-gram counts are available.
This position-weighting (viz. feature-weighting) technique
is similar to the decision-list weighting in [Yarowsky, 1994].
We refer to this approach as RATIOLM in our experiments.

4 Applications

While all disambiguation problems can be tackled in a com-
mon framework, most approaches are developed for a specific
task. Like Roth [1998], we take a unified view of disambigua-
tion, and apply our systems to preposition selection, spelling
correction, and non-referential pronoun detection.

4.1 Preposition Selection

Choosing the correct preposition is one of the most difficult
tasks for a second-language learner to master, and errors in-
volving prepositions constitute a significant proportion of er-
rors made by learners of English [Chodorow et al., 2007].
Several automatic approaches to preposition selection have
recently been developed [Felice and Pulman, 2007; Gamon
et al., 2008]. We follow the experiments of Chodorow et
al. [2007], who train a classifier to choose the correct prepo-
sition among 34 candidates.? In [Chodorow et al., 20071, fea-
ture vectors indicate words and part-of-speech tags near the
preposition, similar to the features used in most disambigua-
tion systems, and unlike the aggregate counts we use in our
supervised preposition-selection N-gram model (Section 3.1).
For preposition selection, like all generation disambigua-
tion tasks, labeled data is essentially free to create. Each

3Chodorow et al. do not identify the 34 prepositions they use. We
use the 34 from the SemEval-07 preposition sense-disambiguation
task [Litkowski and Hargraves, 2007]: about, across, above, after,
against, along, among, around, as, at, before, behind, beneath, be-
side, between, by, down, during, for, from, in, inside, into, like, of,
off, on, onto, over, round, through, to, towards, with
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preposition in edited text is assumed to be correct, automat-
ically providing an example of that preposition’s class. We
extract examples from the New York Times (NYT) section of
the Gigaword corpus.* We take the first 1 million preposi-
tions in NYT as a training set, 10K from the middle as a de-
velopment set and 10K from the end as a final unseen test set.
We tokenize the corpus and identify prepositions by string-
match. Our system uses no parsing or part-of-speech tagging
to extract the examples or create the features.

4.2 Context-sensitive Spelling Correction

We also evaluate on the classic generation problem of
context-sensitive spelling correction. For every occurrence
of a word in a pre-defined confusion set (like {among, be-
tween}), we select the most likely word from the set. The im-
portance of using large volumes of data has previously been
noted [Banko and Brill, 2001; Liu and Curran, 2006]. Im-
pressive levels of accuracy have been achieved on the stan-
dard confusion sets, for example, 100% on disambiguating
both {affect, effect} and {weather, whether} by Golding and
Roth [1999]. We thus restricted our experiments to the five
confusion sets (of twenty-one in total) where the reported per-
formance in [Golding and Roth, 1999] is below 90% (an av-
erage of 87%): {among, between}, {amount, number}, {cite,
sight, site}, {peace, piece}, and {raise, rise}. We again cre-
ate labeled data automatically from the NYT portion of Giga-
word. For each confusion set, we extract 100K examples for
training, 10K for development, and 10K for a final test set.

4.3 Non-referential Pronoun Detection

We can cast Bergsma et al. [2008]’s approach to non-
referential pronoun detection as an instance of SUPERLM.
They use fillers: F' = {the pronoun it, the pronoun they, other
pronouns, the (UNK) token, and all other tokens (all)}. The
classifier learns the relation between the filler counts and the
two labels (Y={Ref, NonRef}). Relatively higher counts
for the ir-filler generally indicate a non-referential instance.

We extend their work by applying our full set of web-scale
models. For SUMLM, we decide NonRef if the difference
between the SUMLM scores for it and they is above a thresh-
old. For TRIGRAM, we threshold the ratio between it-counts
and they-counts. For RATIOLM, we compare the frequencies
of it and all, and decide NonRef if the count of it is higher.
The thresholds and comparisons are optimized on the dev set.

We preprocessed the N-gram corpus exactly as described
in [Bergsma et al., 2008], and used the same portion of
It-Bank evaluation data.> We take the first half of each of the
subsets for training, the next quarter for development and the
final quarter for testing, creating an aggregate set with 1070
training, 533 development and 534 test examples.

4.4 Evaluation Methodology

We evaluate using accuracy: the percentage of correctly-
selected labels. As a baseline (BASE), we state the accuracy
of always choosing the most-frequent class. For spelling cor-
rection, we average accuracies across the five confusion sets.

* Available from the LDC as LDC2003T05
3 Available at www.cs.ualberta.ca/bergsma/ItBank/
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Figure 1: Preposition selection learning curve

We also provide learning curves by varying the number of la-
beled training examples. It is worth reiterating that this data
is used solely to weight the contribution of the different filler
counts; the filler counts themselves do not change, as they are
always extracted from the full Google 5-gram Corpus.

SUPERLM uses a linear-kernel multiclass SVM (the effi-
cient SVM™ulticlass instance of SVM*#" <t [Tsochantaridis
et al., 2004]). Tt slightly outperformed one-versus-all SVMs
in preliminary experiments. We tune the SVM’s regulariza-
tion on the development sets. We apply add-one smoothing to
the counts used in SUMLM and SUPERLM, while we add 39
to the counts in RATIOLM, following the approach of Carl-
son et al. [2008] (40 is the count cut-off used in the Google
Corpus). For all unsupervised systems, we choose the most
frequent class if no counts are available. For SUMLM, we
use the development sets to decide which orders of N-grams
to combine, finding orders 3-5 optimal for preposition selec-
tion, 2-5 optimal for spelling correction, and 4-5 optimal for
non-referential pronoun detection. Development experiments
also showed RATIOLM works better starting from 4-grams,
not the 5-grams originally used in [Carlson et al., 2008].

5 Results

5.1 Preposition Selection

Preposition selection is a difficult task with a low baseline:
choosing the most-common preposition (of) in our test set
achieves 20.9%. Training on 7 million examples, Chodorow
et al. [2007] achieved 69% on the full 34-way selection.
Tetreault and Chodorow [2008] obtained a human upper
bound by removing prepositions from text and asking anno-
tators to fill in the blank with the best preposition (using the
current sentence as context). Two annotators achieved only
75% agreement with each other and with the original text.

In light of these numbers, the accuracy of the N-gram
models are especially impressive. SUPERLM reaches 75.4%
accuracy, equal to the human agreement (but on different
data). Performance continually improves with more train-
ing examples, but only by 0.25% from 300K to 1M exam-
ples (Figure 1). SUMLM (73.7%) significantly outperforms
RATIOLM (69.7%), and nearly matches the performance of
SUPERLM.TRIGRAM performs worst (58.8%), but note it is
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Max
Min 2 3 4 5
2 50.2 63.8 704 72.6
3 66.8 72.1 73.7
4 69.3 70.6
5 57.8

Table 1: SUMLM accuracy (%) combining N-grams from or-
der Min to Max
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Figure 2: Preposition selection over high-confidence subsets,
with and without language constraints (-FR,-DE)

the only previous web-scale approach applied to preposition
selection [Felice and Pulman, 2007]. All differences are sta-
tistically significant (McNemar’s test, p<<0.01).

The order of N-grams used in the SUMLM system strongly
affects performance. Using only trigrams achieves 66.8% ac-
curacy, while using only 5-grams achieves just 57.8% (Ta-
ble 1).5 Summing counts from 3-5 results in the best perfor-
mance on the development and test sets.

We compare our use of the Google Corpus to extracting
page counts from a search engine, via the Google API. Since
the number of queries allowed to the API is restricted, we
test on only the first 1000 test examples. Using the Google
Corpus, TRIGRAM achieves 61.1%, dropping to 58.5% with
search engine page counts. Although this is a small differ-
ence, the real issue is the restricted number of queries al-
lowed. For each example, SUMLM would need 14 counts
for each of the 34 fillers instead of just one. For training
SUPERLM, which has 1 million training examples, we need
counts for 267 million unique N-grams. Using the Google
API with a 1000-query-per-day quota, it would take over 732
years to collect all the counts for training. This is clearly why
some web-scale systems use such limited context.

We also follow Carlson et al. [2001] and Chodorow et
al. [2007] in extracting a subset of decisions where our system
has higher confidence. We only propose a label if the ratio be-
tween the highest and second-highest score from our classi-
fier is above a certain threshold, and then vary this threshold
to produce accuracy at different coverage levels (Figure 2).

8Coverage is the main issue affecting the 5-gram model: only
70.1% of the test examples had a 5-gram count for any of the 34
fillers (93.4% for 4-grams, 99.7% for 3-grams)
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Figure 3: Context-sensitive spelling correction learning curve

The SUPERLM system can obtain close to 90% accuracy
when deciding on 70% of examples, and above 95% accu-
racy when deciding on half the examples. The TRIGRAM
performance rises more slowly as coverage drops, reaching
80% accuracy when deciding on only 57% of examples.

Many of SUPERLM’s errors involve choosing between
prepositions that are unlikely to be confused in practice, e.g.
with/without. Chodorow et al. [2007] wrote post-processor
rules to prohibit corrections in the case of antonyms. Note
that the errors made by an English learner also depend on
their native language. A French speaker looking to trans-
late au-dessus de has one option in some dictionaries: above.
A German speaker looking to translate iiber has, along with
above, many more options. When making corrections, we
could combine SUPERLM (a source model) with the likeli-
hood of each confusion depending on the writer’s native lan-
guage (a channel model). This model could be trained on text
written by second-language learners. In the absence of such
data, we only allow our system to make corrections in English
if the proposed replacement shares a foreign-language trans-
lation in a particular Freelang online bilingual dictionary.

To simulate the use of this module, we randomly flip 20%
of our test-set prepositions to confusable ones, and then ap-
ply our classifier with the aforementioned confusability (and
confidence) constraints. We experimented with French and
German lexicons (Figure 2). These constraints strongly ben-
efit both the SUPERLM and the TRIGRAM systems, with
French constraints (—F'R) helping slightly more than Ger-
man (—DFE) for higher coverage levels. There are fewer
confusable prepositions in the French lexicon compared to
German. As a baseline, if we assign our labels random
scores, adding the French and German constraints results in
20% and 14% accuracy, respectively (compared to i uncon-
strained). At 50% coverage, both constrained SUPERLM sys-
tems achieve close to 98% accuracy, a level that could provide
very reliable feedback in second-language learning software.

5.2 Context-sensitive Spelling Correction

Figure 3 provides the spelling correction learning curve,
while Table 2 gives results on the five confusion sets (Sec-
tion 4.2). Choosing the most frequent label averages 66.9%
on this task (BASE). TRIGRAM scores 88.4%, comparable
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Set BASE TRIGRAM SUMLM SUPERLM
among | 60.3 80.8 90.5 92.8
amount | 75.6 83.9 93.2 93.7

cite 87.1 94.3 96.3 97.6
peace | 60.8 92.3 97.7 98.0

raise 51.0 90.7 96.6 96.6
Avg. 66.9 88.4 94.8 95.7

Table 2: Context-sensitive spelling correction accuracy (%)
on different confusion sets
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Figure 4: Non-referential detection learning curve

to the trigram (page count) results reported in [Lapata and
Keller, 2005]. SUPERLM again achieves the highest perfor-
mance (95.7%), and it reaches this performance using many
fewer training examples than with preposition selection. This
is because the number of parameters grows with the number
of fillers times the number of labels, and there are 34 prepo-
sitions but only two-to-three confusable spellings.

SUPERLM achieves a 24% relative reduction in error over
RATIOLM (94.4%), which was the previous state-of-the-
art [Carlson et al., 2008]. SUMLM (94.8%) also improves
on RATIOLM, although results are generally similar on the
different confusion sets. On {raise,rise}, SUPERLM’s super-
vised weighting of the counts by position and size does not
improve over SUMLM (Table 2). On all the other sets the
performance is higher; for example, on {among,berween},
the accuracy improves by 2.3%. On this set, counts for fillers
near the beginning of the context pattern are more important,
as the object of the preposition is crucial for distinguishing
these two classes (“between the two” but “among the three”).
SUPERLM can exploit the relative importance of the different
positions and thereby achieve higher performance.

5.3 Non-referential Pronoun Detection

For non-referential pronoun detection, BASE (always choos-
ing referential) achieves 59.4%, while SUPERLM reaches
82.4%. Bergsma et al. [2008] report state-of-the-art accu-
racy of 85.7%, over a baseline of 68.3%; thus in our data
SUPERLM achieves a higher but similar relative reduction
of error over BASE. RATIOLM, with no tuned thresh-
olds, performs worst (67.4%), while TRIGRAM (74.3%) and
SUMLM (79.8%) achieve reasonable performance by com-



paring scores for it and they (Section 4.3). All differences
are statistically significant (McNemar’s test, p<<0.05), except
between SUPERLM and SUMLM.

As this is our only task for which substantial effort was
needed to create training data, we are particularly interested
in the learning rate of SUPERLM (Figure 4). After 1070
examples, it does not yet show signs of plateauing. Here,
SUPERLM uses double the number of fillers (hence double
the parameters) that were used in spelling correction, and
spelling performance did not level-off until after 10K train-
ing examples. Thus labeling an order of magnitude more data
will likely also yield further improvements in SUPERLM.

However, note these efforts would have to be repeated in
every new language and domain to which SUPERLM is ap-
plied. On the other hand, SUMLM performs almost as well
as SUPERLM and requires no supervision. Furthermore, er-
ror analysis by Bergsma et al. [2008] indicates further gains in
accuracy could come most easily by jointly optimizing detec-
tion with pronoun resolution. SUMLM would be a more com-
petitive and convenient system for rapid development of sys-
tems that operate jointly over different languages and texts.

6 Conclusion

We presented a unified view of using web-scale N-gram mod-
els for lexical disambiguation. State-of-the-art results by our
supervised and unsupervised systems demonstrate that it is
not only important to use the largest corpus, but to get maxi-
mum information from this corpus. Using the Google 5-gram
data not only provides better accuracy than using page counts
from a search engine, but facilitates the use of more context
of various sizes and positions. The TRIGRAM approach, pop-
ularized by Lapata and Keller [2005], clearly underperforms
the unsupervised SUMLM system on all three applications.

In each of our tasks, the candidate set was pre-defined,
and training data was available to train the supervised sys-
tem. While SUPERLM achieves the highest performance, the
simpler SUMLM system, which uses uniform weights, per-
forms nearly as well as SUPERLM, and exceeds it for smaller
training sizes. Unlike SUPERLM, SUMLM could easily be
used in cases where the candidate sets are generated dynam-
ically; for example, to assess the preceding-noun candidates
for anaphora resolution.
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