Efficient Dominant Point Algorithms for the
Multiple Longest Common Subsequence (MLCS) Problem

Qingguo Wang, Dmitry Korkin and Yi Shang
Department of Computer Science
University of Missouri
qwp4b@mizzou.edu, korkin @korkinlab.org, shangy @missouri.edu

Abstract

Finding the longest common subsequence of multi-
ple strings is a classical computer science problem
and has many applications in the areas of bioinfor-
matics and computational genomics. In this paper,
we present a new sequential algorithm for the gen-
eral case of MLCS problem, and its parallel realiza-
tion. The algorithm is based on the dominant point
approach and employs a fast divide-and-conquer
technique to compute the dominant points. When
applied to find a MLCS of 3 strings, our general al-
gorithm is shown to exhibit the same performance
as the best existing MLCS algorithm by Hakata and
Imai, designed specifically for the case of 3 strings.
Moreover, we show that for a general case of more
than 3 strings, the algorithm is significantly faster
than the best existing sequential approaches, reach-
ing up to 2-3 orders of magnitude faster on the
large-size problems. Finally, we propose a paral-
lel implementation of the algorithm. Evaluating the
parallel algorithm on a benchmark set of both ran-
dom and biological sequences reveals a near-linear
speed-up with respect to the sequential algorithm.

Keywards: Search, Dynamic Programming, Computa-
tional Biology

1 Introduction

The multiple longest common subsequence problem (MLCS)
is to find the longest subsequence shared between two or
more sequences. It is a classical computer science prob-
lem with important applications in many fields such as in-
formation retrieval and computational biology [Masek and
Paterson, 1980; Smith and Waterman, 1981]. For over 30
years, significant efforts have been made to find an effi-
cient algorithm for the MLCS problem. The most signifi-
cant contribution has been done to study the simplest case
of MLCS of two or three sequences [Hirschberg, 1977;
Hakata and Imai, 1998]. However, while several attempts
towards finding an efficient algorithm for a general case of
more than 3 sequences [Hakata and Imai, 1998; Chen et al.,
20061, it is yet to be developed. A general case of MLCS is
of a tremendous value to computational biology and compu-
tational genomics that deal with biological sequences [Korkin

1494

et al., 2008]. With the increasing volume of biological data
and prevalent usage of computational sequence analysis tools,
an efficient MLCS algorithm applicable to many sequences
will have a significant impact on computational biology and
applications.

In this paper, we present an efficient algorithm for the
MLCS problem of three and more sequences. The new
method is based on the dominant point approach. Domi-
nant points are minimal points in a multidimensional search
space. Knowing those points allows to reduce the search
space size by orders of magnitude, hence significantly the
computation time. Our algorithm performs a new divide-
and-conquer technique to construct dominant point sets ef-
ficiently. Unlike FAST-LCS [Chen et al., 20061, a MLCS
algorithm that works with the whole dominant point set,
our method takes advantages of the structure relationships
among dominant points and partitions them into independent
subsets, where the divide-and-conquer technique is applied.
Compared to existing state-of-the-art MLCS algorithms, our
dominant-point algorithm is significantly faster on multiple
sequences longer than 1000. We have also developed an effi-
cient parallel version of the algorithm. By dividing the prob-
lem into smaller sub-problems and solving the sub-problems
in parallel, we have achieved a near linear speedup.

The paper is organized as follows. In the next section, we
briefly review state-of-the-art methods for MLCS. Then, we
present the basics of the dominant point method in Section
3 and the new sequential algorithm in Section 4. The new
parallel algorithm is presented in Section 5. In Section 6,
we show the experimental results. Finally, in Section 7, we
summarize the paper.

2 Related work

Classical methods for the MLCS problem are based on dy-
namic programming [Sankoff, 1972; Smith and Waterman,
1981]. In its simplest case, given two sequences a1 and as of
length n; and ny respectively, a dynamic programming algo-
rithm iteratively builds a n; X mo score matrix L, in which
L[i,7],0 < i < n1,0 < j < ng is the length of a LCS
between two prefixes a1[1,...,4] and az[1,. .., j].

0, ifiorj=20
L[i,j]:{L[i—Lj—l]—i—l, if a1[i] = azlj]

ma’X(L[Zv]_1]7 L[Z_la j])v ifay [Z] 7£ az [.]]

ey

In a straightforward implementation of dynamic program-
ming, we calculates all entries in L. The resulting algorithm
has time and space complexity of O(n?) for d sequences of
length n. Various approaches have been introduced to reduce
the complexity of dynamic programming [Hirschberg, 1977,
Masek and Paterson, 1980; Hsu and Du, 1984; Apostolico et
al., 1992; Rick, 1994]. Unfortunately, these approaches pri-
marily address the special case of 2 sequences.

In contrast to dynamic programming, the dominant point
approach limits its search to exploring a smaller set of domi-
nant points rather than the whole set of positions in L. The
initial idea of dominant points as special points in a ma-
trix was introduced by Hirschberg [1977]. The dominant-
point approach has been successfully applied to the two-
sequences cases [Hirschberg, 1977; Chin and Poon, 1990;
Apostolico et al., 1992]. In [Hakata and Imai, 1998], several
dominant-point algorithms for more than 2 sequences were
proposed. One of the algorithms, called Algorithm A, which
was designed specifically for finding a LCS of 3 strings, is
overwhelmingly faster than dynamic programming for 3 se-
quences. However, Algorithm A minimizes dominant point
sets by enumerating points of the same coordinate values in
each dimension. As a result, its complexity increases rapidly
for more sequences. The other algorithm, Hakata and Imai’s
C' algorithm [1998], works for arbitrary number of strings.
It is similar to another MLCS algorithm published recently,
FAST-LCS [Chen er al., 2006], in that they both use pairwise
comparison algorithm to compute dominant points.

Parallel processing of the MLCS algorithms have been de-
veloped to further speed up the computation of LCS. Similar
to sequential algorithms, early parallel algorithms were de-
signed mostly for the special case of 2 sequences and can-
not be easily generalized for three and more sequences [Babu
and Saxena, 1997; Yap et al., 1998; Xu er al., 2005]. Ko-
rkin [2001] attempted to tackle the general MLCS prob-
lem but failed to achieve a near-linear speedup. In the
most recent approaches, FAST-LCS [Chen et al., 2006] and
parMLCS [Korkin et al., 2008], a near-linear speedup was
reached for a large number of sequences. parMLCS is a par-
allel version of Hakata and Imai’s C algorithm.

3 Fundamentals of Dominant-Point Method

In this section, we introduce the basics and main ideas of the
new dominant-point method.

Assume sequences are strings of characters defined over a
finite alphabet . Let a and b be two sequences of lengths
n and k correspondingly. For sequence a = s152. .. sy, se-
quence b = s;,5;, ...5;, is called a subsequence of a if
1<ij<n,forl <j<k,andis <, forl <s<t<k.
Let S ={aj,as,...,a,4} be aset of sequences over alpha-
bet X. A multiple longest common subsequence (MLCS)
forset S is asequence b such that (i) b is a subsequence
of a;, 1 <14 < d, and (ii) b is the longest one satisfying (i).

Let L be the score matrix for a set of d sequences,
aj, ag, ..., a4, as defined in Eq. (1). A point p in ma-
trix L is denoted as p = [p1,p2,...,pd], whereeach p;
is a coordinate of p for the corresponding string a;. The
value at position p of the matrix L is denoted as Lp].

1495

A point p = [p1,pa,...,p4] in L is called a match if
ai[p1] = as[p2] = ... = ay[py]. If a match p corresponds
to character s € X, i.e., a;[p;] = s, it is denoted as p(s).

For two points p [p1,p2,--.,p4d] and ¢
[q1,92,--.,q4], we say that p dominates ¢ if p; < g¢;, for
1 <1 < d. If p dominates g, we denote this relation as p < q.
Similarly, p strongly dominates qif p; < g;,1 <1¢ < d. We
denote this relation as p < ¢. p does not dominate ¢ (and
denote this as p £ @), if there is an 7, 1 < ¢ < d, such that
q; < p;. Note that p £ ¢ does not necessarily imply ¢ < p.
For some points p and ¢, both p £ g and ¢ £ p can be true. A
match p(s) is called a k-dominant point, or k-dominant, or
dominant at level k, if (i) L[p] = k and (ii) there is no other
match ¢(s) satisfying (i) and ¢ < p, i.e., p is not dominated
by another point ¢ with the same value k£ and for the same
character s. The set of all k-dominants is denoted as D*. The
set of all dominant points is denoted as D.

An example of the score matrix L, the set of dominant
points and rest of the matches for two sequences are shown
in Figure 1.

G|T[A|A|T|C|T|A]A|C

o|ojofojojojo|o|o|o]o
GlO|@[1|11 [t1|[1[1|1[1]1
Alo|1]1@|2)|2]2]|2|[2]|[2] 2
Tlo[1|®@|2](2@) 3|3][3]3]3
Tlo|1|2|2]2|8]3|@)|4]|4]4
Alol1]|2(@)|[B]|3]3]4(®)H] 5
clo[1]2]3[3[3|@|4|5]|5|®
Alo[1[23|@|4|4|4]|5|E®)6

Figure 1: The dominant points and matches for two se-
quences, a; = GTAATCTAAC and a; = GATTACA.
The dominant positions are circled, while the remaining
matches, which are not dominant, are squared.

A match p(s) is called an s-parent for a point ¢, if ¢ < p
and there is no other match 7(s) such that ¢ < r < p. The
set of all s-parents for ¢ is denoted as Par(q, s). The set of
all s-parents for a set of points A is denoted as Par(A4, s).
The set of all parents, Uses Par(A, s), for A is denoted as
Par(A,). Apoint p in a set of points A is called a minimal
element of A, if ¢ £ pforall g € A— {p}. If |A| = 1, then
its single element is defined to be a minimal element of A.
The set of minimal elements is called minima of A.

It has been proven that (k+1)-dominants, DFFL s exactly
the minima of the parent set, Par(D",Y), of k-dominants,
DF [Hakata and Imai, 1998]. It is easy to find the minima of
Par(D*, %) directly [Chen et al., 2006; Korkin et al., 2008].
However, Theorem 1 below provides a more efficient way.

Theorem 1 Ler Minima() be an algorithm that re-
turns the minima of a set of dominant points. Then,

Minima(Par(D*,%)) = UsesMinima({p(s)|p(s) €
Minima(Par(p,X)),p € D*}), fork = 1,..., K, where
K is the length of the longest common subsequence.

Proof of the theorem is omitted due to the size limitations
of the paper. This theorem leads to a two-step procedure to
compute the minima of the parent set Par(D*, ¥) as follows,

1. Minimize Par(p, X) for each point p € D¥,
2. Minimize each s-parent set of DF seX.

Both Par(p,) of p, p € D¥, and s-parent set of D¥, s €
¥, are smaller than Par(DF,¥). By avoiding minimizing
entire Par(D¥,Y), computation time is saved.

We have developed a fast divide-and-conquer algorithm for
the procedure Minima() mentioned above. It is based on the
following Theorem 2.

Theorem 2 For d > 3, the minima of N dominant points in
the d-dimensional space can be computed in O(dNlog?=2N)
time by a divide-and-conquer algorithm. The computation
time is O(dNlog?2n) if the sequence lengthn < N.

Proof of the theorem can be derived from [Kung et al.,
1975; Bentley, 1980; Hakata and Imai, 1998]. Here we just
give the central idea. Consider a divide-and-conquer algo-
rithm on a set of N dominant points in d-dimensional space.
The algorithm first evenly partitions these points into two sub-
sets R and () with respect to the d-dimensional coordinate so
that the d-dimensional coordinates of points in R are greater
than those of points in . Then, the algorithm recursively
minimizes R and (), respectively. Finally, after getting the
minima of both R and @, the algorithm removes points in R
that are dominated by points in Q).

4 A new sequential algorithm for MLCS

In this section, we present a new dominant-point algorithm
for MLCS of any number of sequences. For convenience, we
assume below that a;, as, ..., a4 are sequences over alpha-
bet 3, and that the lengths of all sequences are equal to n.
Our algorithm is based upon the following ideas:

1. Each position in a MLCS corresponds to a match in the
score matrix L. Therefore, the search can be restricted
to the set of all matches in L.

2. The number of dominant levels is equal to the size of
MLCS. Moreover, there exists at least one dominant
point at each level k, k = 1,2, ..., K, which corre-
sponds to the k-th position in the MLCS. Therefore, the
search can be further restricted to all dominant points.

3. The set of dominant points in L can be computed recur-
sively, where D**1) is computed, based solely on the
dominant points of the previous level, DF. The next
two ideas explain the computation in more detail.

4. The set of (k + 1)-dominants, D®*+1 is the minima
of the set of all parents for k-dominants, D’“7 i.e.
DY = Minima(Par(DF,X)).

5. Minima(Par(D* %)) can be computed in two steps
as indicated in Theorem 1: (i) For each dominant
point p € D, compute Minima(Par(p,¥)) and

take a union of all such sets, Pars; = {p(s)|p(s) €
Minima(Par(p,X)),p € D*},s € X (i) D*! is
a union of non-overlapping sets, Minima(Pars), i.e.,
D*+l = U es Minima(Par,), for each s € X,

6. Finally, Minima() can be implemented using a fast
divide-and-conquer approach as indicated in Theorem 2.

Based on these ideas, the sequential dominant-point and
divide-and-conquer (Quick-DP) algorithm is as follows:

Algorithm Quick—DP ({aj,a,,...
Calculation of dominant points

,aa}, T)

01 Preprocessing; D° ={[0,0,...,0]}; k=0;
02 while D* not empty do {
03 for p € D*do {
04 B = Minima(Par(p,X));
05 fors € T do{
06 Pars = Pargs U {p(s)|p(s) € B}; }}
07 D¥T! = Uger Minima (Pary) ;
08 k=k+1;}
Calculation of MLCS-optimal path
09 pickapoint p= [p1,P2,.-.,pa] € DX %;

10 while k—1>0 do{

11 current LCS position = a;[pi];

12 pick a point q such that p € Par(q,I);
13 P=q;

14 k=%k-1;}

Quick-DP consists of two parts. In the first part, the set
of all dominants is calculated iteratively, starting from a 0-
dominant set (containing one element). The set of (k + 1)-
dominants, D(’“Jrl)7 is obtained, based on the set of k-
dominants, D¥. In the second part, a MLCS-optimal path,
corresponding to a MLCS, is calculated, tracing back through
set of dominant points obtained in the first part of the algo-
rithm, and starting with an element from the last dominant
set. All MLCS can be enumerated systematically as well.

To efficiently enumerate all parents of each dominant point,
we calculate a preprocessing matrix T = {T'[s,j,i]},s €
2,0 < j < maxi<p<aflar|}, 1 < i < d, where each
element T[s,j,i] specifies the position of the first occur-
rence of character s in the i-th sequence, starting from the
(7 + 1)-st position in that sequence. If s does not occur any
more in the i-th sequence, the value of T'[s, j,] is equal to
1 + mazi1<k<a{|ax|}. The calculation of this preprocessing
matrix T takes O(n || d) time.

Let || be the size of alphabet X and | D| the size of domi-
nant point set . From Theorem 2, we can derive that it takes
O(|2| d log®~? |2|) time to compute the minima of each par-
ent set Par(p,%), p € D, and O(|D|dlog? % n) time to
compute the minima of each s-parent set Pars, s € 2. Hence
the time complexity of Quick-DP is

O(n|2|d+|D||Z]d(log? % n +1log?2|%]))

Based on the experimental evaluation of |D| and the esti-
mated complexities of Hakata and Imai’s C' algorithm [1998]
and FAST-LCS [2006], we expect our approach to be signifi-
cantly faster than C' algorithm and FAST-LCS for large n.

1496

S A new parallel algorithm for MLCS

As shown in the previous section, calculating the set of
(k + 1)-dominants, D**1, requires computing the minima of
parent set Par(p, X), for p € D*, and the minima of s-parent
Parg, s € ¥, of D*. These sets can be calculated indepen-
dently. Based on this observation, we propose the following
parallelization of the sequential algorithm.

Given N, +1 processors, the parallel algorithm uses one as
the master and IV, as slaves and performs the following steps:

1. The master processor computes D°.

2. Every time the master processor computes a new set D*
of k-dominants (k = 1, 2, 3, ...), it distributes them
evenly among all slave processors.

3. Each slave processor computes the set of parents and the
corresponding minima of k-dominants that it has and
then sends the result back to the master processor.

4. The master processor collects each s-parent set Pars,
s € 3, as the union of the parents from slave processors
and distributes the resulting s-parent set among slaves.

5. Each slave processor ¢ is assigned to find the minimal
elements only of one s-parent set, Pars.

6. Each slave processor ¢ computes the set Df“ of (k+1)-
dominants of Par, and sends it to the master processor.

7. The master processor computes DFF!l = D’f+1 U

DEtL U LU Df\;;l, and goes to step 2.

The pseudocode of the parallel algorithm Quick-DPPAR is
as follows.

Algorithm Quick—DPPAR ({a;,as,...,aq}, Z,Np)
01 Procy: Preprocessing; D° = {[0,0,...,0]}; k = 0;
02 while D¥ not empty do {
03 Proc,: distribute elements of D¥
Each processor Proc;, 1 < i < Ny, performs:

04 get DY from Procy;

05 for p € Df do {

06 B = Minima(Parents(p));

07 fors € T do{

08 Parg; = Parg; U{p(s)|p(s) € B}; }}
09 Send Parg;,s € £, to Procy;

10 Procgy: calculateParg = U1§iSNPParsi, s € L;
11 Procyp: distributeParg, s € L
Each processor, Procs, 1 < i < Ny, performs:

12 get Parg,s €X;
13 D¥™! = Minima(Pary);
14 send lef"'l to Procy;

15 Proco: DM =Ujcion Dt
16 k=k+1;}

Quick-DPPAR assigns each s-parent set Par,,s € X, of
D to a slave processor to compute the minima of Par, using
our divide-and-conquer method. So as many as |%| slave pro-
cessors can work simultaneously in this step of minimization.
To utilize more than |X| processors, we further parallelize the
divide-and-conquer algorithm. Our parallel algorithm gener-
ates a binary tree during the execution of Minima(Pars).

1497

The root node of the tree contains the entire data set Par,.
The data set of each internal node of the tree is equally split
into two subsets which correspond to the children of the node.
The subsets are distributed among processors and the tree is
built in parallel. Finally, the minima of each subset is solved
recursively and the results are combined in the parent node.

6 Experimental Results

In our experiments, the algorithms were run on a Linux
Server with 8 Intel Xeon(R) CPUs (2.826GH z) and 16GB
memory. The programming environment is GNU C++. The
algorithms were tested on random strings of length 100 to
4000 over alphabets of size 4 (e.g., nucleotide sequences) and
20 (e.g., protein sequences).

6.1 Sequential algorithm Quick-DP

The sequential method Quick-DP is compared with Hakata
and Imai’s A and C algorithms [Hakata and Imai, 1998]. The
A algorithm is specifically designed for 3 strings and is the
most efficient one so far for 3 strings. The C' algorithm can
work with any number of strings. We implemented Hakata
and Imai’s A algorithm and C algorithm according to their
paper. The data structures of them were carefully designed to
reduce their computation time.

For each string length of an alphabet, we generated 10 sets
of 3 random strings. Quick-DP and Hakata and Imai’s A and
C algorithms were tested on the same data sets and their av-
erage running times for each length of sequence are shown in
Fig. 2. Fig. 2 shows that Quick-DP is comparable and slightly
faster than Hakata and Imai’s A algorithm on 3 strings. We
note that A was designed specially for the case of 3 strings,
while Quick-DP works for an arbitrary number of sequences.
Fig. 2 also shows that Hakata and Imai’s C' algorithm is sig-
nificantly slower.

Next, we compared Quick-DP with another state-of-the-
art sequential algorithm FAST-LCS [Chen et al., 2006] and
Hakata and Imai’s C algorithm on test sets consisting of more
than 3 sequences. The results in Fig. 3 shows that Quick-DP
is several orders of magnitude faster than FAST-LCS and C
algorithm. For instance, for random DNA sequences, Quick-
DP is over 1,000 times faster than FAST-LCS on sequences
of length 140 and over 1,000 times faster than C' algorithm
on problems of length 200.

6.2 Parallel algorithm Quick-DPp 4

The parallel algorithm Quick-DPPAR was implemented us-
ing multithreading. Following the parallelization scheme in
Section 5, our implementation consists of 1 master thread and
multiple slave threads. The master thread allocates dominant
points to slaves to perform time-consuming computation.
We first evaluated the speedup of our parallel algorithm
Quick-DPPAR over sequential algorithm Quick-DP. Speedup
is defined as the ratio of sequential time and parallel time.
Similar to previous test data, we generated 10 sets of 5 ran-
dom strings each for alphabet 4 and 20, respectively. We ran
Quick-DPPAR using different number of slave threads. Fig. 4
shows the results for sequence lengths 1000, 1500, and 2000.
Near-linear speedups were achieved for all these cases.

20
- —%— Quick-DP
-8 - Hakata and Imai’s A algorithm
15l| — © — Hakata and Imai’s C algorithm
T
) I
s 1
é 10 /’ ‘_/,EE
5] -
E ! ¥
= P o7
5 / ¥
/ e ®
_ /d’ T N -
0 o ' . .
0 200 400 600 800 1000

(a)sequence lengths(IZI=4)

25
- —%— Quick-DP
5 - B Hakata and Imai’s A algorithm|
01l — © — Hakata and Imai’s C algorithm //
» /
215 /
o
o /
8 P &
g 10 /
= / o
%] R |
5 , 7/ N N a _ ¥ . i
.8
—-_'_a:“ E ¥
O o N L L
0 200 400 600 800 1000

(b)sequence lengths(1x1=20)

Figure 2: The average running time of Quick-DP and Hakata and Imai’s A and C algorithms for 3 random strings.

7

140011 _ % Quick-DP
1200} - B Hakata and Imai’s C algorithm
— © —FAST-LCS
— 1000} 7
(2]
‘(CJ /
Q 8001 /
[
2 !
T 6001 / .
£ / -
4001 / .o
L -~ @ .
200f o
RS =R
O i SR - ¥ = = ¥ = =
120 140 160 180

sequence lengths(1ZI=4)

- —%— Quick-DP
500{| .- -@ - Hakata and Imai’s C algorithm
— 400
(2]
©
c
3 300 .
3 .
& .
£ 200 .
100
..o
Ol o *— - - *— = ¥ = -
100 120 140 160 180

sequence lengths(IZ1=20)

Figure 3: The average running time of Quick-DP, Hakata and Imai’s C algorithm, and FAST-LCS on 5 random strings of
different lengths. FAST-LCS does not work on strings of large alphabet, such as 20.

Then, we measured the running time of Quick-DPPAR on
strings of various lengths. We ran Quick-DPPAR using 8
slave threads on test sets of 5 random DNA sequences. The
results in Fig. 5 demonstrate the efficiency of Quick-DPPAR.
We have also applied Quick-DPPAR to determine a MLCS
for 11 proteins from the family of melanin-concentrating
hormone receptors (MCHR). The lengths of the protein se-
quences range from 296 to 423 amino acids. As a result, it
took Quick-DP 939 seconds to detect a MLLCS. For Quick-
DPPAR, the time was reduced to 185 seconds.

7 Conclusions

In this paper, we have presented fast sequential and paral-
lel algorithms for MLCS problems of arbitrary number of
strings. The algorithms improve existing dominant point
methods through new efficient methods for computing dom-
inant points. For problems of 3 strings, the sequential algo-
rithm is as fast as the best existing MLCS algorithm designed
for the 3-string case, Hakata and Imai’s A algorithm. For
problems of more than 3 strings, the sequential algorithm is
much faster than the best existing algorithms, achieving more

1498

7 , ,
- —%— Quick-DP 7
6f - 0 - Quick-DPPAR %
/
5f "
@ 7
5 4t 7
_8 ./
E 3 A
= /
21 2 J
U * .
1r s .o
‘/‘,.* a-
m—’ﬁlﬂq . .
1000 1500 2000 2500 3000 3500 4000

sequence lengths(1ZI=4)

Figure 5: The average running times of our parallel Quick-
DPPAR and sequential Quick-DP algorithms on MLCS prob-
lems of 5 random sequences.

6 ‘ ‘
- —%— - sequence length=1000 o
5l| 0 sequence length=1500 I
— © — sequence length=2000 /)»»//
P
a4 o
I PR
@ e
L /<
@ 3 /.’ &
e
£
2t 2
//
1 o
0 2 4 6

(a)number of threads(1Zl=4)

3.5 T u i
- —%— - sequence length=1000 b
sl - sequence length=1500 z /[]
- © - sequence length=2000 PR i
s 7
L . s
g 25¢ e
S RPN
g).g- P ~£ P
o 2f // <
R
Red
1.5} »_/'//
1
0 2 4 6 8

(b)number of threads(IZI=20)

Figure 4: The speedup of our parallel method Quick-DPPAR over sequential algorithm Quick-DP on MLCS problems of 5

random strings.

than a thousand times faster performance on larger size prob-

lems. The parallel implementation is efficient and achieves a
near-linear speedup over the sequential algorithm.

Acknowledgement

This research was supported in part by the Shumaker Endow-
ment in Bioinformatics and NIH Grant R33GMO078601.

References

[Apostolico et al., 1992] A. Apostolico, S. Browne, and
C. Guerra. Fast linear-space computations of longest

common subsequences. Theor. Comput. Sci., 92(1):3-17,
1992.

[Babu and Saxena, 1997] K. Nandan Babu and Sanjeev Sax-
ena. Parallel algorithms for the longest common sub-
sequence problem. In Proc. 4th Intl. Conf. on High-
Performance Computing, pages 120125, 1997.

[Bentley, 1980] Jon L. Bentley. Multidimensional divide-

and-conquer. Commun. ACM, 23(4):214-229, 1980.

[Chen et al., 2006] Yixin Chen, Andrew Wan, and Wei Liu.

A fast parallel algorithm for finding the longest common
sequence of multiple biosequences. BMC Bioinformatics,
7(Suppl 4):S4, 2006.

[Chin and Poon, 1990] Francis Y. L. Chin and Chung K.
Poon. A fast algorithm for computing longest common

subsequences of small alphabet size. J. Inf. Process.,
13(4):463-469, 1990.

[Hakata and Imai, 1998] Koji Hakata and Hiroshi Imai. Al-

gorithms for the longest common subsequence problem for
multiple strings based on geometric maxima. Optimization
Methods and Software, 10:233-260, 1998.

[Hirschberg, 1977] Daniel S. Hirschberg. Algorithms for

the longest common subsequence problem.
24(4):664-675,19717.
[Hsu and Du, 1984] W. J. Hsu and M. W. Du. Computing

a longest common subsequence for a set of strings. BIT
Numerical Mathematics, 24(1):45 - 59, 1984.

J. ACM,

1499

[Korkin et al., 2008] Dmitry Korkin, Qingguo Wang, and
Yi Shang. An efficient parallel algorithm for the multiple
longest common subsequence (mlcs) problem. In ICPP
’08: Proc. 37th Intl. Conf. on Parallel Processing, pages
354-363, Washington, DC, USA, 2008. IEEE Computer
Society.

[Korkin, 2001] Dmitry Korkin. A new dominant point-
based parallel algorithm for multiple longest common
subsequence problem. Technical report, Department of
Computer Science, University of New Brunswick, N.B.
Canada, 2001.

[Kung et al., 1975] H. T. Kung, F. Luccio, and F P.
Preparata. On finding the maxima of a set of vectors. J.
ACM, 22(4):469-476, 1975.

[Masek and Paterson, 1980] W. J. Masek and M. S. Pater-
son. A faster algorithm computing string edit distances.
J. Comput. Syst. Sci., pages 18 — 31, 1980.

[Rick, 1994] Claus Rick. New algorithms for the longest
common subsequence problem. Technical report, Univer-
sity of Bonn, 1994.

[Sankoff, 1972] David Sankoff. Matching sequences under
deletion/insertion constraints. Proc. Natl. Acad. Sci. USA,
69(1):4 -6, 1972.

[Smith and Waterman, 1981] Temple F. Smith and
Michael S. Waterman. Identification of common

molecular subsequences. Journal of Molecular Biology,
147(1):195 - 197, 1981.

[Xu et al., 2005] Xiaohua Xu, Ling Chen, Yi Pan, and Ping
He. Computational Science and Its Applications - ICCSA
2005, volume 3482, chapter Fast Parallel Algorithms for
the Longest Common Subsequence Problem Using an Op-
tical Bus, pages 338-348. Springer Berlin / Heidelberg,
2005.

[Yap er al., 1998] Tieng K. Yap, Ophir Frieder, and Robert L.
Martino. Parallel computation in biological sequence anal-
ysis. [EEE Trans. Parallel Distrib. Syst., 9(3):283-294,
1998.

