
Abstract 
Most sketch recognition systems are accurate in re-
cognizing either text or shape (graphic) ink strokes, 
but not both. Distinguishing between shape and 
text strokes is, therefore, a critical task in recogniz-
ing hand-drawn digital ink diagrams that contain 
text labels and annotations. We have found the ‘en-
tropy rate’ to be an accurate criterion of classifica-
tion. We found that the entropy rate is significantly 
higher for text strokes compared to shape strokes 
and can serve as a distinguishing factor between 
the two. Using a single feature – zero-order entropy 
rate – our system produced a correct classification 
rate of 92.06% on test data belonging to diagram-
matic domain for which the threshold was trained 
on.  It also performed favorably on an unseen do-
main for which no training examples were sup-
plied. 

1 Introduction 
Sketch recognition involves recognizing free-hand sketches, 
which are usually drawn on a tablet PC or some other pen-
based input device. Users are allowed to draw as they would 
naturally, without constraining their drawing to a prescribed 
manner, as in Rubine [1991]. As pen-based input devices 
are becoming increasingly common, many researchers are 
working on developing sketch recognition systems for dif-
ferent domains, such as mechanical engineering drawing 
[Alvarado, 2000; Stahovich, 1996; Landay and Myers, 
1995], circuit diagrams [Alvarado and Davis, 2004], UML 
class diagrams [Hammond and Davis, 2002; Damm et al., 
2000], GUI design [Caetano et al., 2002], course of action 
diagrams [Pittman et al., 1996] etc.  

In most systems, recognition is typically achieved 
through several processing steps, ranging from low level 
pixel manipulation and interpretation to high level semantic 
understanding. The existing systems do a reasonable job of 
identifying geometrical shapes [Gross and Do, 1996; Fonse-
ca et al., 2002; Hammond and Davis, 2003; Alvarado and 
Davis, 2004; Gennari et al., 2005] or in identifying text [Xu 
et al., 1992; Anquetil and Lorette, 1995; Bellagarda et al., 
1994;]; but, these systems have difficulty in recognizing 

diagrams that contain both. Most diagrams, however, such 
as those in mechanical engineering, UML diagrams, military 
course of action diagrams, etc., contain both shape and text 
strokes intermingled. For example, a mechanical engineer-
ing drawing may have graphical content in the form of 
shapes specifying machine parts and textual content speci-
fied by dimensions written in numeric characters, names of 
the different machine parts, or some other annotation. 
Therefore, one important task in sketch recognition is to 
separate shape and text strokes, and then feed them into the 
appropriate shape or text recognizer. We shall label the task 
of separation of shape and text strokes as: shape vs. text. 

2 Prior Work and Analysis 
Most sketch recognition systems deal solely with the recog-
nition of either text or shape. Rubine [1991] trained a linear 
classifier on a set of 13 structural and temporal features. The 
classifier recognizes alphanumeric symbols and gestures 
with very high accuracy (alphabets with 97.1%, digits with 
98.5% and gestures with 100% accuracy). However, each 
symbol has to be drawn in a prescribed order, and the clas-
sifier does not allow for freeform input. Tahuti [Hammond 
and Davis, 2002] recognizes freeform text within UML 
class diagrams, but identifies text solely by size and context 
within the diagram. [Hammond and Davis, 2003; Alvarado 
and Davis, 2004] use a geometry-based recognizer, which 
first splits the shapes into primitives and then recognizes 
them on the basis of a grammar. This requires the shapes to 
be geometrically decomposable, which proves difficult for 
freehand text (although the system has been successful at 
recognizing more diagrammatic text, such as Asian charac-
ters).  Corey and Hammond [2008] use a combination clas-
sifier based on Rubine [1991] features and a geometrical 
recognizer [Hammond and Davis 2003] to recognize a 
greater class of shapes and text. However, the accuracy of 
their system is still lower than what is expected from an 
individual recognizer dedicated to either text or shape. 

Patel et al. [2007] were the first to develop a context-free 
algorithm to distinguish shape and text.  They developed a 
shape versus text algorithm, using a statistical approach to 
identify the most important features of ink that could be 
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used to distinguish text versus shapes, and they built a deci-
sion-tree based classifier from these features.  Their algo-
rithm greatly improves upon the Microsoft text recognizer; 
however, the rate of misclassification was still high (42.1% 
for shapes and 21.4% for text). Bishop et al. [2004] built an 
HMM that uses a combination of features from the current 
stroke, in concert with spatial, timing, and contextual recog-
nition information, to distinguish shape versus text.  Jain et 
al. [2001] use a hierarchical stroke clustering approach for 
segmenting a document page into text and non-text regions. 
This method works with high accuracy; however, their sys-
tem would not be able to identify textual labels which are 
interspersed within a diagram. 

3 Our Approach 
The dominant approach in solving the problem of shape vs. 
text has, until now, been to arbitrarily select certain features 
through observation and use these in some form of classifi-
er. In some cases, filtering is done based on a statistical ap-
proach, which removes features that do not vary significant-
ly between shape and text [Patel et al., 2007]. Nevertheless, 
the initial set of features is selected arbitrarily from observa-
tion. The questions faced here are: Why should a particular 
feature be selected? When should addition of more features 
stop? Trial and error is one such approach: arbitrarily select 
features, build a system using them, test the system, and 
then remove the statistically insignificant features; loop 
through this process until we see no further improvement in 
system accuracy. This process, however, could be time con-
suming. 

In our approach, we set out first to find the single logical-
ly coherent feature which distinguishes shape from text. We 
observed that, when using any general set of coordinate eq-
uations, handwritten text symbols are more difficult to de-
scribe than common shapes (which are geometrically simp-
ler). In that sense, text strokes are more randomly struc-
tured. Thus, the entropy measure (generally, a measure of 
the degree of randomness of an information source) of text 
strokes is higher than shape strokes. In other words, text 
strokes are more information dense than shape strokes. 

In this paper, we define the information theoretic concept 
of entropy in the context of digital ink. We have defined an 
alphabet to represent strokes as strings of the letters from 
this alphabet. This entropy serves as a single encompassing 
feature, embodying the structural characteristics of shape 
and text strokes, and can be used to produce a classification 
between them. 

3.1 Entropy  
In the context of information theory, Entropy is defined as 
the measure of uncertainty associated with a random varia-
ble. The term usually refers to the Shannon entropy, which 
quantifies - in the sense of an expected value - the 
information contained in a message [Shannon, 1948]. To 
define entropy for hand drawn digital ink strokes, we mod-
eled the process of drawing strokes in the form of a stochas-

tic process. We first defined an entropy model ‘alphabet’ to 
characterize the language of hand-drawn sketches. Each 
point in a stroke is assigned a symbol based on the angle it 
makes with neighboring points [Figure 1]. This symbol is 
the random variable on the basis of which we can calculate 
entropy.  

We use a zero-order entropy in this paper, in which each 
symbol’s probability of occurrence is determined indepen-
dent of the previous symbols. We also attempt to see the 
effect of using higher order entropy (in the form of GZIP 
entropy) for classification. Detailed investigation into this, 
however, is left for future work. 

 

Figure 1: Each point is assigned a symbol from our alphabet 
based on its angle with the temporally adjoining points. 
Here, point p2 makes an angle of 110 degrees with p1 and 
p3. Looking in Table 1, we find the angle lies in the range 
for which the assigned symbol is ‘D’. 

3.2 Entropy Model ‘Alphabet’  
In order to calculate the entropy of a group of strokes, we 
created an entropy model ‘alphabet’ containing 7 symbols. 
Each symbol corresponds to a range of angles [Table 1]. 
Any stroke can be described (to some degree of resolution) 
by strings of symbols from an alphabet of this type [Figure 
2]. If we had chosen a range [0, 2�), we could fully describe 
any ink stroke using the alphabet. However, in this paper we 
were more concerned about the curvature of angles, for 
which a range of [0, �) was sufficient. In Figure 2, we ob-
serve that the representation of freehand text is more varied, 
in terms of the variety of symbols it contains, than the repre-
sentation for the rectangle. This gives us an idea of greater 
randomness in text strokes compared to shapes.  

 

SYMBOL RANGE 
A [0, �/6)   
B [�/6,2�/6)   
C [2�/6,3�/6) 
D [3�/6,4�/6) 
E [4�/6,5�/6) 
F [5�/6,�) 
X End points 

Table 1:  The table shows symbols from the alphabet and the 
range of angles which they correspond to. 
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XDFFFFFEEFFFFFFFFFFFFFXXFFFFFFEDFFFFFAFF
EEFFXXFFDEFFFEEFFXXFFFFFXXFFFXXEFFFEEFFF
FXXFFFFFFEDFFFFFFFFX 

XFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFEFFF
FFFFFFFFFFFFFDFFFFFFFFFFFFFFFFFFEX

Figure 2: A representation of ink strokes in our alphabet. 
Each character in the string representation of the strokes 
matches the letter assigned to each ink point based on the 
angle it makes with the temporally adjoining points. Notice 
that the representation of the text stroke is more varied in 
terms of the different letters it contains than the representa-
tion of the shape stroke below it (the rectangle). 

4 Implementation  

4.1 Stroke Grouping  
In our implementation, we consider a diagram as a combina-
tion of stroke groups. Each stroke group consists of strokes 
which were intended by the user to belong to the same enti-
ty. Our intuition is that such strokes will be drawn in quick 
succession and will be spatially close to each other. We 
group together all strokes which are below a spatial and 
temporal threshold. The threshold for the temporal differ-
ence is kept at 100 milliseconds, or 400 milliseconds when 
the strokes overlap. These thresholds were designed to con-
strain the grouping algorithm to group only strokes which 
are a part of the same text letter, and to those stroke letters 
that correspond to a single word of text. It should be noted 
that with this simplistic grouping algorithm we have delibe-
rately used a threshold which under-groups the strokes. We 
do this because, while we can still recognize incomplete text 
grouping correctly, we cannot recover from incorrect group-
ing; we did not want a slack threshold to result in an errone-
ous grouping of shape and text strokes together. Our group-
ing algorithm correctly placed text and shape strokes in sep-
arate groups 99.78% of the time. 

Once the grouping is done, we first resample the stroke to 
smooth the substroke angles and so that the points are equi-
distant from each other (we choose 4 pixels).  We then 
transform each stroke into a string of symbols from our al-
phabet, assigning an entropy model alphabet symbol [Figure 
1] to each resampled point [Figure 2]. We calculate the 
probability estimate for a particular symbol by dividing the 
number of times that symbol occurs in the stroke group by 
the total number of symbols in that stroke group. For exam-
ple, in Figure 2, the probability estimate for occurrence of 
symbol X is 14/100 in the freehand sketch and 2/75 in the 
rectangle shape. Then, within each stroke group, we sum up 
the probabilities of the symbols assigned to the points ac-
cording to the formula given below:  

H(S) = ��k �S P(xi) log P(xi

where P(x

)  [Shannon, 1948], 

i ) is the probability of label assignment of 
LABEL(xi ) to point xi

4.2 Classification  

 in the input stroke S, and k is a con-
stant. For example, after multiplying with a suitable factor, 
the entropy value for the freehand text in Figure 2 was 
10.32, and for the rectangle, the value was 1.23. 

The resulting value, when averaged over the bounding box 
diagonal (to ensure our values are scale independent), gives 
us an estimate of the entropy rate of that stroke group [Fig-
ures 3 and 4]. Based on a threshold calculated from our 
training dataset, we classify the input stroke group as either 
shape, text, or unclassified. Strokes are labeled as ‘unclassi-
fied’ when their entropy rate value lies below the boundary 
threshold for text, but above the threshold for shapes. Leav-
ing ambiguous strokes unclassified allows us to have high 
confidence on those strokes that we have classified.  

4.3 Confidence Measure  
In order to produce a classifier which can be easily inte-
grated into other sketch recognition systems, we realized 
that a measure of confidence was necessary, which could 
reflect the authority with which each classification decision 
was made. Strokes having entropy value lying close to the 
threshold between shape and text can be classified with less 
confidence than the strokes that have entropy values farther 
away from the threshold. The confidence is thus modeled 
appropriately (as shown in our results section) with the fol-
lowing arctan function: 

C(x | TEXT) = 0.5 + (arctan(x-�������� 

C(x | SHAPE) = 1 – C(x | TEXT) 

C(x | TEXT) refers to the confidence with which a stroke 
with entropy x can be classified as text. b is a parameter set 
to mirror the actual distribution of the entropy in the training 
data and represents the entropy value for which confidence 
of classification decision of text is 0.5. 

4.4 Data collection and Testing  
The system was tested on data collected through SOUSA 
[Paulson, et al., 2008]; SOUSA allows data collection by 
users over the web, provided they have a drawing tablet. 
Data from two different domains: hand-drawn military 
course of action (COA) [Wikipedia] symbols [Figure 5] and 
free body mechanics diagrams [Figure 6] were used. Both 
these domains consist of diagrams containing both shape 
and text strokes.   The COA data was collected from 6 users. 
Each user was asked to draw 2 diagrams each of 16 COA 
symbols. We collected a total of 162 diagrams (since the 
users perform the study remotely, some users did not finish 
the entire user study). From the total of 162 diagrams, we 
removed the diagrams that were drawn with a mouse instead 
of a pen (since users specified this in SOUSA) and gathered 
a final set of 130 diagrams. In each diagram we manually 
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labeled the strokes as ‘shape’ or ‘text’ using a labeling tool. 
The dataset had a total of 756 strokes, out of which 225 
were shape strokes and 531 were text strokes. The system 
was trained and tested on the data from the COA domain 
using a ten-fold cross validation technique. The data was 
divided into 10 groups of 13 diagrams each. Within each 
iteration, data was trained on 9 groups and tested on the 
remaining group. This process was repeated until all the 
diagrams were tested exactly once. The final accuracy of 
classification was calculated by averaging the accuracy val-
ues obtained in all the iterations. 

 

 
Figure 3: A circle, rectangle, resistor, and free hand text 
drawn on the draw panel of our system. 
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Figure 4: A bar graph showing the entropy rate values of 
the shapes shown in Figure 3. Notice that even the resistor 
symbol, which looks visually similar to freehand text, has 
entropy significantly less than the text stroke, due to less 
variety (randomness) in the curvature of the angles. 

 
 
The free body diagrams were collected from 7 users, each 

of whom was asked to draw one diagram. The dataset con-
sisted of a total of 197 strokes, out of which 70 were shape 
strokes and 127 were text strokes.  We deliberately did not 
train our system on this data. For the purpose of testing our 
system on this data, we used the threshold values obtained 
on training the system on COA data.  This allowed us to 
measure the performance of our system (and our trained 
thresholds) on diagrams from unseen/untrained domains. 

  
Figure 5: Military course of action symbols containing handwrit-
ing above and a freebody mechanics diagram below. The strokes 
in light gray color were classified as text and the strokes in black 
were classified as shapes. 

5 Results 
We first trained (using 10-fold cross validation) the system 
to produce maximum accuracy, allowing it to leave a maxi-
mum of only 25% of the strokes unclassified. The system, 
on an average, produced a classification 77.51% of the time, 
and it was correct 95.56% of the time. Our system was more 
accurate with text strokes than with shapes. In first part of 
our experiment (in which the classification percentage was 
>=75%) text strokes were classified correctly 97.62% of the 
time, whereas the accuracy for shape strokes was 91.18%. 
 In the second part of the experiment, we trained the sys-
tem to produce more classifications. We allowed the system 
to be non-committal for not more than 10% percent of the 
strokes. In this case, we found different optimum threshold 
values for different iterations of the tests. The system, on 
average, produced a classification 91.53% of the time, and it 
was accurate 92.91% of the time. When we forced the sys-
tem to always produce a classification, the accuracy was 
92.06%. We also produced a confidence value with each 
classification. The function that was used based on our 
training data was: 

C(x | TEXT) = 0.5 + (arctan(x-	
�������� 

The value b=3.55 was obtained by plotting the observed 
confidence of classification vs. entropy, then interpolating 
the curve to find the entropy value for which a classification 
of text could be produced with a confidence of 0.5 [Figure 
6]. Simply put, we found the entropy value for which, if 
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each stroke in the training set having this entropy value 
were classified as text, the resulting accuracy would be 
50%. 

Confidence curve
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Figure 6: The graph shows the curve obtained by plotting confi-
dence value for classification of TEXT for the strokes in the train-
ing data against their entropy values. On the zero-order entropy 
curve (dark bold line), the entropy value 3.55 corresponds to a 
confidence value of 0.5; in other words, equal numbers of text and 
shape strokes had an entropy = 3.55 in the training data. The bold 
gray line shows the same plot when GZIP entropy was used. GZIP 
entropy values have been scaled for comparison. 
 

In the third part of the experiment we tested our system 
on the freebody diagrams dataset using the thresholds 
trained on the COA diagrams data. Although the classifica-
tion rate was low (71.06%), the overall accuracy for the 
strokes classified was still high at 96.42%, with 99.21% of 
text strokes and 69.23% of shape strokes being classified 
correctly. Note that most of the unclassified strokes came 
from strokes in dotted lines, which were grouped together 
because of low temporal and spatial separation and caused 
them to have an ambiguous entropy rate.  

We also tested the idea of using higher-order entropy rate. 
We classified strokes from COA dataset on the basis of 
GZIP entropy (measured by the bits required to represent 
each symbol in a stroke). The accuracy of classification was 
82.8% which was lower than the accuracy achieved with 
zero-order entropy. We found GZIP entropy to be high for 
short strokes (less data) due to GZIP file overhead. There-
fore, short line segments had higher GZIP entropy than with 
our method and were sometimes misclassified as text.  

6 Discussion 
When we required our system to always produce a classifi-
cation, the accuracy was still high at 92.06%. Only 5.76% of 
the text strokes and 11.97% of the shape strokes were 
missclassified. This is an improvement over Patel et al. 
[2007], which had a misclassification rate of 42.1% for 
shapes and 21.4% for text. We implemented their decision 
tree-based classifier and found it to have an accuracy of 
78.8% on our dataset, which is lower than the accuracy of 

our system, while requiring eight features for classification 
as opposed to our one. However, we should note that Patel’s 
dataset included and was trained on filled-in music notes, a 
shape certainly to be misrecognized using our method. Our 
system was accurate when tested on untrained domains us-
ing the entropy thresholds trained from another domain. 
These results imply that entropy thresholds do not vary 
much for different domains and that a system using this me-
thod need not be retrained for each domain.   

While the higher-order GZIP entropy model did not per-
form as well as our zero-order entropy model, we expect 
that subtler higher-order entropy-based systems will be able 
to identify repeating patterns, characteristic of certain 
shapes, such as the unclassified dashed lines in the freebody 
diagrams. For example, a symbol for a resistor consists of 
repeating patterns and, thus, is structurally less random. 
However, zero-order entropy will not capture these patterns, 
and will produce a relatively high value for the resistor, 
even though it is a ‘shape’. This can result in misclassifica-
tion. For example, in some of the test diagrams, our system 
incorrectly classified a ‘dot’ [Figure 7] as text even though 
the filled-out dot consisted of repeated circular strokes. 
(Note that our entropy algorithm did not misclassify the dot 
in Figure 5 because our grouping algorithm grouped the 
arrow and the dot.) In Figures 3 and 4, our system calculated 
the zero-order entropy value of a resistor symbol and found 
it to be near the boundary threshold between shape and text. 
This type of a stroke risks misclassification. Such a misclas-
sification, however, could, be mitigated by associated low 
confidence value of classification. The confidence asso-
ciated with classifying the resistor symbol as text was 0.83, 
whereas, the confidence associated with classifying the 
freehand text as text was 0.96. 

 
Figure 7: A misclassified example from COA dataset.  

7 Future Work 
Future work includes further investigation of higher-order 
entropy models as well as improved grouping models that 
can handle dashed lines.  Additionally, we would like to test 
the affect on accuracy when combining entropy-based fea-
tures in combination with other known features and addi-
tional context.  Finally, we are interested in seeing how our 
model performs on larger data sets and other domains. 

8 Conclusion 
In this paper we presented a single feature to distinguish 
between shape and text strokes in the form of zero-order 
entropy. We found that the entropy rate tends to differ mar-
kedly in shape and text strokes and may be used as an im-
portant criterion of classification between them. We also 

The dot was incorrectly 
classified as Text. 
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found that thresholds trained on one domain produce rea-
sonable accuracy on another untrained domain. From this, 
we conclude that the entropy rate can serve as a domain-
independent distinguishing factor between shape and text. 
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