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Abstract

Many applications are facing the problem of learn-
ing from an objective dataset, whereas information
from other auxiliary sources may be beneficial but
cannot be integrated into the objective dataset for
learning. In this paper, we propose an omni-view
learning approach to enable learning from multi-
ple data collections. The theme is to organize het-
erogeneous data sources into a unified table with
global data view. To achieve the omni-view learn-
ing goal, we consider that the objective dataset
and the auxiliary datasets share some instance-level
dependency structures. We then propose a rela-
tional k-means to cluster instances in each auxil-
iary dataset, such that clusters can help build new
features to capture correlations between the objec-
tive and auxiliary datasets. Experimental results
demonstrate that omni-view learning can help build
models which outperform the ones learned from
the objective dataset only. Comparisons with the
co-training algorithm further assert that omni-view
learning provides an alternative, yet effective, way
for semi-supervised learning.

1 Introduction

As data collection sources and channels continuously evolve,
learning and correlating information from multiple data
sources (In this paper, multi-source and multiple data source
are equivalent terms) is almost ubiquitous and crosses busi-
ness, government/enterprise organizations, and many scien-
tific disciplines. Many key bioinformatic research problems,
such as gene function annotation, regulatory motif finding,
and protein complex identification, have recently been shown
to greatly benefit from the techniques which utilize more
than one type of data [Fujibuchi and Kato, 2007], this is be-
cause many learners can significantly improve their perfor-
mance if they can integrate information from multiple rele-
vant sources. Consider a major movie data repository which
maintains a large number of movie records (IMDb currently
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maintains more than 750,000 movies and TV episodes world-
wide). Movie rental companies (such as Netflix) which main-
tain and utilize such large data repository will usually have
two major tables, namely movie table and user table shown in
Figures (1a) and (1b), respectively. The main objective of the
movie table is to use movie content such as keyword descrip-
tions to predict a new movie’s expected category, whereas the
user table is to predict which types of movies the users are in-
terested in or internal categorization of the users for the com-
pany’s own purposes (e.g. finding high-attrition customers
who may turn to other companies). Although the prediction
of each task can be solved by learning from each individual
table respectively, the prediction solely relying on a single ta-
ble may not, in practice, generate a good result. Information
collected from other sources, such as actors, can be provided
as auxiliary data, to enhance the learning. The challenging
issue is how to integrate such heterogeneous data sources for
learning?

Multi-source learning can also help solve traditional ma-
chine learning problems, such as semi-supervised learning
[Blum and Mitchell, 1998] and transfer learning [Baxter,
1997], by generalizing the problems as multi-source learn-
ing tasks. In semi-supervised learning, data are collected as
labeled and unlabeled sets, and the main goal is to use unla-
beled set to improve the learning. Common approaches, such
as co-training [Blum and Mitchell, 1998], are to assign class
labels to unlabeled instances and further include them into the
training set for learning. Such an “automatic” labeling pro-
cess may add a significant amount of class noise [Zhu and
Wu, 2003] to the training set. Alternatively, because the rep-
resentations (i.e. features) of the labeled and unlabeled sets
are the same, we can directly calculate the relationship be-
tween each labeled and unlabeled instances, which may, in
practice, provide useful information to improve the learning
of the labeled set.

Harnessing multi-source data and unleashing their full po-
tential for learning is, however, a very challenging problem.
This is mainly because of the following reasons:

• Heterogeneous data sources: Multi-source data nor-
mally have different data representations and schemas,
which make traditional data integration based ap-
proaches practically inefficient to aggregate the data for
multi-source learning.
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• Multi-Source data representation: No common plat-
form currently exists to represent multi-source data in a
unified view for multi-source cooperative learning.

• Multi-Source knowledge transferring: Multi-source
data are usually collected from different sources and
used for different learning tasks. Enabling multi-source
learning will have to face the problem of transferring
knowledge from one dataset to another, or vice versa.

In this paper, we propose a multi-source omni-view learning
framework. The purpose is to deliver a common platform
to leverage information from multiple data sources for learn-
ing. In our problem setting, multi-source data are assumed to
be heterogeneous with completely different data representa-
tions, and no schema mapping or data integration is required
for learning. Our problem setting will not only make the solu-
tions widely applicable for real-world multi-source data, but
also helps differentiate the proposed work from existing re-
search such as relational mining, which we will address in
Section 2.

To achieve the goal, we propose a data representation
model which lays the foundation to represent multi-source
data in a global multi-source view. Further more, we pro-
pose an omni-view multi-source learning framework and a
relational k-means clustering method to cluster instances by
leveraging information from different sources, such that the
clusters can help build new features to capture correlations
between data collections.

2 Related Work

Existing work in learning from multiple data sources mainly
falls into the following three categories: (1) data integration;
(2) model integration; and (3) relational learning.

Data Integration: Data integration intends to integrate het-
erogeneous data collections, such that the learning can be
carried out on the integrated data. A crucial step is to map
schemas between different data collections [Cohen, 2000].
Instead of relying on schema mapping for data integration,
we seek to unify multi-source data through data correlations,
so complex schema mapping process can be avoided.

Model Integration: Model integration focus on combining
models learnt from each individual sources, under the as-
sumption that schema mapping between data sources is avail-
able or a primary key is available to link data sources [Fu-
jibuchi and Kato, 2007; BenDavid et al., 2002]. This has
been commonly used for privacy preserving clustering. In
comparison, we do not rely on any complex model integra-
tion approaches but directly build learners from the data.

Relational Mining: When instances between data collec-
tions are relational, a number of works exist for probabilistic
relational classification and clustering [Taskar et al., 2001;
Deodhar and Ghosh, 2007; Long et al., 2007]. Crammer
et al. [Crammer et al., 2008] provides a general theory of
selectively combining multi-source data, under the assump-
tion that data sources share identical representations. Multi-
task, transfer, and semi-supervised learning [Baxter, 1997;
Caruana, 1997] represent another body of work where learn-
ing can gain benefits from relevant data sources with identical
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Figure 2: Unified data representation model for multi-source data

data representation. In comparison, we are dealing with het-
erogeneous data sources with distinct data representations.

3 Multi-Source Data Representation

To support multi-source learning, we propose to utilize a uni-
fied data representation model to integrate multi-source data
through a matrix which specifies correlations between data
sources. Denoting Dα and Dβ two data collections, each con-

tains a set of instances xα
1 , · · · , xα

nα
, and x

β
1 , · · · , xβ

nβ
, where

xα
i specifies an instance in Dα and nα denotes the number of

instances in Dα. Each instance is represented by a set of fea-
tures/attributes aα

1 , ..., aα
mα

where mα specifies the number

of features for instances in Dα. If Dα and Dβ were formed
for classification purposes, a class label (Cα or Cβ) will be
assigned to each instance.

To bridge connections between different data collections,
we assume that each instance in one data collection has a
correlation with one or multiple instances in other data col-
lections, as shown in Figure 2. Given two datasets Dα and
Dβ , θ

xα
i ↔x

β
j

denotes the correlation value between the ith

instance in Dα and the jth instance in Dβ . In addition, we
also assume that the correlation between i and j is symmet-
ric, i.e. θ

Dα
i ↔D

β
j

= θ
D

β
j ↔Dα

i
. If we take the correlation for

instances without correlation as zero, then all correlation val-
ues between instances in Dα andDβ form a matrix ΘDα↔Dβ ,
as shown on the right side of Figure 2.

4 Omni-View Cooperative Learning

4.1 Omni-View Dataset Construction

Given a set of data collections Dα,Dβ , · · · ,Dγ , each con-
tains a set of instances with or without class labels. For
learning purposes, we assume that at least one data collec-
tion should be labeled. Since our data representation model
intends to map data from one dataset to another, the one to
which the data are mapped is called an objective dataset, and
all others are called auxiliary datasets.

Our solution for multi-source learning is to follow the data
model in Section 3 and build a special training set for the ob-
jective learning task, by leveraging information from all data
collections. More specifically, we can list instances in the ob-
jective dataset Dα as rows, and map instances from other aux-
iliary datasets as features(attributes), with each feature value
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Movie

ID
K ord .. K ordk

Runtime

(min)

Production

Budget
Year

Movie

roups

001 2 .. 3 178 93 m 2001 Action

002 4 .. 3 222 N/A 1939 Comedy

.. .. .. .. .. .. ..

n 1 .. 3 127 48 m 1989 Romance

Actor
Year of

Birth

Year of

Active
Origin

Box Office Grosses

(Domestic)

Box Office

Grosses (Internal.)

Academy

Awards

H. Ford 1942 1966 IL (USA) 3100m 60000m 1

C. Gable 1901 1924 OH(USA) N/A N/A 1

.. .. .. .. .. .. ..

V. Leigh 1913 1935 British India N/A N/A 2

(a) Movie table

1n

22

m2

(b) User table

12

22

nk km

User

ID
Age Gender Occupation Interests ser roups

001 32 Male Engineer Action Movie Profitable Customer

002 44 Male Artist All Professional Reviewer

.. .. .. .. .. ..

m 19 Female Student Comedy Movie High-attrition Customer

(c) Actor table

11

Figure 1: A heterogeneous multiple data source example: (a) movie table used to assign movies into different groups; (b) user table used to
predict customer interests, loyalty, and the risk of customer churn. θij indicates the correlation between a movie i and a user j; (c) actor table
listing actors and demographic information α and β specify the movie-actor and user-actor correlations, respectively.
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Figure 3: Example of omni-view multi-source learning. Dα is the

objective dataset, Dβ and Dγ are auxiliary datasets, f(xα
i , Gd

j ) can
be calculated by Eq.(1)

given by two instances’ correlation value θ
xα

i ↔x
β
j

. We call

such dataset an omni-view dataset, as it contains information
across data collections. After that, we can apply any exist-
ing learning algorithms to the omni-view dataset and generate
prediction models.

4.2 Omni-View Learning

The employment of the omni-view dataset ensures that learn-
ing has the ability of surveying data records in the objective
dataset, as well as their correlations with other data collec-
tions (global knowledge).

Two challenges remain in order to carry out the learning on
the omni-view dataset:
• High Dimensionality. Because we map an instance

from one dataset Dβ to another dataset Dα as a new fea-
ture. If Dβ has a large number of instances, it will result
high-dimensional features in Dα’s omni-view dataset.
Learning from high-dimensional data is an identified
data mining challenge, therefore we must propose so-
lutions to resolve this issue.

• Test difficulty. Although a learning model can be built
from the omni-view dataset, the correlation values be-
tween a test and the auxiliary instances may not be im-

mediately available. As a result, although prediction
model is global, the prediction is still based on the test
instance’s local feature values.

To resolve the dimensionality challenge, we propose a re-
lational k-means clustering method to merge instances in an

auxiliary dataset Dβ into k groups, Gβ
1 , · · · ,Gβ

k , and map
each group as a new omni-view feature in the objective
dataset Dα, as shown in Figure 3. The value of the new fea-
ture is calculated such that for each instance xα

i in Dα, its
new feature value is the average of the mapping values be-
tween xα

i and all instances in group Gd
j , as defined by Eq.(1),

where |θxα
i ↔Gd

j
| denotes the number of instances in Gd

j which

have mapping relationship values with xα
i .

f(xα
i ,Gd

j ) =
1

|θxα
i ↔Gd

j
|

∑

xd
τ∈Gd

j

θxα
i ↔xd

τ
(1)

Although the above clustering process can significantly re-
duce the dimension of the omni-view features, we may still
have to face the reality that the cluster number k in the aux-
iliary dataset Dβ may be much larger than the dimension
of the objective dataset Dα. In addition, the dimension of
the omni-features will cumulate if multiple auxiliary datasets
D1, · · · ,Dd are involved. Consequently, we employ the prin-
ciple component analysis (PCA) process to the omni-view
features, and reduce the dimension to be the same as the num-
ber of attributes of the objective dataset Dα.

After the above process, the objective dataset Dα will be
transformed into an omni-view dataset. Assuming a predic-
tion model is built from Dα’s transformed omni-view dataset,
the test difficulty arises when classifying a test instance xα

τ .
This is because xα

τ may only contain feature values with re-
spect to Dα, but has no values corresponding to Dα’s omni-
view features, as the correlations between xα

τ and instances in
the auxiliary datasets may not be immediately available. Our
solution is to use each test instance’s nearest neighbours Δ in
the objective dataset Dα to estimate xα

τ ’s new feature values,
as defined by Eq. (2).

f(xα
τ ,Gd

j ) =
1

|Δ|

∑

xα
μ∈Δ

f(xα
μ,Gd

j ) (2)
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Based on the above articulations, the major steps of the omni-
view learning framework are given in Algorithm 1.

Algorithm 1 OFL: Omni-view Feature Learning

Require: Objective set: Dα, d auxiliary sets D1, · · · ,Dd, and
mapping relationships ΘDα↔D1 , · · · , ΘDα↔Dd

for τ ← 1 to d do

Gτ
1 , · · · ,Gτ

k ← relational-k-means(Dτ , ΘDα↔Dτ , k, T )
end for
for each training instance xα

i in Dα do
fα

i ← calculate omni-view features using Eq.(1)
F = F ∪ fα

i //aggregate omni-view features
end for
F ′ ← Apply Principle Component Analysis (PCA) to F

D
′α ← create omni-view dataset using Dα and F ′

�(D
′α) ← train classifier from D

′α

===================TEST==================
for each test instance xα

τ do
Δ ← find xα

τ ’s K nearest neighbours in Dα

fα
τ ← calculate omni-view features using Eq.(2)

f
′α
τ ← PCA transformed feature

xα
τ ← xα

τ ∪ f
′α
τ : test instance with omni-view feature

�(D
′α, xα

τ ): classify
end for
return prediction accuracy

4.3 Relational k-Means Clustering

The purpose of the relational k-means clustering is to clus-
ter instances in an auxiliary dataset Dβ into a number of k

clusters Gβ
1 , · · · ,Gβ

k , under matrix ΘDα↔Dβ which specifies

the mapping relationships between instances in Dα and Dβ .
For general k-means, the objective function is to maximize
the intra-cluster instance similarities over all clusters [Duda
et al., 2001], as defined by Eq. (3), where S(x, x′) speci-
fies the similarity between instances x and x′, and S

G
β
i

is the

average intra-cluster pair-wise similarity for cluster Gβ
i .

J = max

k∑

i=1

S
G

β
i

= max

k∑

i=1

{
1

n2
G

β
i

∑

x∈G
β
i

∑

x′∈G
β
i

S(x, x′)}

(3)
If instances in Dβ are subject to some mapping relation-

ships ΘDα↔Dβ with the objective dataset Dα, we expect that

each cluster Gβ
i in Dβ will maximize its intra-cluster sim-

ilarity S
G

β
i

, and the instances in Gβ
i should also minimize

the mapping relationship variance with respect to Dα. In

other words, if two instances x
β
i and x

β
j are indeed similar to

each other, they should have large similarity value S(xβ
i , x

β
j ),

and share similar mapping relationship values with other in-
stances, i.e., low variance.

The above observation motivates a new clustering measure
which combines both intra-cluster similarity and the mapping

relationship variance. Given each instance x
β
i in an auxiliary

dataset Dβ , assume Θ
Dα↔x

β

i

=∈ R
nα×1 denotes the rela-

tionship of x
β
i to all (nα) instances in Dα. Assume the exis-

tence of a cluster Gβ
τ in Dβ , the mean mapping relationship

of all instances in Gβ
τ is denoted by Eq. (4).

Θ
Dα↔G

β
τ

=
1

|Gβ
τ |

∑

x
β
j ∈G

β
τ

Θ
Dα↔x

β
j

(4)

The variance of the mapping relationship of all instances in
Gβ

τ (w.r.t. Dα) is given in Eq. (5), where ΔΘ(xβ
j ,G

β
τ ) =

Θ
Dα↔x

β
j
− Θ

Dα↔G
β
τ

δ
Dα↔G

β
τ

=
1

|Gβ
k |

∑

x
β
j ∈G

β
τ

ΔT

Θ(xβ
j ,G

β
τ )

ΔΘ(xβ
j ,G

β
τ ) (5)

As a result, the objective function of the relational k-means is
given in Eq.(6)

J ′ = max

k∑

τ=1

J
G

β
τ

= max

k∑

τ=1

S
G

β
τ

δ
Dα↔G

β
τ

(6)

Explicitly solving Eq.(6) is difficult, alternatively, we can
employ a recursive hill-climbing search process to find solu-
tions. Assume instances in Dβ are clustered into k clusters,

Gβ
1 , · · · ,Gβ

k , moving an instance x from cluster Gβ
i to clus-

ter Gβ
j will only change the cluster objective values J

G
β
i

and

J
G

β
j

. Therefore, in order to maximize Eq. (6), at each step t,

we can randomly select an instance x from a cluster Gβ
i , and

move x to cluster Gβ
j . We accept the movement only if the

Inequity (7) reaches a larger value at step t + 1 (i.e. after the
movement).

J
G

β
i
(t) + J

G
β
j
(t) < J

G
β
i
(t + 1) + J

G
β
j
(t + 1) (7)

Based on the search process in Inequity (7), major steps of
the relational k-means are listed in the Algorithm 2.

Algorithm 2 Relational-k-Means

Require: Dβ , ΘDα↔Dβ , k and T

Gβ
1
, · · · ,Gβ

k ← Apply k-means to Dβ

for t ← 1 to T do
x ← Randomly select an instance from Dβ

Gβ
i ← current cluster of instance x

J
G

β
i

(t) ← Calculate Gβ
i ’s objective value

J
G

β
i

(t + 1) ← Gβ
i ’s new value after excluding x

for j ← 1 to k, j �= i do

J
G

β
j

(t) ← Calculate Gβ
j ’s objective value

J
G

β
j

(t + 1) ← Gβ
j ’s new value after including x

if Inequity (7) is true then

Gβ
j ← Gβ

j ∪ x; Gβ
i ← Gβ

i \ x
Break

end if
end for

end for
return Gβ

1
, · · · ,Gβ

k
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Accelerated Search Process

In Algorithm 2, each time when we test to move an instance

x from cluster Gβ
i to Gβ

j , we need to recalculate the objective

values for both Gβ
i and Gβ

j . This is a computational expensive
process. Using simple math, we can show that accelerated
search process exists for calculating J

G
β
i
(t+1) and J

G
β
j
(t+1)

from J
G

β
i
(t) and J

G
β
j
(t) directly. Due to the page limit, we

omit the technical details in this paper.

5 Experimental Results

5.1 Experimental Settings

We implement the omni-view feature learning (OFL) frame-
work in Java by integrating the WEKA machine learning tool
[Witten and Frank, 2005]. In our experiments, the number
of nearest neighbors of a test instance is automatically deter-
mined by using hold-one-out cross validation (provided by
WEKA tool), and the number of clusters for each auxiliary
dataset is set as the number of instances divided by 20, with
100 clusters being the maximum. Three learning algorithms
used in our experiments include C4.5 decision trees [Quinlan,
1993], Naive Bayes, and Support Vector Machines (the Lib-
svm package). In all experiments, we use 10 times 10-fold
cross-validation to evaluate the algorithm performance.
Benchmark Data: For evaluation purposes, we use 10 UCI
machine learning benchmark datasets [Asuncion and New-
man, 2007] as our test bed. To create heterogeneous data
sources, we sort attributes of each dataset in an descending
order, according to their information gain values [Quinlan,
1993]. We sequentially assign each sorted attribute (from
the top to the bottom) to one data source, which results in
multi-source data containing distinct attribute values. We ran-
domly select one data source as the objective dataset, and the
remaining data sources are treated as the auxiliary datsets.
Although labeling information is available for both objec-
tive and auxiliary instances, we only keep class labels for the
objective instances, with auxiliary instances remaining unla-
beled. We first calculate the Euclidean distance between any
instance pairs (in the original complete feature space). Then,
we assign the mapping relationship between an objective in-
stance and an auxiliary instance as the normalized Euclidean
distance ([0,1]) between their corresponding instances in the
original feature space (computed in the first step).
Benchmark Methods: To evaluate the performance of
our method, we compare the results with two baseline ap-
proaches. The first method is to train classifiers using local
features of the objective dataset only. Such a local feature
based learning approach is intended to serve as the lower-
bound of all the benchmark methods. The second method
assumes that each instance in the objective dataset is able
to build some new features identical to the representation
of the auxiliary dataset, so the classifiers are trained from
the “global” features of the objective dataset. Notice that
“global” features are hard to collect unless the schema map-
ping and a primary index key exist to link objective and auxil-
iary datasets. In our experiments, because both objective and
auxiliary datasets are split from one dataset, we know objec-
tive dataset’s “global” features. The results of such a “global”

feature based learning provide an upper-bound for all the
methods. To demonstrate that omni-view learning is effec-
tive for traditional learning tasks, such as semi-supervised
learning, we also compare OFL with the classical co-training
method (denoted by Co-Tr). For comparison purposes, we
also report the results of OFL in an ideal situation where the
omni-feature values of a test instance are calculated according
to Eq. (1) based on a test instance’s known mapping relation-
ships with auxiliary instances (denoted by OFL�). A simple
description of the above methods are listed in Table 2.

Table 1: Description of the benchmark data

Dataset Sizes Dimensions Classes
Anneal 898 38 5
Credit 690 14 2
Digits 3689 256 10

Letter-7 5329 16 7
Kr-vs-kp 3196 36 2
Segment 2310 19 7

Sonar 208 60 2
Soybean 683 35 19
Vowel 990 13 11

Waveform 5000 40 3

Table 2: Abbreviation of the benchmark methods

OFL classifiers from Omni-view Feature Learning
OFL� OFL with known correlations for test instances
LFL classifiers from Local Feature Learning
GFL classifiers from “Global” Features Learning
CoTr Co-Training classifiers [Blum and Mitchell, 1998]

5.2 Omni-view multi-source learning results

In Table 3, we report OFL, LFL, and GFL’s performance on
the benchmark datasets where each dataset is equally split
into two sources (one object set and one auxiliary set) with
non-overlapping features.

The results in Table 3 show that when considering all
benchmark data as a whole, omni-view feature learning
(OFL) provides an effective solution to leverage multi-source
data to improve the learning on the objective dataset. This
is valid for all three learning algorithms, which asserts that
OFL is effective for common learners. Compared to the clas-
sifiers built from the local features (i.e. LFL), the classifiers
trained from OFL are usually more accurate with 1% ∼ 15%
or larger (i.e. the Vowel dataset) accuracy gains. If the map-
ping relationships of a test instance were known (i.e., OFL�),
OFL can further improve the accuracies to a large extent. On
the other hand, the results of GFL show the maximum gains
(the upper-bound) we may expect if multi-source data were
perfectly aligned (notice that in real-world environments, the
results of GFL may not be achievable unless the schema map-
ping and a primary key both exist to link multi-source data).
For some datasets, models trained from partially observed lo-
cal features may actually outperform the ones learnt from the
global features (e.g. the Credit (SVM) dataset). We believe
this is mainly because some datasets contain redundant fea-
tures so using a subset features may help build a better model
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Figure 4: OFL results with different percentages of missing map-
ping relationship values

(this also explains why feature selection is helpful). Overall,
we can expect that OFL significantly outperforms LFL, and
occasionally beats the upper-bound GFL (Credit:(C4.5, NB,
SVM), Digits:C4.5, Sonar: NB, Waveform: C4.5).

To simulate real-world situations where mapping relation-
ships between some instances are unknown. We randomly
select ε × 100% of mapping relationships and replace them
with a constant value 0.5 (which is the half-way point of the
general mapping relationship values [0, 1]). We report the re-
sults in Figure 4,which show that although OFL prefers com-
plete mapping relationship values, in practice, it only needs
very little mapping information to build learners outperform-
ing LFL. This is mainly because each auxiliary dataset is clus-
tered into a number of groups, so for each instance x in the
objective dataset, knowing a small portion of mapping rela-
tionships between x and objective instances is sufficient for x
to build omni-view features. This observation asserts that al-
though instance mapping relationships between data sources
are important, they do not have to be complete to support
omni-view learning.

5.3 Omni-view semi-supervised learning results

When using OFL for semi-supervised learning, we split a
dataset into two subsets: objective set and auxiliary set, where
both sets have the same features as the original data. We dis-
card the labels of the auxiliary instances which results in an
unlabeled sample set, and only the objective set contains la-
beled examples. Then we use co-training and OFL to build
prediction models from the objective set, by using auxiliary
(unlabeled) instances. For comparison purposes, we also re-
port the results of LFL and GFL. LFL simply trains the mod-
els using objective instances only. For GFL, we aggregate
both objective and auxiliary instances and assign the genuine
class labels to the auxiliary instances and train classifiers from
the aggregated data. The results of GFL demonstrate the max-
imum gains that Co-Tr can possibly achieve.

In Table 4, we report the results of all datasets. In our
experiments, we randomly select 20% of instances in each
dataset as the labeled set and the remaining instances are
taken as the unlabeled set. In addition, we use Co-Tr to as-
sign class labels to 20% of unlabeled instances in 50 repeti-
tions (all parameters are selected to reveal general experimen-
tal settings). As shown in Table 4, OFL outperforms Co-Tr
from 8 out of 10 datasets. In many situations, the results of

Co-Tr are just marginally better than LFL whereas OFL can
bring significant improvement, compared to LFL and Co-Tr.

The main disadvantage of the traditional semi-supervised
learning methods, such as co-training, is that each unlabeled
example is explicitly assigned a class label and included in the
training set. Notice that class labels play vital roles for classi-
fication, instances with incorrect class labels will act as noise
and deteriorate the learner performances [Zhu and Wu, 2003].
To validate our hypothesis, we report the accuracy of the class
labels assigned to the unlabeled instances by Co-Tr in the last
row of Table 4. As we can see, Co-Tr’s average labeling ac-
curacy is between 60% to 90%. This suggests that a signif-
icant amount of labeled instances (which are included in the
training set) are noisy. When using OFL for semi-supervised
learning, although incorrect omni-feature values may also ex-
ist, errors in the attributes are actually much less harmful than
class errors. In the worst scenario, assume an omni-view fea-
ture contains random values, its impact will be easily reduced
by OFL’s succeeding principle component analysis process.

6 Conclusions

In this paper, we proposed a multiple information sources
cooperative learning framework (OFL). Given an objective
dataset and its learning tasks, we assume that a number of het-
erogeneous auxiliary datasets relevant to the objective dataset
exist and instances between the objective and the auxiliary
datasets may be subject to some mapping relationships. Our
solution is to build omni-view features by leveraging infor-
mation from multiple data collections to achieve multi-source
learning goal. Experimental results and comparisons asserted
that OFL delivers a simple yet practical platform to support
multi-source learning. Such an OFL framework is also ben-
eficial for traditional learning tasks such as semi-supervised
learning. The main contribution of the paper, compared to
other existing work, is threefold: (1) a common platform to
support multi-source learning; (2) a relational k-means for
clustering across multiple data collections; and (3) an alterna-
tive solution to solve traditional learning problems by using
multi-source learning.
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