
Representation and Synthesis of Melodic Expression

Christopher Raphael∗

School of Informatics

Indiana University, Bloomington

craphael@indiana.edu

Abstract

A method for expressive melody synthesis is pre-
sented seeking to capture the prosodic (stress and
directional) element of musical interpretation. An
expressive performance is represented as a note-
level annotation, classifying each note according to
a small alphabet of symbols describing the role of
the note within a larger context. An audio perfor-
mance of the melody is represented in terms of two
time-varying functions describing the evolving fre-
quency and intensity. A method is presented that
transforms the expressive annotation into the fre-
quency and intensity functions, thus giving the au-
dio performance. The problem of expressive ren-
dering is then cast as estimation of the most likely
sequence of hidden variables corresponding to the
prosodic annotation. Examples are presented on
a dataset of around 50 folk-like melodies, realized
both from hand-marked and estimated annotations.

1 Introduction

A traditional musical score represents music symbolically in
terms of notes, formed from a discrete alphabet of possible
pitches and durations. Human performance of music often
deviates substantially from the score’s cartoon-like recipe,
by inflecting, stretching and coloring the music in ways that
bring it to life. Expressive music synthesis seeks algorithmic
approaches to this expressive rendering task, so natural to hu-
mans.

A successful method for expressive synthesis would
breathe life into the otherwise sterile performances that ac-
company electronic greeting cards, cellphone ring tones, and
other mechanically rendered music. It would allow score-
writing programs — now as common with composers as
word processors are to writers — to play back compositions
in pleasing ways that anticipate the composer’s musical in-
tent. Expressive synthesis would provide guiding interpretive
principles for musical accompaniment systems and give com-
posers of computer music a means of algorithmically inflect-
ing their music. Utility aside, we are attracted to this problem
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as a basic example of human intelligence, often thought to be
uniquely human. While humans may be the only ones that can
appreciate expressively inflected music, we doubt the same is
true for the construction of musical expression.

Most past work on expressive synthesis, for example [Wid-
mer and Goebl, 2004], [Goebl et al., 2008], [Todd, 1995],
[Widmer and Tobudic, 2003], as well as the many RENCON
piano competition entries, has concentrated on piano music
for one simple reason: a piano performance can be described
by giving the onset time, damping time, and initial loudness
of each note. Since a piano performance is easy to repre-
sent, it is easy to define the task of expressive piano synthesis
as an estimation problem: one must simply estimate these
three numbers for each note. In contrast, we treat here the
synthesis of melody, which finds its richest form with “con-
tinuously controlled” instruments, such as the violin, saxo-
phone or voice. This area has been treated by a handful of
authors, perhaps with most success by the KTH group [Sund-
berg, 2006], [Friberg et al., 2006]. These continuously con-
trolled instruments simultaneously modulate many different
parameters leading to wide variety of tone color, articulation,
dynamics, vibrato, and other musical elements, making it dif-
ficult to represent the performance of a melody. However,
it is not necessary to replicate any of these familiar instru-
ments to effectively address the heart of the melody synthesis
problem. We will propose a minimal audio representation
we call the theremin, due to its obvious connection with the
early electronic instrument by the same name [Roads, 1996].
Our theremin controls only time-varying pitch and intensity,
thus giving a relatively simple, yet capable, representation of
a melody performance.

The efforts cited above are examples of what we see as
the most successful attempts to date. All of these approaches
map observable elements in the musical score, such as note
length and pitch, to aspects of the performance, such as tempo
and dynamics. The KTH system, which represents several
decades of focused effort, is rule-based. Each rule maps var-
ious musical contexts into performance decisions, which can
be layered, so that many rules can be applied. The rules were
chosen, and iteratively refined, by a music expert seeking to
articulate and generalize a wealth of experience into perfor-
mance principles, in conjunction with the KTH group. In con-
trast, the work of [Widmer and Goebl, 2004], [Widmer and
Tobudic, 2003] takes a machine learning perspective by auto-
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matically learning rules from actual piano performances. We
share the perspective of machine learning. In the latter ex-
ample, phrase-level tempo and dynamic curve estimates are
combined with the rule-based prescriptions through a case-
based reasoning paradigm. That is, this approach seeks mu-
sical phrases in a training set that are “close” to the phrase
being synthesized, using the tempo and dynamic curves from
the best training example. As with the KTH work, the perfor-
mance parameters are computed directly from the observable
score attributes with no real attempt to describe any interpre-
tive goals such as repose, passing tone, local climax, surprise,
etc.

Our work differs significantly from these, and all other past
work we know of, by explicitly trying to represent aspects of
the interpretation itself. Previous work does not represent the
interpretation, but rather treats the consequences of this inter-
pretation, such as dynamic and timing changes. We introduce
a hidden sequence of variables representing the prosodic in-
terpretation (stress and grouping) itself by annotating the role
of each note in the larger prosodic context. We believe this
hidden sequence is naturally positioned between the musical
score and the observable aspects of the interpretation. Thus
the separate problems of estimating the hidden annotation
and generating the actual performance from the annotation
require shorter leaps, and are therefore easier, than directly
bridging the chasm that separates score and performance.

Once we have a representation of interpretation, it is pos-
sible to estimate the interpretation for a new melody. Thus,
we pose the expressive synthesis problem as one of statistical
estimation and accomplish this using familiar methodology
from the statistician’s toolbox. We present a deterministic
transformation from our interpretation to the actual theremin
parameters, allowing us to hear both hand labeled and esti-
mated interpretations. We present a data set of about 50 hand-
annotated melodies, as well as expressive renderings derived
from both the hand-labeled and estimated annotations. A
brief user study helps to contextualize the results, though we
hope readers will reach independent judgments.

2 The Theremin

Our goal of expressive melody synthesis must, in the end,
produce actual sound. We focus here on an audio representa-
tion we believe provides a good trade-off between expressive
power and simplicity.

Consider the case of a sine wave in which both frequency,
f(t), and amplitude, a(t), are modulated over time:

s(t) = a(t) sin(2π

∫ t

0

f(τ)dτ). (1)

These two time-varying parameters are the ones controlled in
the early electronic instrument known as the theremin. Con-
tinuous control of these parameters can produce a variety of
musical effects such as expressive timing, vibrato, glissando,
variety of attack and dynamics. Thus, the theremin is capa-
ble of producing a rich range of expression. One significant
aspect of musical expression which the theremin cannot cap-
ture is tone color — as a time varying sine wave, the timbre of

the theremin is always the same. Partly because of this weak-
ness, we have allowed the tone color to change as a function
of amplitude, leading to the model

s(t) =

H∑
h=1

Ah(a(t), f(t)) sin(2πh

∫ t

0

f(τ)dτ) (2)

where the {Ah} are fixed functions, monotonically increasing
in the first argument. The model of Eqn. 2 produces a variety
of tone colors, but still retains the simple parameterization
of the signal in terms of f(t) and a(t). The main advantage
this model has to that of Eqn. 1 is that subtle changes in a(t)
are more easily perceived, in effect giving a greater effective
dynamic range.

Different choices of the Ah functions lead to various in-
strumental timbres that resemble familiar instruments on oc-
casion. If this happens, however, it is purely by accident,
since we do not seek to create something like a violin or sax-
ophone. Rather we simply need a sound parameterization that
has the potential to create expressive music.

3 Representing Musical Interpretation

There a number of aspects to musical interpretation which we
cannot hope to do justice to here, though we describe several
to help place the current effort in a larger context.

Music often has a clearly defined hierarchical structure
composed of small units that group into larger and larger
units. Conveying this structure is one of the main tasks of in-
terpretation including the clear delineation of important struc-
tural boundaries as well as using contrast to distinguish struc-
tural units. Like good writing, not only does the interpretation
need to convey this top-down tree-like structure, but it must
also flow at the lowest level. This flow is largely the domain
of what we call musical prosody — the placing, avoidance,
and foreshadowing of local (note-level) stress. This use of
stress often serves to highlight cyclical patterns as well as
surprises, directing the listener’s attention toward more im-
portant events. A third facet of musical interpretation is af-
fect — sweet, sad, calm, agitated, furious, etc. The affect of
the music is more like the fabric the interpretation is made of,
as opposed to hierarchy and prosody, which are more about
what is made from the fabric.

Our focus here is on musical prosody, clearly only a piece
of the larger interpretive picture. We make this choice be-
cause we believe the notion of “correctness” is more mean-
ingful with prosody than with affect, in addition to the fact
that musical prosody is somewhat easy to isolate. The mu-
sic we treat consists of simple melodies of slow to moderate
tempo where legato (smooth and connected) phrasing is ap-
propriate. Thus the range of affect or emotional state has been
intentionally restricted, though still allowing for much diver-
sity. In addition, the melodies we choose are short, generally
less than half a minute and tend to have simple binary-tree-
like structure.

We introduce now a way of representing the desired mu-
sicality in a manner that makes clear interpretive choices and
conveys these unambiguously. Our representation labels each
melody note with a symbol from a small alphabet,

A = {l−, l×, l+, l→, l←, l∗}
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Figure 1: Amazing Grace (top) and Danny Boy (bot) showing
the note-level labeling of the music using symbols from A.

describing the role the note plays in the larger context. These
labels, to some extent, borrow from the familiar vocabulary
of symbols musicians use to notate phrasing in printed mu-
sic. The symbols {l−, l×, l+} all denote stresses or points of
“arrival.” The variety of stress symbols allows for some dis-
tinction among the kinds of arrivals we can represent: l− is
the most direct and assertive stress; l× is the “soft landing”
stress in which we relax into repose; l+ denotes a stress that
continues forward in anticipation of future unfolding, as with
some phrases that end in the dominant chord. Examples of the
use of these stresses, as well as the other symbols are given
in Figure 1. The symbols {l→, l∗} are used to represent notes
that move forward towards a future goal (stress). Thus these
are usually shorter notes we pass through without significant
event. Of these, l→ is the garden variety passing tone, while
l∗ is reserved for the passing stress, as in a brief dissonance,
or to highlight a recurring beat-level emphasis. Finally, the
l← symbol denotes receding movement as when a note is con-
nected to the stress that precedes it. This commonly occurs
when relaxing out of a dissonance en route to harmonic sta-
bility. We will write x = x1, . . . , xN with xn ∈ A for the
prosodic labeling of the notes.

These concepts are illustrated with the examples of
Amazing Grace and Danny Boy in Figure 1. Of course,
there may be several reasonable choices in a given
musical scenario, however, we also believe that most
labellings do not make interpretive sense and offer evi-
dence of this is Section 7. Our entire musical collection
is marked in this manner and available for scrutiny at
http://www.music.informatics.indiana.edu/papers/ijcai09.

4 From Labeling to Audio

Ultimately, the prosodic labeling of a melody, using symbols
from A, must be translated into the amplitude and frequency
functions we use for sound synthesis. We describe here how
a(t) and f(t) are computed from the labeled melody and the
associated musical score.

Let tn for n = 1, . . . , N be the onset time for the nth note
of the melody, in seconds. With the exception of allowing
extra time for breaths, these times are computed according to
a literal interpretation of the score. We let

f(t) = c02
(fvib(t)+fnt(t))/12

where c0 is the frequency, in Hz., of the C lying 5 octaves
below middle C. Thus, a unit change in either the note profile,
fnt(t), or the vibrato profile, fvib(t), represents a semitone.

t n tt tt

t n1

p

p

n

n1

glis

n1 n1
bend

Figure 2: A graph of the frequency function, f(t), between
two notes. Pitches are bent in the direction of the next pitch
and make small glissandi in transition.

fnt is then given by setting

fnt(tn) = pn

fnt(tn+1 − tbend) = pn

fnt(tn+1 − tglis) = pn + αbendsgn(pn+1 − pn)

where pn is the “MIDI” pitch of the nth note (semitones
above c0). We extend fnt to all t using linear interpolation.
Thus, in an effort to achieve a sense of legato, the pitch is
slightly bent in the direction of the next pitch before inserting
a glissando to the next pitch. Then we define

fvib(t) =

N∑
n=1

1v(xn)r(t − tn) sin(2παvr(t − tn))

where the ramp function, r(t) is defined by

r(t) =

{
0 t < 0
αvat/αvo 0 ≤ t < αvo

αva t ≥ αvo

and 1v(xn) is an indicator function that determines the pres-
ence or absence of vibrato. Vibrato is applied to all notes
except “short” ones labeled as l→ or l←, though the vi-
brato parameters, αva, αvo depend on the note length. f(t)
is sketched from tn to tn+1 in Figure 2.

We represent the theremin amplitude by a(t) =
aatk(t)ain(t) where aatk(t) describes the attack profile of
the notes and ain(t) gives the overall intensity line. aatk(t)
is chosen to create a sense of legato through aatk(t) =∑N

n=1 ψ(t − tn) where the shape of ψ is chosen to deem-
phasize the time of note onset.

ain(t) describes the intensity of our sound over time and
is central to creating the desired interpretation. To create
ain(t) we first define a collection of “knots” {τ j

n} where
n = 1, . . . , N and j = 1, . . . , J = J(n). Each note, indexed
by n, has a knot location at the onset of the note, τ1

n = tn.
However, stressed notes will have several knots, τ1

n, . . . , τJ
n ,

used to shape the amplitude envelope of the note in different
ways, depending on the label xn. We will write λj

n = ain(τ j
n)

to simplify our notation.
The values of ain at the knot locations, {λj

n}, are created
by minimizing a penalty function H(λ; x) where λ is the col-
lection of all the {λj

n}. The penalty function depends on our
labeling, x, and is defined to be

H(λ; x) =
∑

π

Qπ(λ) (3)
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Figure 3: The functions f(t) (green) and ain(t) (red) for the
first phrase of Danny Boy. These functions have different
units so their ranges have been scaled to 0-1 to facilitate com-
parison. The points {(τk

n , λk
n)} are indicated in the figure as

well as the prosodic labels {xn}.

where each Qπ term is a quadratic function, depending on
only one or two of the components of λ. In general, the ob-
jectives of the {Qπ} may conflict with one another, which
is why we pose the problem as optimization rather than con-
straint satisfaction.

For example, if xn = l→ we want the amplitude to increase
over the note. Thus we define a term of Eqn. 3

Qπ(λ) =
→

β (λ1
n+1 − λ1

n−
→

α)2

to encourage the difference in amplitude values to be about
→

α> 0 while
→

β> 0 gives the importance of this goal.
→

α may
depend on the note length. Similarly, if xn = l← we define a
term of Eqn. 3

Qπ(λ) =
←

β (λ1
n − λJ

n−1−
←

α)2

to encourage the decrease in amplitude associated with reced-
ing notes. In the case of xn = l∗ we have

Qπ(λ) =
∗

β0 (λ1
n − λJ

n−1−
∗

α0)
2+

∗

β1 (λ1
n − λ1

n+1−
∗

α1)
2

where
∗

α0> 0 and
∗

α1> 0 encourage the nth note to have
greater amplitude than either of its neighbors. If xn = l− we
have J(n) = 2 and a term

Qπ(λ) =
−

β0 (λ1
n − λ2

n−
−

α0)
2+

−

β1 (λ2
n−

−

α1)
2

with an identical form, but different constants for the other
two stresses l+ and l×. Such terms seek an absolute value
for the peak intensity. An analogous term seeks to constrain
the intensity to a low value for the first note labeled as l→

following a stress or receding label.
There are several other situations which we will not ex-

haustively list, however, the general prescription presented
here continues to hold. Once we have included all of the
{Qπ} terms, it is a simple matter to find the optimal λ by
solving the linear equation ∇H = 0. We then extend ain(t)
to all t by linear interpolation with some additional smooth-
ing. Figure 3 shows an example of ain(t) and f(t) on the
same plot.

5 Does the Labeling Capture Musicality?

The theremin parameters, f(t), a(t), and hence the audio sig-
nal, s(t), depend entirely on our prosodic labeling, x, and the
musical score, through the mapping described in Section 4.
We want to understand the degree to which x captures mu-
sically important interpretive notions. To this end, we have
constructed a dataset of about 50 simple melodies containing
a combination of genuine folk songs, folk-like songs, Christ-
mas carols, and examples from popular and art music of var-
ious eras. The melodies were chosen to have simple chords,
simple phrase structure, all at moderate to slow tempo, and
appropriate for legato phrasing. Familiar examples include
Danny Boy, Away in a Manger, Loch Lomond, By the Waters
of Babylon, etc.

Each melody is notated in a score file giving a symbolic
music representation, described as a note list with rhythmic
values and pitches, transposed to the key of C major or A mi-
nor. The files are prefaced by several lines giving relevant
global information such as the time signature, the mode (ma-
jor or minor), and tempo. Measure boundaries are indicated
in the score, showing the positions of the notes in relation
to the measure-level grid. Chord changes are marked using
text strings describing the functional role of the chord, such
as I,IV,V,V/V, annotated by using a variety of sources includ-
ing guitar tabs from various web collections and the popular
“Rise Up Singing” [Blood and Patterson, 1992] folk music
fake book, while some were harmonized by the author. Most
importantly, each note is given a symbol from our alphabet,
A, prescribing the interpretive role of the note, painstakingly
hand-labeled by the author. We used a single source of an-
notation hoping that this would lead to maximally consistent
use of the symbols. In addition, breaths (pauses) have also
been marked.

We rendered these melodies into audio according to our
hand-marked annotations and the process of Section 4. For
each of these audio files we provide harmonic context by
superimposing sustained chords, as indicated in the scores.
While we hope that readers will reach independent conclu-
sions, we found many of the examples are remarkably suc-
cessful in capturing the relevant musicality.

We do observe some aspects of musical interpretation that
are not captured by our representation, however. For exam-
ple, the interpretation of Danny Boy clearly requires a climax
at the highest note, as do a number of the musical exam-
ples. We currently do not represent such an event through
our markup. It is possible that we could add a new cate-
gory of stress corresponding to such a highpoint, though we
suspect that the degree of emphasis is continuous, thus not
well captured by a discrete alphabet of symbols. Another oc-
casional shortcoming is the failure to distinguish contrasting
material, as in O Come O Come Emmanuel. This melody has
a Gregorian chant-like feel and should mostly be rendered
with calmness. However, the short outburst corresponding to
the word “Rejoice” takes on a more declarative affect. Our
prosodically-oriented markup simply has no way to represent
such a contrast of styles. There are, perhaps some other gen-
eral shortcomings of the interpretations, though we believe
there is quite a bit that is “right” in them, especially consider-
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ing the simplicity of our representation of interpretation.

6 Estimating the Interpretation

The essential goal of this work is to algorithmically gener-
ate expressive renderings of melody. Having formally repre-
sented our notion of musical interpretation, we can generate
an expressive rendering by estimating the hidden sequence
of note-level annotations, x1, . . . , xN . Our estimation of this
unobserved sequence will be a function of various observ-
ables, y1, . . . , yN , where the feature vector yn = y1

n, . . . , yJ
n

measures various attributes of the musical score at the nth
note.

Some of the features we considered measure surface level
attributes such as the time length of the given note, as well
as the first and second differences of pitch around the note.
Some are derived from the most basic notion of rhythmic
structure given by the time signature: from the time signa-
ture we can compute the metric strength of the onset posi-
tion of the note, which we tabulate for each onset position in
each time signature. We have noted that our score represen-
tation also contains the functional chords (I, V, etc.) for each
chord change. From this information we compute boolean
features such as whether the note lies in the chord or whether
the chord is the tonic or dominant. Other features include
the beat length, indicators for chord changes, and categorical
features for time signature.

Our fundamental modeling assumption is that our label se-
quence has a Markov structure, given the data:

p(x|y) = p(x1|y1)
N∏

n=2

p(xn|xn−1, yn, yn−1) (4)

= p(x1|y1)

N∏
n=2

p(xn|xn−1, zn)

where zn = (yn, yn−1). This assumption could be derived by
assuming that the sequence of pairs (x1, y1), . . . , (xN , yN )
is Markov, though the conditional assumption of Eqn. 4 is
all that we need. The intuition behind this assumption is
the observation (or opinion) that much of phrasing results
from a cyclic alternation between forward moving notes,
{l→, l∗}, stressed notes, {l−, l+, l×}, and optional receding
notes {l←}. Usually a phrase boundary is present as we
move from either stressed or receding states to forward mov-
ing states. Thus the notion of state, as in a Markov chain,
seems to be relevant. However, it is, of course, true that
music has hierarchical structure not expressible through the
regular grammar of a Markov chain. Perhaps a probabilistic
context-free grammar may add additional power to the type
of approach we present here.

We estimate the conditional distributions p(xn|xn−1, zn)
for each choice of xn−1 ∈ A, as well as p(x1|y1), using our
labeled data. We will use the notation

pl(x|z) = p(xn = x|xn−1 = l, zn = z)

for l ∈ A. In training these distributions we split our score
data into |A| groups, Dl = {(xli, zli)}, where Dl is the col-
lection of all (class label, feature vector) pairs over all notes
that immediately follow a note of class l.

Our first estimation method makes no prior simplifying as-
sumptions and follows the familiar classification tree method-
ology of CART [Breiman et al., 1984]. That is, for each Dl

we begin with a “split,” zj > c separating Dl into two sets:

D0
l = {(xli, zli) : zj

li > c} and D1
l = {(xli, zli) : zj

li ≤ c}.
We choose the feature, j, and cutoff, c, to achieve maximal
“purity” in the sets D0

l and D1
l as measured by the average

entropy over the class labels. We continue to split the sets D0
l

and D1
l , splitting their “offspring,” etc., in a greedy manner,

until the number of examples at a tree node is less than some
minimum value. pl(x|z) is then represented by finding the
terminal tree node associated with z and using the empirical
label distribution over the class labels {xli} whose associated
{zli} fall to the same terminal tree node.

We also tried modeling pl(x|z) using penalized logistic
regression [Zhu and Hastie, 2004]. CART and logistic re-
gression give examples of both nonparametric and paramet-
ric methods. However, the results of these two methods were
nearly identical, so we will not include a parallel presentation
of the logistic regression results in the sequel.

Given a piece of music with feature vector z1, . . . , zN ,we
can compute the optimizing labeling

x̂1 . . . , x̂N = arg max
x1,...,xN

p(x1|y1)

N∏
n=2

p(xn|xn−1, zn)

using dynamic programming. To do this we define p∗1(x1) =
p(x1|y1) and

p∗n(xn) = max
xn−1

p∗n−1(xn−1)p(xn|xn−1, zn)

an(xn) = arg max
xn−1

p∗n−1(xn−1)p(xn|xn−1, zn)

for n = 2, . . . , N . We can then trace back the optimal path
by x̂N = argmaxxN

p∗n(xN ) and x̂n = an+1(x̂n+1) for n =
N − 1 . . . , 1.

7 Results

We estimated a labeling for each of the M = 50 pieces in our
corpus by training our model on the remaining M − 1 pieces
and finding the most likely labeling, x̂1, . . . , x̂N , as described
above. When we applied our CART model we found that
the majority of our features could be deleted with no loss in
performance, resulting in a small set of features consisting of
the metric strength of the onset position, the first difference
in note length in seconds, and the first difference of pitch.
When this feature set was applied to the entire data set there
were a total of 678/2674 errors (25.3%) with detailed results
as presented in Figure 4.

The notion of “error” is somewhat ambiguous, however,
since there really is no correct labeling. In particular, the
choices among the forward-moving labels: {l∗, l→}, and
stress labels: {l−, l×, l+} are especially subject to interpre-
tation. If we compute an error rate using these categories, as
indicated in the table, the error rate is reduced to 15.3%. The
logistic regression model led similar results with analogous
error rates of 26.7% and also 15.3%.

One should note a mismatch between our evaluation
metric of recognition errors with our estimation strat-
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l∗ l→ l← l− l× l+ total

l∗ 135 112 0 18 2 0 267
l→ 62 1683 8 17 0 0 1770

l← 3 210 45 6 2 0 266

l− 49 48 4 103 15 0 219
l× 5 32 2 65 30 0 134
l+ 0 3 0 12 3 0 18

total 254 2088 59 221 52 0 2674

Figure 4: Confusion matrix of errors over the various classes.
The rows represent the true labels while the columns repre-
sent the predicted labels. The block structure indicated in the
table shows the confusion on the coarser categories of stress,
forward movement, and receding movement

egy. Using a forward-backward-like algorithm it is pos-
sible to compute p(xn|y1, . . . , yN ). Thus if we choose
x̄n = arg maxxn∈A p(xn|y1, . . . , yN), then the sequence
x̄1, . . . , x̄N minimizes the expected number of estimation er-
rors

E(errors|y1, . . . , yN ) =
∑

n

p(xn �= x̄n|y1, . . . , yN )

We have not chosen this latter metric because we want a se-
quence that behaves reasonably. It the sequential nature of
the labeling that captures the prosodic interpretation, so the
most likely sequence x̂1, . . . , x̂n seems like a more reason-
able choice.

In an effort to measure what we believe to be most impor-
tant — the perceived musicality of the performances — we
performed a small user study. We took a subset of the most
well-known melodies of the dataset and created audio files
from the random, hand, and estimated annotations. We pre-
sented all three versions of each melody to a collection of 23
subjects who were students in the Jacobs School of Music,
as well as some other comparably educated listeners. The
subjects were presented with random orderings of the three
versions, with different orderings for each user, and asked to
respond to the statement: “The performance sounds musical
and expressive” with the Likert-style ratings 1=strongly dis-
agree, 2=disagree, 3=neutral, 4=agree, 5=strongly agree, as
well as to rank the three performances in terms of musicality.
Out of a total of 244 triples that were evaluated in this way,
the randomly-generated annotation received a mean score of
2.96 while the hand and estimated annotations received mean
scores of 3.48 and 3.46. The rankings showed no prefer-
ence for the hand annotations over the estimated annotations
(p = .64), while both the hand and estimated annotations
were clearly preferred to the random annotations (p = .0002,
p = .0003).

Perhaps the most surprising aspect of these results is the
high score of the random labellings — in spite of the mean-
ingless nature of these labellings, the listeners were, in aggre-
gate, “neutral” in judging the musicality of the examples. We
believe the reason for this is that musical prosody, the focus
of this research, accounts for only a portion of what listeners
respond to. All of our examples were rendered with the same
sound engine of Section 4 which tries to create a sense of

smoothness in the delivery with appropriate use of vibrato and
timbral variation. We imagine that the listeners were partly
swayed by this appropriate affect, even when the use of stress
was not satisfactory. The results also show that our estimation
produced annotations that were, essentially, as good as the
hand-labeled annotations. This demonstrates, to some extent,
a success of our research, though it is possible that this also
reflects a limit in the expressive range of our interpretation
representation. Finally, while the computer-generated inter-
pretations clearly demonstrate some musicality, the listener
rating of 3.46 — halfway between “neutral” and “agree” —
show there is considerable room for improvement.

While we have phrased the problem in terms of supervised
learning from a hand-labeled training set, the essential ap-
proach extends in a straightforward manner to unsupervised
learning. This allows, in principle, learning with much larger
data sets and richer collections of hidden labels. We look
forward to exploring this direction in future work, as well as
treating richer grammars than the basic regular grammars of
hidden Markov models.
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