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Abstract

We propose a new topic model for tracking time-
varying consumer purchase behavior, in which con-
sumer interests and item trends change over time.
The proposed model can adaptively track changes
in interests and trends based on current purchase
logs and previously estimated interests and trends.
The online nature of the proposed method means
we do not need to store past data for current infer-
ences and so we can considerably reduce the com-
putational cost and the memory requirement. We
use real purchase logs to demonstrate the effective-
ness of the proposed method in terms of the predic-
tion accuracy of purchase behavior and the compu-
tational cost of the inference.

1 Introduction

Modeling consumer purchase behavior in e-commerce is an
important task, because it enables online stores to provide
recommendations, personalized advertisements, and perform
trend analyses. Recently there has been great interest in an-
alyzing discrete data using topic models, where the discrete
data are mainly text corpora but also include human behavior
log data [Jin et al., 2004; Das et al., 2007]. A topic model
is a hierarchical Bayesian model, in which a user (document)
is modeled as a mixture of topics, where a trend in a topic
is modeled as a purchase probability distribution over cata-
log items (words). However, traditional topic models do not
fulfill two important requirements for modeling consumer be-
havior in online stores. The first is the adaptability to changes.
Consumer interests and item trends change over time for a
variety of reasons. The second is the ease with which incre-
mental model updates can be achieved. Huge amounts of data
are accumulated every day in real online stores.

In this paper, we propose a topic model, which we call
the Topic Tracking Model (TTM), that satisfies the above two
requirements. With TTM, interests for each consumer and
trends for each topic are sequentially inferred using newly ob-
tained data and previously estimated interests and trends. The
computational cost and the memory requirement of TTM are
low because past data are not required for the inference and
need not be stored.

The persistency of interests differs among consumers.
Some consumers significantly change their interests and some
do not. Furthermore, it also differs according to periods.
There may be periods during which a consumer’s interests
change greatly and there may also be long periods when these
interests remain unchanged. Therefore, we need to infer the
interest persistency for each consumer and for each time pe-
riod. We also infer the trend persistency for each topic and
for each time period because it differs among topics and over
time according to new releases of items, seasons, and social
and economic environments.

Probabilistic Latent Semantic Analysis (PLSA) [Hofmann,
1999] and Latent Dirichlet Allocation (LDA) [Blei et al.,
2003] are two representative topic models. However, these
models assume that samples are exchangeable, and there-
fore they cannot capture the dynamics. More recently, topic
models with dynamics, such as the Dynamic Topic Model
(DTM) [Blei and Lafferty, 2006], Dynamic Mixture Model
(DMM) [Wei et al., 2007], and Topic over Time (ToT) [Wang
and McCallum, 2006], have been proposed. TTM has an ad-
vantage over the other models in its adaptability to changes
because TTM models dynamics of both interests and trends,
and it infers their persistency for each time interval from the
given data.

In the rest of this paper, we assume that the given data are
purchase logs. However, our method is applicable to a wide
range of human behavior data with timestamps, such as web
access log, blog, e-mail and discourse data.

2 Preliminaries

The goal of this paper is to estimate the probability that user
u purchases item i at time t, P (i|u, t), which represents the
purchase behavior of user u, where u ∈ {1, · · · , U} is a user
index, and i ∈ {1, · · · , I} is an item index. We assume that
t is a discrete variable, and we can set the unit time interval
arbitrarily at, for example, one day or one week.

In topic modeling, P (i|u, t) is obtained by the following
equation with the assumption of the conditional independence
of u and i given latent topic z,

P (i|u, t) =

Z∑
z=1

φt,u,zθt,z,i, (1)

where Z is the number of topics, φt,u,z = P (z|u, t) rep-
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resents the interests of a user, which is the probability that
user u is interested in topic z at time t, where φt,u,z ≥ 0,∑

z φt,u,z = 1, and θt,z,i = P (i|z, t) represents trends in a
topic, which is the probability that item i is selected and pur-
chased from topic z at time t, where θt,z,i ≥ 0,

∑
i θt,z,i = 1.

In LDA, interests φt,u = {φt,u,z}
Z
z=1 are assumed to have

a Dirichlet prior as follows:

P (φt,u|γ) ∝
∏
z

φ
γz−1
t,u,z , (2)

where γ = {γz}
Z
z=1, γz > 0, is a set of Dirichlet parameters.

In this assumption, current interests are independent of the
past interests, and their dynamics are not incorporated.

3 Topic Tracking Model

To model the dynamics of user interests, we assume that the
mean of the user interests at the current time are the same
as those at a previous time unless otherwise confirmed by
the newly observed data. In particular, we use the follow-
ing Dirichlet prior, in which the mean of the current interests

is the same as the mean of the previous interests φ̂t−1,u, and
the precision is αt,u,

P (φt,u|φ̂t−1,u, αt,u) ∝
∏
z

φ
αt,uφ̂t−1,u,z−1
t,u,z , (3)

where Dirichlet parameters in (2) are factorized into the mean

and precision γt,u,z = αt,uφ̂t−1,u,z . The precision αt,u rep-
resents the interest persistency, which is a measure of how
consistently user u maintains her interests at time t compared
with those at t − 1. We estimate αt,u for each time period
and for each user because the variability of interests depends
on both time and user. Since this is a conjugate prior, the in-
ference is simple as in LDA, which is a topic model without
dynamics [Griffiths and Steyvers, 2004].

To model the dynamics of trends, we use the following
Dirichlet distribution for the prior of trends θt,z = {θt,z,i}

I
i=1

in the same way as interests,

P (θt,z|θ̂t−1,z, βt,z) ∝
∏

i

θ
βt,z θ̂t−1,z,i−1
t,z,i , (4)

where the mean is the previous trends θ̂t−1,z , and the preci-
sion is βt,z. This prior is also conjugate.

Let xt,u = {xt,u,m}
Mt,u

m=1 be a set of items purchased by
user u at time t, where xt,u,m is the mth item purchased by
user u at time t, and Mt,u is the number of items purchased
by user u at time t. TTM assumes the following generative
process for Xt = {xt,u}

U
u=1, which is a set of all items pur-

chased by U users at time t,

1. For each topic z = 1, · · · , Z:

(a) Draw trends

θt,z ∼ Dirichlet(βt,zθ̂t−1,z)

2. For each user u = 1, · · · , U :

(a) Draw interests

φt,u ∼ Dirichlet(αt,uφ̂t−1,u)

(b) For each purchase m = 1, · · · , Mt,u:

i. Draw topic
zt,u,m ∼ Multinomial(φt,u)

ii. Draw item
xt,u,m ∼ Multinomial(θt,zt,u,m

).

As in LDA, each item xt,u,m is sampled from a topic-specific
multinomial distribution.

Figure 1 (a) shows a graphical model representation of
TTM, where shaded and unshaded nodes indicate observed
and latent variables, respectively.

4 Inference

We estimate the parameters in TTM based on stochastic EM
algorithm, in which Gibbs sampling of latent topics and maxi-
mum joint likelihood estimation of parameters are alternately
iterated [Wallach, 2006].

Let t be the current time. Suppose that we have purchase
logs Xt at the current time t, the mean of the previous in-

terests Φ̂t−1 = {φ̂t−1,u}
U
u=1, and the mean of the previ-

ous trends Θ̂t−1 = {θ̂t−1,z}
Z
z=1. By using these data and

parameters, we estimate current interests Φt = {φt,u}
U
u=1

and trends Θt = {θt,z}
Z
z=1 as well as interest persistencies

αt = {αt,u}
U
u=1 and trend persistencies βt = {βt,z}

Z
z=1.

We infer latent topics based on the collapsed Gibbs sam-
pling [Griffiths and Steyvers, 2004], in which the joint dis-
tribution of data and latent topics is required. Let Zt =
{zt,u}

U
u=1 be a set of latent topics of all users at time t, and

zt,u = {zt,u,m}
Mt,u

m=1. Since we use conjugate priors for pa-
rameters Φt and Θt, we can integrate out the parameters in
the joint distribution as follows:

P (Xt, Zt|Φ̂t−1, Θ̂t−1, αt, βt)

= P (Zt|Φ̂t−1, αt)P (Xt|Zt, Θ̂t−1, βt)

=

∫
P (Zt,Φt|Φ̂t−1, αt)dΦt

×

∫
P (Xt,Θt|Zt, Θ̂t−1, βt)dΘt

=
∏
u

Γ(αt,u)∏
z Γ(αt,uφ̂t−1,u,z)

∏
z Γ(nt,u,z + αt,uφ̂t−1,u,z)

Γ(nt,u + αt,u)

×
∏
z

Γ(βt,z)∏
i Γ(βt,z θ̂t−1,z,i)

∏
i Γ(nt,z,i + βt,z θ̂t−1,z,i)

Γ(nt,z + βt,z)
,(5)

where nt,u,z is the number of items purchased by user u at
time t that have been assigned to topic z, nt,z,i is the number
of times item i has been assigned to topic z at time t, and
Γ(x) is the gamma function.

The assignment of a latent topic is estimated using the fol-
lowing equation, which is calculated from (5),

P (zj = k|Xt, Zt\j , Φ̂t−1, Θ̂t−1, αt, βt)

∝
nt,u,k\j + αt,uφ̂t−1,u,k

nt,u\j + αt,u

nt,k,xj\j + βt,kθ̂t−1,k,xj

nt,k\j + βt,k

,(6)

where j = (t, u, m), and \j represents a count that does not
include a purchase j.
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Figure 1: Graphical model representations of Topic Tracking Model (TTM), Dynamic Topic Model (DTM), and Dynamic
Mixture Model (DMM).

The persistency parameters αt and βt are estimated by
maximizing the joint distribution (5). The following updat-
ing rules for maximizing the joint distribution are derived by
using the bounds in [Minka, 2000],

αt,u ← αt,u

∑
z φ̂t−1,u,zAt,u,z

Ψ(nt,u + αt,u) − Ψ(αt,u)
(7)

where At,u,z = Ψ(nt,u,z +αt,uφ̂t−1,u,z)−Ψ(αt,uφ̂t−1,u,z),
and Ψ(·) is the digamma function defined by Ψ(x) =
∂ log Γ(x)

∂x
, and,

βt,z ← βt,z

∑
i θ̂t−1,z,iBt,z,i

Ψ(nt,z + βt,z) − Ψ(βt,z)
, (8)

where Bt,z,i = Ψ(nt,z,i +βt,z θ̂t−1,z,i)−Ψ(βt,z θ̂t−1,z,i). By
iterating Gibbs sampling with (6), and maximum likelihood
estimation with (7) and (8), we can estimate latent topics Zt,
and parameters αt and βt.

After the iterations, the means of φt,u,z and θt,z,i are ob-
tained as follows:

φ̂t,u,z =
nt,u,z + αt,uφ̂t−1,u,z

nt,u + αt,u

, (9)

θ̂t,z,i =
nt,z,i + βt,z θ̂t−1,z,i

nt,z + βt,z

. (10)

These estimates are used to estimate interests and trends at
the next time period t + 1.

TTM uses only current data Xt (not past data) when in-
ferring current interests Φt and trends Θt, Therefore, TTM
can greatly reduce the computational cost compared with the
conventional models that use past data. Moreover, TTM also
reduces the memory requirement because past data need not
be stored.

5 Capturing long term dependences

In the above discussion, we infer interests φt,u using an es-

timate of the previous interests φ̂t−1,u. However in practice,
the interests of today may depend not only on the interests

of yesterday but also on the interests of a week ago. There-
fore, to capture the long term dependences, we modify the
prior of interests φt,u so that it can depend on past L interests

{φ̂t−l,u}
L
l=1 as follows:

P (φt,u|{φ̂t−l,u, αt,u,l}
L
l=1) ∝

∏
z

φ
P

l
αt,u,lφ̂t−l,u,z−1

t,u,z ,

(11)
where the mean is proportional to the weighted sum of the
past L interests of the user, and αt,u,l represents how the in-
terests at t are related to the l-previous interests. The informa-
tion loss is reduced by considering long term dependences.
Furthermore, the bias of the inference is reduced by using
multiple estimates. When we use only the previous interests,
the inference might be biased because it depends on just one
estimate.

In a similar fashion, we can also modify the prior of the

trends θt,u so that it can depend on past L trends {θ̂t−l,u}
L
l=1

in order to make the inference more robust as follows:

P (θt,z|{θ̂t−l,z, βt,z,l}
L
l=1) ∝

∏
i

θ
P

l
βt,z,lθ̂t−l,z,i−1

t,z,i , (12)

where the mean is proportional to the weighted sum of the
past L trends of the topic, and βt,z,l represents how the trends
at t are related to the l-previous trends. A graphical model of
TTM with long term dependences is shown in Figure 1 (b).

Since the priors in (11) and (12) are still Dirichlet distri-
butions and conjugate priors, the parameters Φt and Θt in
the joint distribution can be integrated out as in (5). There-
fore, the inference can be achieved by using a stochastic EM
algorithm in the same way with the model described in the
previous section. Each latent topic is sampled according to
the following probability,

P (zj = k|Xt, Zt\j , {Φ̂t−l, Θ̂t−l, αt,l, βt,l}
L
l=1)

∝
nt,u,k\j +

∑
l αt,u,lφ̂t−l,u,k

nt,u\j +
∑

l αt,u,l

nt,k,xj\j+
∑

l βt,k,lθ̂t−l,k,xj

nt,k\j +
∑

l βt,k,l

,

(13)
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where αt,l = {αt,u,l}
U
u=1, and βt,l = {βt,z,l}

Z
z=1. The up-

date rule of weight αt,u,l is as follows:

αt,u,l ← αt,u,l

∑
z φ̂t−l,u,zA

′
t,u,z

Ψ(nt,u +
∑

l′ αt,u,l′) − Ψ(
∑

l′ αt,u,l′)
,

(14)

where A′t,u,z = Ψ(nt,u,z +
∑

l αt,u,lφ̂t−l,u,z) −

Ψ(
∑

l αt,u,lφ̂t−l,u,z). The update rule of weight βt,z,l

is as follows:

βt,z,l ← βt,z,l

∑
i θ̂t−l,z,iB

′
t,z,i

Ψ(nt,z +
∑

l′ βt,z,l′) − Ψ(
∑

l′ βt,z,l′)
, (15)

where B′t,z,i = Ψ(nt,z,i +
∑

l βt,z,lθ̂t−l,z,i) −

Ψ(
∑

l βt,z,lθ̂t−l,z,i). The means of φt,u,z and θt,z,i are
obtained as follows:

φ̂t,u,z =
nt,u,z +

∑
l αt,u,lφ̂t−l,u,z

nt,u +
∑

l αt,u,l

, (16)

θ̂t,z,i =
nt,z,i +

∑
l βt,z,lθ̂t−l,z,i

nt,z +
∑

l βt,z,l

. (17)

These estimates are efficiently used for the inference from
t + 1 to t + L.

6 Related work

Topic models with dynamics have been proposed recently.
These include the Dynamic Topic Model (DTM) [Blei and
Lafferty, 2006], Dynamic Mixture Model (DMM) [Wei et
al., 2007], and Topic over Time (ToT) [Wang and McCal-
lum, 2006]. A graphical model of DTM is shown in Fig-
ure 1 (c). DTM analyzes the time evolution of topics in doc-
ument collections, in which a document is assumed to have
only one timestamp. Therefore, DTM does not consider the
dynamics in each document (user), and it cannot be used for
modeling user behavior dynamics, which is the goal of this
paper. Since DTM uses a Gaussian distribution for the dy-
namics, the inference is intractable owing to the nonconju-
gacy of the Gaussian and multinomial distributions, and it
requires complicated variational approximations. In contrast
to DTM, the inference of TTM is relatively simple because
it uses Dirichlet distributions that are conjugate for multino-
mial distributions. A graphical model of DMM is shown in
Figure 1 (d). DMM only considers a single dynamic sequence
of documents, which corresponds to a single user over time.
On the other hand, TTM considers multiple users with differ-
ent dynamics as well as the dynamics of trends for multiple
items in each topic, which is essential for analyzing consumer
purchase behavior. Furthermore, DMM assumes that the in-
terest persistency is fixed and known. Therefore, it is not
appropriate for purchase logs, in which distributions some-
times change greatly, and are sometimes stable. ToT needs all
the samples over time for the inference. Therefore, it cannot
be updated sequentially, and is not appropriate for data that
are continuously accumulated. Singular Value Decomposi-
tion (SVD) is also used for analyzing multiple timeseries [Pa-
padimitriou et al., 2005] as well as topic models. However,

since SVD implicitly assumes Gaussian noise, it is not appro-
priate for discrete data [Hofmann, 1999], such as text corpora
and purchase logs.

TTM is related to the Kalman filter [Welch and Bishop,
1995] even though TTM deals with discrete variables and
the Kalman filter deals with continuous variables. In the
Kalman filter, since both the transition and emission distri-
butions are Gaussian, and the conjugate distribution of the
Gaussian is also Gaussian, the inference is tractable. On the
other hand, with topic models, since the emission distribu-
tion is the multinomial, and the conjugate distribution of the
multinomial is the Dirichlet, the inference in the same way
is infeasible. DTM is inferred as with the Kalman filter by
mapping the Gaussian to the multinomial using the softmax
function. In contrast, TTM is inferred by assuming that the
transition distribution is the Dirichlet, in which the mean is
the previous mean of the multinomial, and the variance is
adaptively estimated from the given data.

7 Experiments

We evaluated TTM using two real purchase log data sets con-
sisting of movie and cartoon data. The movie data are the logs
of a movie downloading service from May 14th to August
31st, 2007, in which the numbers of users, items, and trans-
actions are 70,122, 7,469, and 11,243,935, respectively. The
cartoon data are the logs of a cartoon downloading service for
cell phones from January 1st to May 31st, 2006, in which the
numbers of users, items, and transactions are 143,212, 206,
and 12,642,505, respectively. We considered cartoons with
different volumes to be the same item. We omitted items and
users that appeared fewer than ten times. We set the unit time
interval at one day.

For the evaluation measurement, we employed the N -best
prediction accuracy of purchase items. We used data until the
previous day t − 1 as training data to infer the model, and
predicted purchase items at day t as test data. The probability
that user u purchases item i at time t was calculated using the

estimated parameters at the previous day, Φ̂t−1 and Θ̂t−1, as
follows:

P (x = i|u, t; Φ̂t−1, Θ̂t−1) =
∑

z

φ̂t−1,u,z θ̂t−1,z,i. (18)

The N -best accuracy represents the percentage that the
purchased items are contained in the set of N -highest

P (x=i|u, t; Φ̂t−1, Θ̂t−1) items.
In order to demonstrate the effectiveness of modeling the

dynamics of interests and trends, we compared TTM with
three topic models, LDAall, LDAonline, and LDAone, which
are based on LDA. LDAall is an LDA that uses all the past
data for inference. LDAonline is an online learning extension
of LDA, in which the parameters are estimated using those of
the previous day and the newly obtained data [Banerjee and
Basu, 2007]. LDAone is an LDA that uses just the previous
day data for inference. For a fair comparison, the hyper pa-
rameters in these LDAs were optimized using stochastic EM
as described in [Wallach, 2006].

The N -best accuracies for movie and cartoon data sets av-
eraged over time are shown in Table 1. TTM1 and TTM10
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Table 1: Average N -best accuracies (%) over time. The digit
in the bracket is the standard deviation.

(a) movie

N LDAall LDAonline LDAone TTM1 TTM10

1 1.21 (0.61) 1.08 (0.54) 1.91 (0.78) 2.22 (0.91) 2.46 (0.92)
2 2.18 (0.79) 2.00 (0.78) 3.52 (1.22) 3.99 (1.33) 4.47 (1.36)
3 3.06 (1.04) 2.81 (1.02) 5.04 (1.64) 5.60 (1.75) 6.35 (1.85)
4 3.90 (1.27) 3.56 (1.24) 6.24 (1.90) 6.82 (2.01) 7.82 (2.15)
5 4.70 (1.51) 4.26 (1.44) 7.37 (2.20) 7.92 (2.26) 9.20 (2.42)

(b) cartoon

N LDAall LDAonline LDAone TTM1 TTM10
1 27.0 (3.3) 26.0 (3.5) 24.8 (4.5) 26.8 (4.2) 30.5 (3.4)
2 37.3 (3.6) 35.1 (4.2) 32.4 (4.9) 34.2 (4.5) 39.9 (3.5)
3 43.7 (3.9) 41.1 (4.8) 37.2 (5.3) 39.8 (4.6) 45.9 (3.3)
4 48.5 (4.0) 45.8 (5.1) 40.9 (5.3) 44.5 (4.6) 50.6 (3.2)
5 52.4 (4.2) 49.6 (5.4) 44.1 (5.4) 48.5 (4.6) 54.4 (3.0)
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Figure 2: Average three-best accuracies (%) of TTM with
different dependent lengths L.

represent the proposed topic tracking models, which use pa-
rameters of one- and ten-previous days, or L = 1 and L = 10,
respectively. For both of the data sets, the highest accuracies
are achieved by TTM10, and this result indicates that TTM10
can appropriately predict consumer behavior by considering
dynamics and efficiently using information in the past data.
The accuracies achieved by LDAall and LDAonline are low
because they do not consider the dynamics. The reason for
the low accuracy of LDAone is that it uses only current data
and ignores the past information. The accuracies achieved by
LDAall and LDAonline for the cartoon data are higher than
that of LDAone because the cartoon data has smaller dynam-
ics than the movie data. The high accuracies of TTM10 in
both of the data sets that have different dynamics represent
its high adaptability.

Figure 2 shows the average three-best accuracies of TTM
with different dependent lengths L. The accuracy increased
as L increased. This result implies that TTM became robust
by using long term dependences. The accuracy saturated at
around L = 7, and then slightly decreased possibly due to
overfitting. Therefore, we can achieve high accuracy with
these data sets by storing estimated parameters for a week.
The three-best accuracies for movie and cartoon data sets for
each day are shown in Figure 3. The accuracies varied with
a period of seven days because new items are released every
week, and the accuracies when new items were released were
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Figure 3: Three-best accuracies (%) for each day.

Table 2: Average computational time (sec).

LDAall LDAonline LDAone TTM1 TTM10

movie 12,380.3 523.7 503.2 455.3 707.0
cartoon 12,528.4 663.2 674.6 633.9 936.9

low.
Table 2 shows the daily average computational time when

using a computer with a Xeon5355 2.66GHz CPU. The
computational time for LDAonline, LDAone and TTM are
roughly the same since they use the same number of sam-
ples for inference. The computational time for LDAall is
long although its accuracy was the second highest for the
cartoon data set since LDAall uses all samples for inference.
Moreover, LDAall requires more memory than TTM. TTM10
processed data that consisted of over 100,000 transactions
per day in about 12 minutes, and it can deal with the huge
amounts of data that are observed in real online stores. Fig-
ure 4 shows the average computational time for TTM with
different dependent lengths L. The computational time in-
creases linearly with L. Note that the time for TTM is much
smaller than that for LDAall even TTM with L = 10.

Figures 5 and 6, respectively, show the average α and β
with different l values of TTM10. The sum of the values for
each day and for each user or topic are normalized to one.
The parameters decrease as l increases in the movie data set.
This result implies that recent interests and trends are more
informative as regards estimating current interests and trends,
which is an intuitive result. In the cartoon data set, the pa-
rameters at l = 7 are high because the same cartoons with
different volumes are released weekly.

Figure 7 shows some examples of estimated parameter β
of TTM1 for each day with the movie data. The trends in
a topic (red) have a high dependence on the previous trends,
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Figure 4: Average computational time (sec) of TTM with dif-
ferent dependent lengths L.
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Figure 5: Average normalized α with different lengths l of
TTM10.

and the trends in a topic (green) have a low dependence on
the previous trends. Even in a topic, the dependence changes
day by day. For example, in a topic (red), the dependence on
the day of a new release is low and those of the other days are
high. In this way, TTM can adapt flexibly to changes.

8 Conclusion

In this paper, we proposed a probabilistic consumer purchase
behavior model, called the Topic Tracking Model (TTM), for
tracking the interests of individual consumers and trends in
each topic. We confirmed experimentally that TTM could
estimate purchase behavior appropriately and process large
amounts of data.

In future work, we could determine the unit time interval
and the length of dependence automatically from the given
data. The number of topics would be automatically inferred
by extending TTM to a nonparametric Bayesian model such
as the Dirichlet process mixture model [Teh et al., 2006]. We
will evaluate the proposed method further by comparing it
with other methods for modeling dynamics, such as hidden
Markov models, dynamic topic models, and dynamic mixture
models.
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