
Analysis of a Winning Computational Billiards Player ∗

Christopher Archibald, Alon Altman and Yoav Shoham

Computer Science Department

Stanford University

{cja, epsalon, shoham}@stanford.edu

Abstract

We discuss CUECARD, the program that won the
2008 Computer Olympiad computational pool tour-
nament. Beside addressing intrinsic interest in a
complex competitive environment with unique fea-
tures, our goal is to isolate the factors that con-
tributed to the performance so that the lessons can
be transferred to other, similar domains. Specifi-
cally, we distinguish among pure engineering fac-
tors (such as using a computer cluster), domain-
specific factors (such as optimized break shots),
and domain-independent factors (such as state clus-
tering). Our conclusion is that each type of factor
contributed to the performance of the program.

1 Introduction

The International Computer Games Association (ICGA) has
in recent years introduced computational pool as a new game
to the Computer Olympiad. Billiards games have several
characteristics that make them unique among games played
by computer agents, and indeed among games in general. In
particular, they have continuous state and action spaces, ac-
tions are taken at discrete-time intervals, there is a turn-taking
structure, and the results of actions are stochastic. This com-
bination of features is unique and differs from other compet-
itive AI domains such as chess [Levy and Newborn, 1991],
poker [Billings et al., 2002], robotic soccer [Stone, 2007], or
the Trading Agent Competition [Wellman et al., 2007]. Thus,
the challenge of billiards is novel and invites application of
techniques drawn from many AI fields such as path planning,
planning under uncertainty, adversarial search [Korf, 1995]

and motion planning [Latombe, 1991].

In this paper, we discuss CUECARD, the winning program
from the third ICGA computational pool tournament held in
2008. The aim of this paper is not to comprehensively de-
scribe CUECARD, but rather to determine answers to ques-
tions such as the following: To what extent was CUECARD’s
success due to engineering and brute force? How much did
domain specific innovations and optimizations contribute to

∗This work was supported by NSF grants IIS-0205633-001 and
SES-0527650.

Figure 1: Pool table racked for 8-ball

victory? And finally, what generalizable techniques and prin-
ciples were used by CUECARD which might be instructive or
productive when applied to other AI domains?

This paper is structured as follows: In Section 2 we de-
scribe the official 8-ball rules and the computational pool
setting. In Section 3, we give an overview of our agent de-
sign and emphasize some key elements unique to CUECARD.
Section 4 contains a detailed experimental analysis of the in-
dividual contributions of CUECARD’s components. Finally,
in Section 5 we conclude with a discussion of the lessons
learned from this domain.

2 Background

2.1 Rules of 8-ball

The game played in the ICGA computational pool tourna-
ment is 8-ball, based on the official rules of the Billiards
Congress of America [1992]. 8-ball is played on a rectangu-
lar pool table with six pockets which is initially racked with
15 object balls (7 solids, 7 stripes, and one 8-ball), and a cue
ball (see Figure 1). The play begins with one player’s break.
If a ball is sunk on the break, the breaking player keeps his or
her turn, and must shoot again. Otherwise, the other player
gets a chance to shoot.

The first ball legally pocketed determines which side (solid
or stripes) each player is on. Players retain their turn as long
as they call an object ball of their type and a pocket and pro-
ceed to legally sink the called ball into the called pocket. In
case of a foul, such as sinking the cue ball into a pocket,
the other player gets to place the cue-ball at any position on
the table (“ball-in-hand”). After all object balls of the active
player’s side have been sunk that player must attempt to sink

1377

the 8-ball. At this point, calling and legally sinking the 8-ball
wins the game.

2.2 Computational pool

The ICGA computational tournament is based on a client-
server model where a server maintains the state of a virtual
pool table and executes shots sent by client software agents
on the POOLFIZ physics simulator [Greenspan, 2006]. Each
agent has a 10 minute time limit per game to choose shots.

A shot is represented by five real numbers: v, ϕ , θ , a, and
b. v represents the cue velocity upon striking the cue ball, ϕ
represents the cue orientation, θ represents the angle of the
cue stick above the table, and a and b designate the position
on the cue ball where the cue stick strikes, which plays a big
role in imparting spin, or “english", to the cue ball. Since the
physics simulator is deterministic, and in order to simulate
less than perfect skill, Gaussian noise is added to the shot
parameters on the server side. The result of the noised shot is
then communicated back to the clients.

In the 2008 competition CUECARD played against two
opponents who have participated in previous competitions:
PICKPOCKET [Smith, 2007] and ELIX1. PICKPOCKET was
the champion of all previous competitions, and was thus the
state of the art as we began designing CUECARD. In the
tournament, each agent played a 39 game match against each
other agent. CUECARD won the tournament with 64 wins (in
78 games), compared to only 34 wins total by PICKPOCKET.

This was not enough games to statistically establish the
fact that CUECARD was the superior agent, and so, after
the tournament, we ran more games between CUECARD and
PICKPOCKET2. In this later match, CUECARD won 492-144,
clearly establishing that it is the better player.

3 CUECARD description

CUECARD is a complex engineering artifact, and to describe
it fully would require more space than we have here. Our goal
is instead to give a good sense of how CUECARD works, to
describe some of its main components, and to isolate for anal-
ysis factors that may have contributed to CUECARD’s suc-
cess.

3.1 CUECARD overview

Given a state of the table, CUECARD chooses the shot param-
eters to return by following these steps:

1. For each legal ball and pocket, a set of directions ϕ , each
with a minimum velocity v0, is generated in attempt to
sink the ball into the pocket. In this step we generate
both straight-in shots (where the object ball goes directly
into the pocket), more complex shots (involving more
than one collision), and special shots designed to dis-
perse clusters of balls.

2. For each of these (ϕ ,v0) pairs, discrete velocity values,
vi, between v0 for this shot and the maximum allowed
velocity vMAX , are generated. The (ϕ ,vi) pairs that are

1ELIX was written by Marc Goddard.
2The authors thank Michael Smith, for making PICKPOCKET

available to us.

deemed feasible (i.e. pocket a ball with no Gaussian
noise added) are passed to the next step.

3. For each feasible (ϕ ,vi) pair, variants are generated by
randomly assigning feasible values to a, b and θ .

(a) Each such variant is simulated between 25 and 100
times, depending on available time.

(b) The resulting states (projected table state after shot
simulations) are scored using an evaluation func-
tion, allowing the calculation of an average score
for each shot variant. CUECARD uses the same
evaluation function as PICKPOCKET, which is de-
scribed in detail in [Smith, 2007].

(c) The top two shot variants for each (ϕ ,vi) pair are
selected.

(d) For these top two variants, the states resulting from
the simulations in Step 3a are clustered into groups
of similar table states. A representative state is cho-
sen for each cluster, and a weighted set of represen-
tative states is formed.

4. The top 20 shot variants among all shots tested are se-
lected for further evaluation.

5. To refine the evaluation of each of these 20 shots, we
execute a second level of search starting with the repre-
sentative resulting states of these 20 shots. The search
method used at this second level differs between the
early and late stages of the games.

(a) In the early game, the above process (Steps 1–3) is
essentially repeated with smaller constants, return-
ing the average evaluation for the best shot.

(b) In the late game, a noiseless search is conducted up
to the end of the game, as described in Section 3.4.

6. After the representative state evaluations have been ad-
justed, a new evaluation for each of the 20 shot variants
is generated, and the best variant is chosen.

7. In case the best variant has a value below a certain
threshhold, or no feasible shots were generated, CUE-
CARD plays a last-resort shot (see below).

Last-resort shots are generated by attempting shots in all
directions in an attempt to find shots that do not foul and
hopefully pocket a ball. Generation of shots in this manner
discovers different types of shots, such as double and triple
kick shots, which were not considered during typical shot ex-
ploration.

A key facet of performance in a competitive environment is
reasoning about the opponent. CUECARD considers the op-
ponent only during evaluation of last-resort shots, while ig-
noring the opponent during typical shot selection. This con-
sideration is not game-theoretic, and affects a relatively small
component of CUECARD, as less than 1% of shots gener-
ated by CUECARD utilize the last-resort mechanism. When
evaluating last-resort shots we consider it more likely that
the opponent will have the next turn. Because of this, last-
resort shots are evaluated by taking into account the value
of the resulting state for both CUECARD (vCC) and the op-
ponent (vOPP). The value of a last-resort shot, vLR, is then

1378

vLR = vCC − vOPP. In this manner, a shot which always sinks
a ball and leaves CUECARD with good shots will be consid-
ered as valuable as a shot which never sinks a ball, but leaves
the opponent with no available shots.

It is hard to analyze the contribution of the last-resort
mechanism, as it is used so infrequently. Also, we cannot
simply remove it, since not replacing it with another mech-
anism would certainly lead to worse performance, as there
would be no way for the modified agent to deal with difficult
situations. In light of this, analysis of the last-resort mecha-
nism is not included in this paper. As described in the remain-
der of the paper, we picked components which are represen-
tative of the different design aspects (engineering, domain-
specific and domain-independent), as well as amenable to
analysis through testing. The following components were
selected for analysis: a distributed architecture and reimple-
mentation of the physics simulator as engineering factors, an
optimized break shot as a domain-specific factor, and finally
look-ahead search and a method of clustering the results of
sampling as domain-independent factors. We first describe
each of these components and then in Section 4 present anal-
ysis of their contributions to CUECARD’s success.

3.2 Engineering components

As with any search problem, it seems clear that the more time
an agent has to explore the problem space, the better the ac-
tion that the agent will be able to select. “Engineering” com-
ponents were designed to help CUECARD accomplish more
in the same amount of time. The following factors did this by
either making CUECARD more efficient, or by simply mak-
ing more time available for CUECARD to use.

Distributed architecture

CUECARD was designed to have its computation distributed
across multiple machines, effectively granting itself addi-
tional CPU time to compute shots. Specifically, Steps 3 and 5
are distributed among a cluster of 20 dual-core machines on

Amazon’s EC2 cluster. Each sub-task is assigned a time limit
and sent to a different machine with a manager coordinating
the execution of the sub-tasks. Efficiency of this mechanism
is tracked by CUECARD in real time and the time limits are
adjusted accordingly.

Faster physics engine

Profiles of CUECARD’s execution revealed that one of the
major bottlenecks was the physics library, which was pro-
vided in binary format. To speed up CUECARD’s execution
we re-implemented the physics library based on [Leckie and
Greenspan, 2006], while improving several engineering as-
pects of the software. This re-implementation resulted in an
average 5.9× speedup when compared to the POOLFIZ li-
brary over several example games. To ensure proper perfor-
mance, CUECARD only uses our physics to simulate the sam-
ples of a shot when the resulting states of the noiseless simu-
lated shot on both simulators are sufficiently close together.

3.3 Domain specific component: break shot

A successful agent in any domain will require specific knowl-
edge of and optimization for the domain in question. In this

Figure 2: Typical table state after CUECARD’s break

section we describe how CUECARD deals with a game situa-
tion specific to billiards: the break shot.

A break shot consists of specifying a location for the cue
ball and a shot. CUECARD uses a precomputed break shot
which was calculated via an extensive offline search over cue-
ball locations and shot parameters. An ideal break shot would
keep the turn and spread the balls out on the table. During
testing it became clear that these two goals are to some de-
gree mutually exclusive. There are break shots which keep
the turn 97% of the time, but do not spread out any balls.
Other break shots which spread balls out completely were
at best ~60% successful. CUECARD’s break shot put more
weight on keeping the turn than spreading out the balls on the
table, as the latter leaves the opponent in a very good position
if the turn is also lost. CUECARD’s break shot keeps the turn
92% of the time, and often spreads out many of the balls.

3.4 Domain-independent techniques

Some of the techniques used by CUECARD are applicable to
other AI domains. These techniques are described here.

Shot sampling and state clustering

Early testing of CUECARD showed that the 15 samples used
by PICKPOCKET were not enough to consistently choose suc-
cessful shots. However, the consequence of sampling more,
without clustering (Step 3d), is that there are a larger num-
ber of states resulting from any action (equal to the number
of samples), each of which must be expanded at the second
level of the search (Step 5) to refine the value estimate for the
shot. Thus, any increase in the number of samples requires
that more time be spent at the second level to evaluate each
shot. Thus either fewer shots must be considered, or the sec-
ond level of search must be eliminated completely.

To avoid these problems, CUECARD applies a clustering
algorithm to the table states resulting from the different sam-
ples of a single shot. The clustering algorithm works with
a state representation that includes the (x,y) coordinates of
each ball on the table, as well as the evaluation of that table
state. States that, according to a metric in this high- dimen-
sional state space, are sufficiently close are combined into
a "representative state" that can later be expanded. Similar
sampling/clustering techniques have been previously applied
to protein folding [Singhal et al., 2004]. In our case, the
clustering approach offers a dramatic reduction in the num-
ber of states that need to be processed at the second level
of the search. Often, 50 states resulting from a single shot
can be clustered into 5 or 10 states, which leaves much more

1379

time to evaluate each of those states at the next level. The
additional samples of each shot lead to more robust shot se-
lection. CUECARD samples each shot between 20 and 100
times, depending on the stage of the game.

Look-ahead search

CUECARD uses look-ahead search to plan the shots it takes.
In the early game, it looks two levels deep, using the same
evaluation function at each level, similar to what was done by
PICKPOCKET [Smith, 2007]. In the late game, CUECARD

evaluates states after the first level of search by estimating
the probability that it wins the game from that state. This is
done by conducting a noiseless search to the end of the game,
with each shot weighted by its estimated success probability.
When the end of the game is reached, the win probability for
that state is 1. This value is then backed up the search tree to
give value to the states where it is still CUECARD’s turn. It is
assumed that if a shot doesn’t succeed then the same number
of balls will remain on the table. The opponent’s win prob-
ability for this state is estimated based on a Markov-chain
model of 8-ball, indexed by the number of balls of each side
in play, which was generated from thousands of self-played
games.

4 Analysis

In this section the previously described components of CUE-
CARD are analyzed and discussed to identify the importance
of each to CUECARD’s success.

4.1 Methodology

To isolate each individual component we created versions of
CUECARD with the component either modified or removed.
Each of these modified version was tested against the tourna-
ment version of CUECARD, running on a single CPU, with
600 seconds allotted per game. We will refer to this bench-
mark agent as CUECARD-TV. In some cases we also ran
matches between the modified versions and the version of
PICKPOCKET that competed in the tournament. In all cases,
we report the win percentages of each program and the stan-
dard deviations3(SD) of the results. We have also used hy-
pothesis testing to test the statistical significance of our re-
sults when indicating that a certain version of our program
performed better than another. These significance values4 are
provided when relevant.

4.2 Engineering components

In the tournament, each program was allotted 600 seconds per
game for decision-making. The purpose of CUECARD’s two
engineering components was to allow the agent to do more
computation in the time it had, either by using more machines
or by making bottleneck components run faster. In order to
determine the effect of these components on CUECARD’s vic-
tory, we must first determine the value of this extra time.

Separate from the tournament, we ran several tests in an
attempt to capture the value of time to CUECARD. Figure

3 1

2
√

N
, where N is the total number of games played in the match.

4ϕμ=0.5,σ2 (w), where w is the win rate of the winning program,

σ = 1

2
√

N
, and ϕ is the normal cdf.

100 200 300 400 500 600
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of seconds per game

W
in

 p
er

ce
nt

ag
e

ag
ai

ns
t t

ou
rn

am
en

t v
er

si
on

Figure 3: Effect of allocated time per game on performance

3 shows the results of these tests. Different numbers of sec-
onds per game were allotted to the single-threaded version of
our program. Each of these different versions then competed
against CUECARD-TV, to which, as stated previously, was
allotted the full 600 seconds. In each case the win percentage
of the variant program against CUECARD-TV is reported.
For reference, the win percentage of the full tournament ver-
sion running on the 20-machine cluster against CUECARD-
TV is shown by the dashed line.

Faster physics simulator

The reimplemented physics simulator gave an average six-
fold speedup per simulation. CUECARD uses it instead of
POOLFIZ for 97.95% of the shots. Since the physics simula-
tion is the major bottleneck of the system, we would expect
the overall speedup to be around 5×. We can see from Figure
3 that if we force CUECARD to only use POOLFIZ, that would
be like giving the program only 120 seconds per game. From
the data we might expect such a program to have a win per-
centage against CUECARD-TV between 40% and 45%. We
ran a match to test this hypothesis, and indeed, CUECARD

with only POOLFIZ won 42.4% (±2.68%) of the time (99.8%
significance).

The computing cluster

Since CUECARD-TV won 45% of the time against the 20
CPU version, it is clear that the additional processing power
of the computing cluster was not essential to CUECARD’s
tournament victory. To confirm this, we ran CUECARD-
TV against the tournament version of PICKPOCKET, and
CUECARD-TV won 77% of the time (±2%), which is similar
to the win percentage from the tournament.

We conclude that CUECARD did gain benefits due to the
engineering components, but it is unclear that the benefits
outweigh the costs associated with the methods. Also, the im-
provement of CUECARD is not linear in the amount of time
gained. Thus, while each of the engineering components has
value when added individually, when both of the components
are added together the improvement is less than the sum of
the individual improvements. Due to this fact, in hindsight,
we would consider carefully the benefits and cost of adding

1380

Agent | break vs. agent | break Win % SD

CC | CC vs. PP | PP 77.4% 2.0%

CC | PP vs. PP | PP 65.4% 2.4%

CC | CC vs. PP | CC 69.3% 1.6%

CC | CC vs. CC | PP 70.1% 5.1%

Table 1: Determining break shot contribution

both engineering components, and perhaps leave at least one
of them out of the system.

4.3 Domain specific component: break shot

One stark contrast between PICKPOCKET and CUECARD is
the break shot employed, each of which leads to very different
distributions over the possible break shot outcomes. To exam-
ine the contribution of the break shot to CUECARD’s success,
we ran four separate test matches. In each test match, tour-
nament versions of CUECARD and PICKPOCKET were used,
with only their break shots modified. We first ran each agent
with its own break shot, which recreated the conditions of the
tournament. The results of this match are shown on the top
line of Table 1. We next had the two agents compete against
each other using the same break shot, first PICKPOCKET’s
and then CUECARD’s. The results of these two matches are
on lines 2 and 3 of Table 1. Lastly, we had CUECARD com-
pete against itself, where one version had CUECARD’s break
shot, and one had PICKPOCKET’s. The results of this match
are shown on the bottom line of Table 1. All results are sta-
tistically significant for the winner.

At first glance, comparison of the top and bottom lines
would indicate the possibility that CUECARD’s win over
PICKPOCKET can be accounted for almost entirely by the
difference in break shots. Consideration of the other two
matches quickly refutes that, however, as CUECARD was able
to soundly defeat PICKPOCKET even when both programs
were using the same break shot. The fact that the match on
the top line, recreating tournament conditions, is the most
lopsided in favor of CUECARD shows that the break shot did
play a large role, accounting for around 10% of the wins. But,
with break shots being equal, CUECARD was still demon-
strably superior, and to explain this, we must examine other
components of CUECARD.

4.4 Domain-independent techniques

Sampling and clustering

Two aspects of CUECARD’s sampling were new contribu-
tions. The first, which was made possible by clustering, was
simply that CUECARD performed more samples than the 15
which PICKPOCKET had previously done [Smith, 2007]. The
second aspect was that CUECARD varied the number of sam-
ples performed depending on the stage of the game. To de-
termine the effectiveness of each of these features we ran
CUECARD-TV against versions of CUECARD that differed
only in the number of times they sampled shots at the first
level of search. In particular, each version was allotted the
same amount of time per game. In each case the number of
samples was held constant throughout all stages of the game.

0 50 100 150 200 250 300 350

0.35

0.4

0.45

0.5

0.55

Number of samples per shot at the first level

W
in

 p
er

ce
nt

ag
e

ag
ai

ns
t C

ue
C

ar
d

Figure 4: Effect of number of samples on performance

The results are summarized in Figure 4, where win percent-
ages against CUECARD-TV are shown. We show the data in
a graph, to emphasize the relationship between the different
versions tested.

The performance of CUECARD-TV against the versions
using less than 30 samples shows the effect of simply being
able to sample more. CUECARD-TV won decisively against
these programs, with an average win percentage of 61 %. Due
to the low number of tests the statistical significance of each
result is 97.7%.

For the range between 30-150 samples, which is approxi-
mately what CUECARD varies over, the results are too close
to say definitely which method (constant or variable number
of samples) is better. We can say that if CUECARD had a
constant number of samples in the 30-100 range it would not
have performed any worse. The simplicity of the constant
number of samples approach argues for its use over the vari-
able method. As the number of samples per shot increases to
300, the performance does decline. The tradeoff of sampling
more is that the agent has less time to try different shots. It is
clear from the data that once a certain number of samples has
been reached further samples do not add to the performance
of the agent. After a certain number of samples, the results
of the samples seem to be an accurate enough representation
of the possible outcomes of the shot, such that further sam-
ples don’t give enough information to cause serious changes
in decisions and play. The data indicates that this minimum
number of necessary samples for our setting is somewhere
between 30 and 50. We conclude that the clustering helped
significantly by enabling more samples, while the variable
number of samples gave us no additional advantage.

Second level of search

As described in Section 3.4, the methods used at the second
level of search differ between CUECARD and PICKPOCKET.
To see if one of these methods gives an advantage over an-
other, we ran CUECARD-TV against a version of CUECARD

in which the second level is the same as used by PICK-
POCKET. The result of this match is shown on the top row of
Table 2. Our conclusion is that neither method of searching
at the second level gives significant advantage over the other,
and that CUECARD’s new method of searching at the second

1381

Agent Win % vs. CUECARD-TV SD

L2 = PickPocket 49.88% 1.4%

Ignore level 2 45.23% 2.0 %
More level 1 51.60% 1.4%

Table 2: Effect of level 2 of search.

level did not contribute to the victory over PICKPOCKET.
This still does not address the usefulness of the level 2

of search in general. Until now, it has been generally as-
sumed that in a search space with imperfect heuristic looka-
head search would be beneficial. To see if this is true in the
domain of computational pool, we did several things. First,
we observed that the second level of search actually changes
the decision made by the first level of the search only 18.33%
of the time. We also ran two different test matches to see
if running level 2 actually improves the decisions made by
CUECARD. In each match, a modified version of CUECARD

competed against CUECARD-TV (which utilizes level 2). In
the first modified version everything remained the same, but
the agent simply ignored the results of level 2, making its de-
cision based only on the level 1 search result. The result of
this match, shown on the second row of Table 2, shows that
running level 2 after level 1 does improve the performance of
the program (with statistical significance of 99.1%).

In the second modified version, instead of simply ignoring
level 2, we took the time that would have been spent on level
2 and spent it exploring more shots at the first level of search.
The results of this match are shown on the bottom row of Ta-
ble 2. Interestingly, we see that running more level 1 is at
least as valuable as running level 2, or at least the two meth-
ods are indistinguishable by the 1256 games we ran between
them. This leaves unresolved the issue of whether a second
level of search should be performed at all.

Analysis of PICKPOCKET [Smith, 2007] also failed to
show conclusively that a second level of search was help-
ful. Interestingly, the tournament noise levels were chosen
in an attempt to emphasize high-level planning and strategy.
A second level of search would seemingly be invaluable in a
domain which rewards good high-level planning. This choice
has yet to be supported by experimental data. In the future
we plan on specifically investigating this issue, seeking to ei-
ther support or contradict the reasoning used to choose the
tournament noise level.

5 Conclusions

Our analysis of CUECARD focused on three different types
of components: engineering, domain-specific and domain-
independent. We summarize our conclusions as follows:

• The two largest contributors to CUECARD’s success,
each with roughly the same magnitude of impact, were
the break shot and increased number of samples.

• The engineering aspects, which increased the time avail-
able to CUECARD, had a smaller impact on its success.

• Look-ahead search and the variable number of shot sam-
ples had no effect, either positive or negative, on CUE-
CARD’s performance.

The lessons learned in this domain can be extended to other
AI domains. Specifically, it is hard to predict, when facing a
new and complex domain, which type of agent component
will have the most impact. The experience with CUECARD

shows that effort should be put into each different type, as
they can all prove fruitful.

In the future, we plan to further explore the role of clus-
tering in planning, especially compared to its use in other
domains. We also plan to examine the relationship between
noise level and the value of look-ahead search in billiards,
examining what changes occur as the noise levels change.
Similarly, in contrast with the idealized view of game the-
ory, we currently do little in the way of opponent modeling.
We would like to see how the need for opponent modeling
changes with changes in the noise level. With all these open
issues billiards presents a great opportunity to develop and
apply a variety of AI techniques and methods.

References

[Billiards Congress of America, 1992] Billiards Congress of
America. Billiards: The Official Rules and Records Book.
The Lyons Press, New York, New York, 1992.

[Billings et al., 2002] Darse Billings, Aaron Davidson,
Jonathan Schaeffer, and Duane Szafron. The challenge of
poker. Artificial Intelligence Journal, 134:201–240, 2002.

[Greenspan, 2006] Michael Greenspan. PickPocket wins the
pool tournament. International Computer Games Associ-
ation Journal, 29:152–156, 2006.

[Korf, 1995] Rich Korf. Heuristic evaluation functions in
artificial intelligence search algorithms. Minds and Ma-
chines, 5(4):489–498, 1995.

[Latombe, 1991] Jean-Claude Latombe. Robot Motion Plan-
ning. Springer, 1991.

[Leckie and Greenspan, 2006] Will Leckie and Michael
Greenspan. An Event-Based Pool Physics Simulator, pages
247–262. Lecture Notes in Computer Science. Springer,
2006.

[Levy and Newborn, 1991] David Levy and Monty New-
born. How Computers Play Chess. Computer Science
Press, 1991.

[Singhal et al., 2004] Nina Singhal, Christopher D. Snow,
and Vijay S. Pande. Using path sampling to build better
Markovian state models: Predicting the folding rate and
mechanism of a tryptophan zipper beta hairpin. Journal of
Chemical Physics, 121:415–425, 2004.

[Smith, 2007] Michael Smith. PickPocket: A computer bil-
liards shark. Artificial Intelligence, 171:1069–1091, 2007.

[Stone, 2007] Peter Stone. Intelligent Autonomous Robotics:
A Robot Soccer Case Study. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers, 2007.

[Wellman et al., 2007] Michael P. Wellman, Amy Green-
wald, and Peter Stone. Autonomous Bidding Agents:
Strategies and Lessons from the Trading Agent Competi-
tion. MIT Press, 2007.

1382

