
Abstract
Most sketch recognition systems are accurate in re-
cognizing either text or shape (graphic) ink strokes,
but not both. Distinguishing between shape and
text strokes is, therefore, a critical task in recogniz-
ing hand-drawn digital ink diagrams that contain
text labels and annotations. We have found the ‘en-
tropy rate’ to be an accurate criterion of classifica-
tion. We found that the entropy rate is significantly
higher for text strokes compared to shape strokes
and can serve as a distinguishing factor between
the two. Using a single feature – zero-order entropy
rate – our system produced a correct classification
rate of 92.06% on test data belonging to diagram-
matic domain for which the threshold was trained
on. It also performed favorably on an unseen do-
main for which no training examples were sup-
plied.

1 Introduction
Sketch recognition involves recognizing free-hand sketches,
which are usually drawn on a tablet PC or some other pen-
based input device. Users are allowed to draw as they would
naturally, without constraining their drawing to a prescribed
manner, as in Rubine [1991]. As pen-based input devices
are becoming increasingly common, many researchers are
working on developing sketch recognition systems for dif-
ferent domains, such as mechanical engineering drawing
[Alvarado, 2000; Stahovich, 1996; Landay and Myers,
1995], circuit diagrams [Alvarado and Davis, 2004], UML
class diagrams [Hammond and Davis, 2002; Damm et al.,
2000], GUI design [Caetano et al., 2002], course of action
diagrams [Pittman et al., 1996] etc.

In most systems, recognition is typically achieved
through several processing steps, ranging from low level
pixel manipulation and interpretation to high level semantic
understanding. The existing systems do a reasonable job of
identifying geometrical shapes [Gross and Do, 1996; Fonse-
ca et al., 2002; Hammond and Davis, 2003; Alvarado and
Davis, 2004; Gennari et al., 2005] or in identifying text [Xu
et al., 1992; Anquetil and Lorette, 1995; Bellagarda et al.,
1994;]; but, these systems have difficulty in recognizing

diagrams that contain both. Most diagrams, however, such
as those in mechanical engineering, UML diagrams, military
course of action diagrams, etc., contain both shape and text
strokes intermingled. For example, a mechanical engineer-
ing drawing may have graphical content in the form of
shapes specifying machine parts and textual content speci-
fied by dimensions written in numeric characters, names of
the different machine parts, or some other annotation.
Therefore, one important task in sketch recognition is to
separate shape and text strokes, and then feed them into the
appropriate shape or text recognizer. We shall label the task
of separation of shape and text strokes as: shape vs. text.

2 Prior Work and Analysis
Most sketch recognition systems deal solely with the recog-
nition of either text or shape. Rubine [1991] trained a linear
classifier on a set of 13 structural and temporal features. The
classifier recognizes alphanumeric symbols and gestures
with very high accuracy (alphabets with 97.1%, digits with
98.5% and gestures with 100% accuracy). However, each
symbol has to be drawn in a prescribed order, and the clas-
sifier does not allow for freeform input. Tahuti [Hammond
and Davis, 2002] recognizes freeform text within UML
class diagrams, but identifies text solely by size and context
within the diagram. [Hammond and Davis, 2003; Alvarado
and Davis, 2004] use a geometry-based recognizer, which
first splits the shapes into primitives and then recognizes
them on the basis of a grammar. This requires the shapes to
be geometrically decomposable, which proves difficult for
freehand text (although the system has been successful at
recognizing more diagrammatic text, such as Asian charac-
ters). Corey and Hammond [2008] use a combination clas-
sifier based on Rubine [1991] features and a geometrical
recognizer [Hammond and Davis 2003] to recognize a
greater class of shapes and text. However, the accuracy of
their system is still lower than what is expected from an
individual recognizer dedicated to either text or shape.

Patel et al. [2007] were the first to develop a context-free
algorithm to distinguish shape and text. They developed a
shape versus text algorithm, using a statistical approach to
identify the most important features of ink that could be

Using Entropy to Distinguish Shape Versus Text in Hand-Drawn Diagrams

Akshay Bhat, Tracy Hammond
Sketch Recognition Lab

Department of Computer Science and Engineering
Texas A&M University

{akb2810, hammond}@cs.tamu.edu

1395

used to distinguish text versus shapes, and they built a deci-
sion-tree based classifier from these features. Their algo-
rithm greatly improves upon the Microsoft text recognizer;
however, the rate of misclassification was still high (42.1%
for shapes and 21.4% for text). Bishop et al. [2004] built an
HMM that uses a combination of features from the current
stroke, in concert with spatial, timing, and contextual recog-
nition information, to distinguish shape versus text. Jain et
al. [2001] use a hierarchical stroke clustering approach for
segmenting a document page into text and non-text regions.
This method works with high accuracy; however, their sys-
tem would not be able to identify textual labels which are
interspersed within a diagram.

3 Our Approach
The dominant approach in solving the problem of shape vs.
text has, until now, been to arbitrarily select certain features
through observation and use these in some form of classifi-
er. In some cases, filtering is done based on a statistical ap-
proach, which removes features that do not vary significant-
ly between shape and text [Patel et al., 2007]. Nevertheless,
the initial set of features is selected arbitrarily from observa-
tion. The questions faced here are: Why should a particular
feature be selected? When should addition of more features
stop? Trial and error is one such approach: arbitrarily select
features, build a system using them, test the system, and
then remove the statistically insignificant features; loop
through this process until we see no further improvement in
system accuracy. This process, however, could be time con-
suming.

In our approach, we set out first to find the single logical-
ly coherent feature which distinguishes shape from text. We
observed that, when using any general set of coordinate eq-
uations, handwritten text symbols are more difficult to de-
scribe than common shapes (which are geometrically simp-
ler). In that sense, text strokes are more randomly struc-
tured. Thus, the entropy measure (generally, a measure of
the degree of randomness of an information source) of text
strokes is higher than shape strokes. In other words, text
strokes are more information dense than shape strokes.

In this paper, we define the information theoretic concept
of entropy in the context of digital ink. We have defined an
alphabet to represent strokes as strings of the letters from
this alphabet. This entropy serves as a single encompassing
feature, embodying the structural characteristics of shape
and text strokes, and can be used to produce a classification
between them.

3.1 Entropy
In the context of information theory, Entropy is defined as
the measure of uncertainty associated with a random varia-
ble. The term usually refers to the Shannon entropy, which
quantifies - in the sense of an expected value - the
information contained in a message [Shannon, 1948]. To
define entropy for hand drawn digital ink strokes, we mod-
eled the process of drawing strokes in the form of a stochas-

tic process. We first defined an entropy model ‘alphabet’ to
characterize the language of hand-drawn sketches. Each
point in a stroke is assigned a symbol based on the angle it
makes with neighboring points [Figure 1]. This symbol is
the random variable on the basis of which we can calculate
entropy.

We use a zero-order entropy in this paper, in which each
symbol’s probability of occurrence is determined indepen-
dent of the previous symbols. We also attempt to see the
effect of using higher order entropy (in the form of GZIP
entropy) for classification. Detailed investigation into this,
however, is left for future work.

Figure 1: Each point is assigned a symbol from our alphabet
based on its angle with the temporally adjoining points.
Here, point p2 makes an angle of 110 degrees with p1 and
p3. Looking in Table 1, we find the angle lies in the range
for which the assigned symbol is ‘D’.

3.2 Entropy Model ‘Alphabet’
In order to calculate the entropy of a group of strokes, we
created an entropy model ‘alphabet’ containing 7 symbols.
Each symbol corresponds to a range of angles [Table 1].
Any stroke can be described (to some degree of resolution)
by strings of symbols from an alphabet of this type [Figure
2]. If we had chosen a range [0, 2�), we could fully describe
any ink stroke using the alphabet. However, in this paper we
were more concerned about the curvature of angles, for
which a range of [0, �) was sufficient. In Figure 2, we ob-
serve that the representation of freehand text is more varied,
in terms of the variety of symbols it contains, than the repre-
sentation for the rectangle. This gives us an idea of greater
randomness in text strokes compared to shapes.

SYMBOL RANGE
A [0, �/6)
B [�/6,2�/6)
C [2�/6,3�/6)
D [3�/6,4�/6)
E [4�/6,5�/6)
F [5�/6,�)
X End points

Table 1: The table shows symbols from the alphabet and the
range of angles which they correspond to.

110o

p2

p3

p1

1396

XDFFFFFEEFFFFFFFFFFFFFXXFFFFFFEDFFFFFAFF
EEFFXXFFDEFFFEEFFXXFFFFFXXFFFXXEFFFEEFFF
FXXFFFFFFEDFFFFFFFFX

XFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFEFFF
FFFFFFFFFFFFFDFFFFFFFFFFFFFFFFFFEX

Figure 2: A representation of ink strokes in our alphabet.
Each character in the string representation of the strokes
matches the letter assigned to each ink point based on the
angle it makes with the temporally adjoining points. Notice
that the representation of the text stroke is more varied in
terms of the different letters it contains than the representa-
tion of the shape stroke below it (the rectangle).

4 Implementation

4.1 Stroke Grouping
In our implementation, we consider a diagram as a combina-
tion of stroke groups. Each stroke group consists of strokes
which were intended by the user to belong to the same enti-
ty. Our intuition is that such strokes will be drawn in quick
succession and will be spatially close to each other. We
group together all strokes which are below a spatial and
temporal threshold. The threshold for the temporal differ-
ence is kept at 100 milliseconds, or 400 milliseconds when
the strokes overlap. These thresholds were designed to con-
strain the grouping algorithm to group only strokes which
are a part of the same text letter, and to those stroke letters
that correspond to a single word of text. It should be noted
that with this simplistic grouping algorithm we have delibe-
rately used a threshold which under-groups the strokes. We
do this because, while we can still recognize incomplete text
grouping correctly, we cannot recover from incorrect group-
ing; we did not want a slack threshold to result in an errone-
ous grouping of shape and text strokes together. Our group-
ing algorithm correctly placed text and shape strokes in sep-
arate groups 99.78% of the time.

Once the grouping is done, we first resample the stroke to
smooth the substroke angles and so that the points are equi-
distant from each other (we choose 4 pixels). We then
transform each stroke into a string of symbols from our al-
phabet, assigning an entropy model alphabet symbol [Figure
1] to each resampled point [Figure 2]. We calculate the
probability estimate for a particular symbol by dividing the
number of times that symbol occurs in the stroke group by
the total number of symbols in that stroke group. For exam-
ple, in Figure 2, the probability estimate for occurrence of
symbol X is 14/100 in the freehand sketch and 2/75 in the
rectangle shape. Then, within each stroke group, we sum up
the probabilities of the symbols assigned to the points ac-
cording to the formula given below:

H(S) = ��k �S P(xi) log P(xi

where P(x

) [Shannon, 1948],

i) is the probability of label assignment of
LABEL(xi) to point xi

4.2 Classification

 in the input stroke S, and k is a con-
stant. For example, after multiplying with a suitable factor,
the entropy value for the freehand text in Figure 2 was
10.32, and for the rectangle, the value was 1.23.

The resulting value, when averaged over the bounding box
diagonal (to ensure our values are scale independent), gives
us an estimate of the entropy rate of that stroke group [Fig-
ures 3 and 4]. Based on a threshold calculated from our
training dataset, we classify the input stroke group as either
shape, text, or unclassified. Strokes are labeled as ‘unclassi-
fied’ when their entropy rate value lies below the boundary
threshold for text, but above the threshold for shapes. Leav-
ing ambiguous strokes unclassified allows us to have high
confidence on those strokes that we have classified.

4.3 Confidence Measure
In order to produce a classifier which can be easily inte-
grated into other sketch recognition systems, we realized
that a measure of confidence was necessary, which could
reflect the authority with which each classification decision
was made. Strokes having entropy value lying close to the
threshold between shape and text can be classified with less
confidence than the strokes that have entropy values farther
away from the threshold. The confidence is thus modeled
appropriately (as shown in our results section) with the fol-
lowing arctan function:

C(x | TEXT) = 0.5 + (arctan(x-��������

C(x | SHAPE) = 1 – C(x | TEXT)

C(x | TEXT) refers to the confidence with which a stroke
with entropy x can be classified as text. b is a parameter set
to mirror the actual distribution of the entropy in the training
data and represents the entropy value for which confidence
of classification decision of text is 0.5.

4.4 Data collection and Testing
The system was tested on data collected through SOUSA
[Paulson, et al., 2008]; SOUSA allows data collection by
users over the web, provided they have a drawing tablet.
Data from two different domains: hand-drawn military
course of action (COA) [Wikipedia] symbols [Figure 5] and
free body mechanics diagrams [Figure 6] were used. Both
these domains consist of diagrams containing both shape
and text strokes. The COA data was collected from 6 users.
Each user was asked to draw 2 diagrams each of 16 COA
symbols. We collected a total of 162 diagrams (since the
users perform the study remotely, some users did not finish
the entire user study). From the total of 162 diagrams, we
removed the diagrams that were drawn with a mouse instead
of a pen (since users specified this in SOUSA) and gathered
a final set of 130 diagrams. In each diagram we manually

1397

labeled the strokes as ‘shape’ or ‘text’ using a labeling tool.
The dataset had a total of 756 strokes, out of which 225
were shape strokes and 531 were text strokes. The system
was trained and tested on the data from the COA domain
using a ten-fold cross validation technique. The data was
divided into 10 groups of 13 diagrams each. Within each
iteration, data was trained on 9 groups and tested on the
remaining group. This process was repeated until all the
diagrams were tested exactly once. The final accuracy of
classification was calculated by averaging the accuracy val-
ues obtained in all the iterations.

Figure 3: A circle, rectangle, resistor, and free hand text
drawn on the draw panel of our system.

0.342

2.435

5.348

12.205

0

2

4

6

8

10

12

14

Circle Rectangle Resistor Text

En
tro

py

Figure 4: A bar graph showing the entropy rate values of
the shapes shown in Figure 3. Notice that even the resistor
symbol, which looks visually similar to freehand text, has
entropy significantly less than the text stroke, due to less
variety (randomness) in the curvature of the angles.

The free body diagrams were collected from 7 users, each

of whom was asked to draw one diagram. The dataset con-
sisted of a total of 197 strokes, out of which 70 were shape
strokes and 127 were text strokes. We deliberately did not
train our system on this data. For the purpose of testing our
system on this data, we used the threshold values obtained
on training the system on COA data. This allowed us to
measure the performance of our system (and our trained
thresholds) on diagrams from unseen/untrained domains.

Figure 5: Military course of action symbols containing handwrit-
ing above and a freebody mechanics diagram below. The strokes
in light gray color were classified as text and the strokes in black
were classified as shapes.

5 Results
We first trained (using 10-fold cross validation) the system
to produce maximum accuracy, allowing it to leave a maxi-
mum of only 25% of the strokes unclassified. The system,
on an average, produced a classification 77.51% of the time,
and it was correct 95.56% of the time. Our system was more
accurate with text strokes than with shapes. In first part of
our experiment (in which the classification percentage was
>=75%) text strokes were classified correctly 97.62% of the
time, whereas the accuracy for shape strokes was 91.18%.
 In the second part of the experiment, we trained the sys-
tem to produce more classifications. We allowed the system
to be non-committal for not more than 10% percent of the
strokes. In this case, we found different optimum threshold
values for different iterations of the tests. The system, on
average, produced a classification 91.53% of the time, and it
was accurate 92.91% of the time. When we forced the sys-
tem to always produce a classification, the accuracy was
92.06%. We also produced a confidence value with each
classification. The function that was used based on our
training data was:

C(x | TEXT) = 0.5 + (arctan(x-	
��������

The value b=3.55 was obtained by plotting the observed
confidence of classification vs. entropy, then interpolating
the curve to find the entropy value for which a classification
of text could be produced with a confidence of 0.5 [Figure
6]. Simply put, we found the entropy value for which, if

1398

each stroke in the training set having this entropy value
were classified as text, the resulting accuracy would be
50%.

Confidence curve

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Entropy Range

Co
nf

id
en

ce
(T

ex
t)

Zero-
Order
Entropy
method
arctan
function
approx

GZIP
Method

Figure 6: The graph shows the curve obtained by plotting confi-
dence value for classification of TEXT for the strokes in the train-
ing data against their entropy values. On the zero-order entropy
curve (dark bold line), the entropy value 3.55 corresponds to a
confidence value of 0.5; in other words, equal numbers of text and
shape strokes had an entropy = 3.55 in the training data. The bold
gray line shows the same plot when GZIP entropy was used. GZIP
entropy values have been scaled for comparison.

In the third part of the experiment we tested our system
on the freebody diagrams dataset using the thresholds
trained on the COA diagrams data. Although the classifica-
tion rate was low (71.06%), the overall accuracy for the
strokes classified was still high at 96.42%, with 99.21% of
text strokes and 69.23% of shape strokes being classified
correctly. Note that most of the unclassified strokes came
from strokes in dotted lines, which were grouped together
because of low temporal and spatial separation and caused
them to have an ambiguous entropy rate.

We also tested the idea of using higher-order entropy rate.
We classified strokes from COA dataset on the basis of
GZIP entropy (measured by the bits required to represent
each symbol in a stroke). The accuracy of classification was
82.8% which was lower than the accuracy achieved with
zero-order entropy. We found GZIP entropy to be high for
short strokes (less data) due to GZIP file overhead. There-
fore, short line segments had higher GZIP entropy than with
our method and were sometimes misclassified as text.

6 Discussion
When we required our system to always produce a classifi-
cation, the accuracy was still high at 92.06%. Only 5.76% of
the text strokes and 11.97% of the shape strokes were
missclassified. This is an improvement over Patel et al.
[2007], which had a misclassification rate of 42.1% for
shapes and 21.4% for text. We implemented their decision
tree-based classifier and found it to have an accuracy of
78.8% on our dataset, which is lower than the accuracy of

our system, while requiring eight features for classification
as opposed to our one. However, we should note that Patel’s
dataset included and was trained on filled-in music notes, a
shape certainly to be misrecognized using our method. Our
system was accurate when tested on untrained domains us-
ing the entropy thresholds trained from another domain.
These results imply that entropy thresholds do not vary
much for different domains and that a system using this me-
thod need not be retrained for each domain.

While the higher-order GZIP entropy model did not per-
form as well as our zero-order entropy model, we expect
that subtler higher-order entropy-based systems will be able
to identify repeating patterns, characteristic of certain
shapes, such as the unclassified dashed lines in the freebody
diagrams. For example, a symbol for a resistor consists of
repeating patterns and, thus, is structurally less random.
However, zero-order entropy will not capture these patterns,
and will produce a relatively high value for the resistor,
even though it is a ‘shape’. This can result in misclassifica-
tion. For example, in some of the test diagrams, our system
incorrectly classified a ‘dot’ [Figure 7] as text even though
the filled-out dot consisted of repeated circular strokes.
(Note that our entropy algorithm did not misclassify the dot
in Figure 5 because our grouping algorithm grouped the
arrow and the dot.) In Figures 3 and 4, our system calculated
the zero-order entropy value of a resistor symbol and found
it to be near the boundary threshold between shape and text.
This type of a stroke risks misclassification. Such a misclas-
sification, however, could, be mitigated by associated low
confidence value of classification. The confidence asso-
ciated with classifying the resistor symbol as text was 0.83,
whereas, the confidence associated with classifying the
freehand text as text was 0.96.

Figure 7: A misclassified example from COA dataset.

7 Future Work
Future work includes further investigation of higher-order
entropy models as well as improved grouping models that
can handle dashed lines. Additionally, we would like to test
the affect on accuracy when combining entropy-based fea-
tures in combination with other known features and addi-
tional context. Finally, we are interested in seeing how our
model performs on larger data sets and other domains.

8 Conclusion
In this paper we presented a single feature to distinguish
between shape and text strokes in the form of zero-order
entropy. We found that the entropy rate tends to differ mar-
kedly in shape and text strokes and may be used as an im-
portant criterion of classification between them. We also

The dot was incorrectly
classified as Text.

1399

found that thresholds trained on one domain produce rea-
sonable accuracy on another untrained domain. From this,
we conclude that the entropy rate can serve as a domain-
independent distinguishing factor between shape and text.

9 Acknowledgements
This work is supported in part by NSF grant 0757557.

References
[Alvarado, 2000] C. Alvarado. A natural sketching environment:

bringing the computer into early stages of mechanical design.
Master’s thesis, MIT, 2000.

[Alvarado and Davis, 2004] C. Alvarado and R. Davis. Sket-
chREAD: a multi-domain sketch recognition engine. In UIST
’04: Proceedings of the 17th annual ACM symposium on User
interface software and technology, ACM Press, New York,
NY, USA, 23–32.

[Anquetil and Lorette, 1995] E. Anquetil and G. Lorette. On-Line
Cursive Handwritten Character Recognition Using Hidden
Markov Models, Traitement du Signal, vol. 12, no. 6, pp. 575-
583, 1995.

[Bellagarda et al., 1994] E.J. Bellagarda, J.R. Bellagarda, D. Na-
hamoo, and K.S. Nathan. A Fast Statistical Mixture Algorithm
for On-Line Handwriting Recognition, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, no. 12, pp. 1,227-
1,233, Dec. 1994.

[Bishop et al., 2004] C.M. Bishop, M. Svensen, G.E. Hinton. Dis-
tinguishing text from graphics in on-line handwritten ink. In:
Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004.
Ninth International Workshop. Volume, Issue , 26-29 Oct.
2004 p: 142 – 147.

[Caetano et al., 2002] A. Caetano, N. Goulart, M. Fonseca, J.
Jorge. JavaSketchIt: Issues in sketching the look of user inter-
faces, Sketch Understanding. Papers from the 2002 AAAI
Spring Symposium.

[Corey and Hammond, 2008] P. Corey and T. Hammond.
GLADDER: Combining Gesture and Geometric Sketch Rec-
ognition. In Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008.

[Damm et al., 2000] C.H. Damm, K.M. Hansen, M. Thomsen.
Tool support for cooperative object-oriented design: gesture
based modeling on an electronic whiteboard. In CHI 2000,
CHI; 2000. p. 518–25.

[Fonseca et al., 2002] M.J. Fonseca, C. Pimentel, J.A. Jorge.
CALI: An Online Recognizer for Calligraphic Interfaces. Proc.
of AAAI 2002 Spring Symposium: Sketch Understanding Work-
shop.

[Gennari et al., 2005] L. Gennari, L.B. Kara, T.F. Stahovich, K.
Shimada. Combining geometry and domain knowledge to in-
terpret hand-drawn diagrams, (2005) Computers and Graphics
(Pergamon), 29 (4), pp. 547-562.

[Gross and Do, 1996] M.D. Gross and E.Y.L. Do. Ambiguous
intentions: a paper-like interface for creative design, Proceed-

ings of the 9th annual ACM symposium on User interface soft-
ware and technology, p.183-192, November 06-08, 1996, Seat-
tle, Washington, United States

[Hammond and Davis, 2002] T. Hammond and R. Davis. Tahuti:
A geometrical sketch recognition system for UML class dia-
grams. Papers from the 2002 AAAI Spring Symposium on
Sketch Understanding (March 25-27), 59–68.

[Hammond and Davis, 2003] T. Hammond and R. Davis.
LADDER: a language to describe drawing, display, and editing
in sketch recognition. Proceedings of the 2003 International
Joint Conference on Artificial Intelligence (IJCAI).

[Jain, et al., 2001] K. Jain, A.M. Namboodiri, J. Subrahmonia.
Structure in on-line documents. In ICDAR-6, pages 844–848.
IEEE, 2001.

[Landay and Myers, 1995] J.A. Landay and B.A. Myers. Interac-
tive sketching for the early stages of user interface design. In:
Proceedings of CHI ’95: Human Factors in Computing Sys-
tems, 1995. p. 43–50.

[Patel et al., 2007] R. Patel, B. Plimmer, J. Grundy, R. Ihaka. Ink
features for diagram recognition. a language to describe draw-
ing, display, and editing in sketch recognition. In
SIGGRAPH’07: Proceedings of the 4th Eurographics work-
shop on Sketch-based interfaces and modeling, 2007. p. 131-
138.

[Paulson, et al., 2008] B. Paulson, A. Wolin, J. Johnston, T. Ham-
mond. SOUSA: Sketch-based Online User Study Applet. In
EUROGRAPHICS Workshop on Sketch-Based Interfaces and
Modeling (2008).

[Pittman et al., 1996] J. Pittman, I. Smith, P. Cohen, S. Oviatt, T.
Yang. Quickset: a multimodal interface for military simula-
tions. In: Proceedings of the Sixth Conference on Computer-
Generated Forces and Behavioral Representation, 1996. p.
217–24.

[Rubine, 1991] D. Rubine. Specifying gestures by example. In
SIGGRAPH ’91: Proceedings of the 18th annual conference on
Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 329–337.

[Shannon, 1948] C.E. Shannon. A Mathematical Theory of Com-
munication,'' Bell System Technical Journal, Vol. 27 (July and
October 1948), pp. 379-423 and 623-656. Reprinted in D. Sle-
pian, editor, Key Papers in the Development of Information
Theory

[Stahovich, 1996] T.F. Stahovich. SketchIt: a sketch interpretation
tool for conceptual mechanism design. Technical Report, MIT
AI Laboratory, 1996.

, 974. Included in Part A.

[Wikipedia] APP-6A, Military Symbols for Land Based Systems.
http://en.wikipedia.org/wiki/APP-6a

[Xu et al., 1992] L. Xu, A. Krzyzak, C.Y. Suen. Methods of com-
bining multiple classifiers and their applications to handwriting
recognition; Systems, Man and Cybernetics, IEEE Transac-
tions on Volume 22, Issue 3, May-June 1992 Page(s):418 - 435

1400

