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Abstract

In many applications non-metric distances are bet-
ter than metric distances in reflecting the percep-
tual distances of human beings. Previous studies
on non-metric distances mainly focused on super-
vised setting and did not consider the usefulness of
unlabeled data. In this paper, we present probably
the first study of label propagation on graphs in-
duced from non-metric distances. The challenge
here lies in the fact that the triangular inequality
does not hold for non-metric distances and there-
fore, a direct application of existing label propa-
gation methods will lead to inconsistency and con-
flict. We show that by applying spectrum transfor-
mation, non-metric distances can be converted into
metric ones, and thus label propagation can be ex-
ecuted. Such methods, however, suffer from the
change of original semantic relations. As a main
result of this paper, we prove that any non-metric
distance matrix can be decomposed into two met-
ric distance matrices containing different informa-
tion of the data. Based on this recognition, our pro-
posed NMLP method derives two graphs from the
original non-metric distance and performs a joint
label propagation on the joint graph. Experiments
validate the effectiveness of the proposed NMLP
method.

1 Introduction

Distance plays an important role in many machine learning
and pattern recognition techniques. Most distances were de-
veloped based on metrics satisfying the metric axioms, i.e.,
non-negativity, self-similarity, symmetry and triangular in-
equality. Such kind of distances are called metric distances.
Although they have been applied widely and achieved great
success, it has been found that in many applications metric
distances deviate from the perceptual distances of human be-
ings [Tversky, 1977; Santini and Jain, 1999]; in particular,
the triangular inequality often violates human perceptual dis-
tances. For example, in the illustration shown in Figure 1,
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Figure 1: An illustration of non-metric distance that violates the
metric axiom of triangular inequality.

the pattern (d) is similar to both the pattern (c) and the pat-
tern (e), but the patterns (c) and (e) are dissimilar to each
other! Distances which violate one or more metric axioms
are called non-metric distances. The triangular inequality is
the most often violated axiom, and it has been reported that
by using non-metric distances which violate this axiom, it is
possible to achieve better classification or recognition per-
formances than using metric distances [Jacobs ef al., 2000;
Tan et al., 2006; 2009]. In this paper, if without clarification,
we consider only this kind of non-metric distances.

Previous studies on non-metric distances all worked in su-
pervised setting [Wu er al., 2005; Tan er al., 2006; 2009],
neglecting the usefulness of unlabeled data. During the past
decade, the use of unlabeled data has attracted much atten-
tion. A major paradigm is semi-supervised learning [Zhu,
2005; Chapelle et al., 2006] which attempts to improve
learning performance by automatically exploiting unlabeled
training examples that are readily available. Many semi-
supervised learning methods have been developed, among
which graph-based methods [Zhu et al., 2003; Zhou et al.,
2004] are particularly attractive due to their neat theoretical
properties and good empirical performances.

The key of graph-based semi-supervise learning is label
propagation, i.e., propagating labels of the labeled training
examples to unlabeled instances based on graph structure,
where the graphs are constructed by using the edges to re-
flect the distances/similarities between pairs of instances. At
a first glance it might be thought that for tasks where non-
metric distances are more suited than metric ones, we can re-
alize label propagation simply by using non-metric distances
to construct the graph and then applying existing label prop-
agation methods on the graph. Unfortunately, this neglects
the challenge posed by the violation of triangular inequality.
As illustrated in Figure 1, we want to discriminate the hand-



written digits 2’ and “7°. The pattern (d) is similar to both
(c) and (e), violating the metric for D.q + Dge < Dce. If
we apply label propagation on this graph, the label ‘2° will be
propagated to pattern (e), (f) and (g) via (d) and the label ‘7’
will be propagated to pattern (a), (b) and (c) via (d). Thus,
inconsistency and conflict occur.

In this paper, we present probably the first study on label
propagation based on non-metric distances. First, we show
that it is possible to use spectrum transformation to con-
vert the non-metric distances into metric ones, and thus la-
bel propagation can be executed on the metric-based graphs.
Such methods, however, suffer from the change of semantics
of the original similarity. Our main contribution is to propose
the NMLP (Non-Metric Label Propagation) method, based on
our proof that any non-metric distance matrix can be decom-
posed into two metric distance matrices. Our NV LP method
works by decomposing the non-metric distance matrix at first,
and then running a joint label propagation on the joint graph.
The effectiveness of the NMLP method is validated in experi-
ments. Note that we are studying how to deal with non-metric
distances instead of proposing yet another semi-supervised
learning approach, and it is possible to use our method to en-
able graph kernel approaches to handle non-metric distances.
We are not concerning with metric learning, and we assume
that the pairwise distances are given and reliable.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 presents the method of
using spectrum transformation to make non-metrics become
metrics. Section 4 presents our main contribution, the NMLP
method. Section 5 reports on our experiments, and finally,
Section 6 concludes the paper.

2 Related Work

Let D = [D;;]nxn be an n X n distance matrix where D;; is
the distance between the instances x; and x;. Note that here
x is not necessarily a vector. Denote X as the set of all . A
distance matrix D will be called metric if there exists a met-
ric function d : X x X — R such that D;; = d(z;, ;). In
other words, D should satisfy that: a) D;; > 0, D;; = 0; b)
Dij = Dji; and ¢) Dij < D, + ij where 1 < 4,7,k < n.
Define the squared distance matrix A = [A;;]nxn Where
Ajj = Dj;. Ais called squared-Euclidean if the corre-
sponding metric function d is derived from the Euclidean
norm. Let K = —JHAH where H = I — Lee”, I is the
identity matrix and e [1,1,...,1]T. We have the fol-

lowing important theorem [Young and Householder, 1938;
Laub and Miiller, 20041

Theorem 1. D is metric if and only if K is positive semi-
definite.

Decompose K as K = VAVT where A = diag(\1, \s,

-, An) is the diagonal matrix of the eigenvalues (sorted in
descending order) and V' = [v1,vs, - - - , v,] is the orthonor-
mal matrix of corresponding eigenvectors. Since K is semi-
definite, we have A; > 0 (1 < i < n). Thus, we can define
& 2 A%vi and D;; is thus the Euclidean distance between
x; and ;. If the distance matrix D is non-metric, K is no
more positive semi-definite and A; can contain negative val-
ues. Through analyzing the spectrum of negative eigenvalues,
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Figure 2: Examples of spectrums corresponding to two different
kinds of non-metrics.

Laub and Miiller [2004] attributed to two causes: 1) the dis-
tance is intrinsically metric but corrupted by noise, and 2) the
distance is intrinsically non-metric. If the negative eigenval-
ues are close to zero, the non-metric is probably caused by the
first reason and the second otherwise. Figure 2 shows some
examples, where the two subfigures present the spectrums
of the distance matrices of the data Proteins and Cat-Cortex
(see Section 4 for details of these data), respectively. From
Figure 2 we can see that the non-metric of Proteins is likely
caused by noise while that of Cat-Cortex is likely caused by
intrinsic non-metric. Laub and Miiller [2004] argued that
the negative eigenvalues of the first kind of non-metric is
harmful while those of the second kind may contain useful
information. Actually, non-metrics have been found useful
in many applications [Jacobs et al., 2000; Wu et al., 2005;
Tan et al., 2006; 2009].

Semi-supervised learning attempts to exploit unlabeled
data to improve the performance of learning with limited
amount of labeled training data. Many effective methods have
been developed, among which graph-based methods have at-
tracted much attention. Such methods construct a graph by
considering the pairwise relation between the instances, and
then try to propagate the label information over the graph.
Label propagation is the key to these methods. Many la-
bel propagation methods have been developed, such as the
harmonic function method [Zhu et al., 2003], the local and
global consistency method [Zhou et al., 2004], etc. Fujino
et al. [2007] proposed a semi-supervised method for multi-
component data based on a hybrid generative and discrim-
inative approach. Zhou and Burges [2007] extended label
propagation to multi-view data by generalizing normalized
cut from a single view to multiple views, which forms a mix-
ture of Markov chains defined on different views.

3 Spectrum Transformation

Different strategies can be used to construct a graph from a
distance matrix D. The graph to be constructed can be repre-
sented by an n x n matrix W, where w;; is the edge weight re-
flecting the similarity between x; and ;. If D is non-metric,
as mentioned before, directly applying existing label prop-
agation methods to such graphs may lead to inconsistency.
One possible approach to avoid the problem is to convert the
non-metric distance matrix to a metric one. There are several
ways to achieve this goal, which mainly fall into the category
of spectrum transformation.

From Theorem 1 we know that to make D metric is equiva-
lent to make K positive semi-definite, or, to make K’s eigen-



values non-negative. Spectrum transformation applies a map-
ping function A = f(X) on A to make it non-negative. The
induced matrix K = VAVT is thus a positive semi-definite

matrix. Here we list four widely used spectrum transforma-
tion methods [Wu et al., 2005] below:

1. Denoise: f(\) = max(0,\) [Graepel et al., 1999;
Pekalska er al., 2001]. All negative eigenvalues are
treated as noise and replaced by zeros.

Flip: f(X\) = |)A| [Graepel er al., 1999]. All negative
eigenvalues are flipped on their signs.

Diffusion: f(\) = exp(8\) with 3 > 0 [Kondor and
Lafferty, 2002]. It is derived from the diffusion kernel
with the purpose to consider data distribution when com-
puting pairwise similarity.

Shift: f(A\) = A+ n, where 7 is a constant [Roth ef
al., 2003]. All eigenvalues are added by a constant to
make them non-negative. It has been used in clustering
and guarantees distortionless embedding of non-metric
pairwise data with regard to cluster assignment [Roth
et al., 2003]. It can be proved that Shift is equivalent
to adding a constant c to every off-diagonal elements in
A ie, A= A+cleeT —1I). If n = —\, then ¢ is
the minimum constant to make D satisfy the triangular
inequality [Roth er al., 2003]. Experiments in [Wu er
al., 2005] show that Shift outperforms other methods for
classification.

After spectrum transformation, K is positive semi-definite
and the corresponding D is metric. Then, existing label prop-
agation methods could be applied to D.

However, although these four spectrum transformation
methods can convert non-metric distances into metric ones,
there are other problems preventing a successful non-metric
label propagation. The Denoise method assumes that the
non-metric is caused by noise, which enables it to filter out
those noise when the assumption holds; but when non-metric
is caused by intrinsically non-metric property, simply delet-
ing those negative eigenvalues will miss useful information.
For Flip, Diffusion and Shift, the semantic similarity may
be changed. Take Shift for example. Assume that origi-
nally D;; > Dg. The transformed distance satisfies that

D;;j+Dst
Dij = D = (Dij = Dat) 7 imes < Dij = D
ij i

for any ¢ > 0. Actually, the scheme of Shift to make the
triangular inequality hold is to reduce the difference between
the large and small distances. Such a change may not be what
we want since samples belonging to different classes may be-
come closer under the new distance.

4 The NMLP Method

In contrast to spectrum transformation methods, here we take
a more straightforward solution which does not change the
structure of the spectrum. First, we determine whether the
non-metric is caused by noise. A simple method is to com-
pare the ratio of the absolute value of the smallest eigenvalue
and the largest one, i.e., |\,/A1], with a threshold, 6. If
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NMLP(D, yi, 0, o)

Input:
D: n x n distance matrix
yi: n; X 1 label vector
@ : threshold
« : combination parameter
Process:

1 Construct A where A;; = ij and K = —%HAH.

2 Decompose K = VAVT and get A1, -, An.

3 i/ <0

4 Denoise the spectrum as A = max(A,0) and X =
A2VT. Based on X , construct W and normalize
W=A:WA™:

5 else

6 Represent A as A = AT — A~ and XT =
(AH)2VT, X~ = (A")2 V7. Construct W and
W~ based on X+ and X ~, respectively. Normal-
ize WT and W~ and combine them to get W =
aWt +(1—a)W™.

7 endif

8 Compute the normalized Laplacian matrix as L =

I — W and the labels of unlabeled examples are pre-
dicted as g, = —L;}Lulyl.
Output:
Y., the labels on unlabeled data

Figure 3: The NMLP method

[An/A1] < 6, we perform Denoise. If [\, /A\1] > 0, apply-
ing Denoise would not be a good choice, and we will execute
another routine.

For any non-metric distance matrix, we have:

Theorem 2. Any squared non-metric distance matrix A can
be decomposed into two squared metric distance matrix A"
and A~ where A = AT — A~

Proof. The proof is constructive. First we define AT
max(A,0) and A~ £ max(—A,0). From those we can in-
duce two feature spaces for the instance as x;” = (A*)%vi
and x;

(A~)zwv;. Thus construct AT and A~ as the
squared metric distance matrix for £+ and =™, i.e., A;;- =

lzf — xf||* and A, £ |lz; — 27 |*>. Now we prove
A=AT—A Define Kt 2 VATV Tand K~ 2 VA VT,
therefore, K+ = —%HA*H and K~ = —%HA’H. Since
A = AT — A, wehave K = K+ — K~ and finally
A=At - A", O

Based on Theorem 2 we can reconstruct two different
kinds of features, *™ and =, corresponding to the positive
and negative eigenvalues, respectively. From experiments of
[Laub and Miiller, 2004; Laub et al., 2007] it can be seen that
these two kinds of features reflect different views of the data.
However, how/why the two features represent different sim-
ilarities remains an open problem [Laub and Miiller, 2004;
Laub ef al., 2007], and so we use both and treat them sepa-
rately in order not to miss important information.

From T and &~ we can construct two graphs G+
(V,ET,WT) and G = (V,E, W) respectively, where
V is the set of vertices, £* is the set of edges and W*
[wF]nxn i the weight matrix, * € {+, —}. The degree of a

*
j



Table 1: Databases used in experiments

Database Distance description

Proteins Evolutionary distances of 226 protein sequences in 4 classes of globins

Cat-Cortex Connection strengths between 65 regions of the cat’s celebral cortex with 4 functional classes

Kimia Symmetric modified Hausdorff distances between 72 binary shape images of 6 classes [Pekalska er al., 2001]
UNIPEN Dynamic time-warping distance of 250 handwritten lower case characters of 5 classes [Bahlmann e al., 2002]

USPS Tangent-distance of 1000 USPS handwritten digits in 2 classes [Keysers et al., 2004]

music-EMD  Earth mover’s distance of music incipits corresponding to 2 identical sets of 2 classes [Typke et al., 2003]

Music-PTD  Proportional transportation distance of music incipits corresponding to 2 identical sets of 2 classes [Typke et al., 2003]

vertex u is 6" (u) = > .\, w*(u,v) and the volume of V
is voI'V = 7 ., 6"(u). The transition probabilities are
p*(u,v) = w*(u,v)/d*(u) and the stationary probabilities
7 (u) = §*(u)/vol*V. Define

) = adt (u)/vol TV
T s () Vol TV + (1 — a)d—(w)/vol V
_ (1 —a)d(u)/vol”V
v (u) = ¥ — -
adt(u)/vol™V + (1 — a)d— (u)/vol™V
where 0 < o < 1 is the parameter controlling the combina-

tion. From the Markov mixture model, the transition proba-
bility of the combination of two graphs is

v (w)p (u, )+~ (u)p~ (u, v)
aw™ (u,v) /vol " V4+(1—a)w™ (u,v) /vol "V (3)
adt (u)/vol T V+(1—a)d— (u)/vol =V

ey

@)

p(u, U) =

and the stationary probability is
m(u) = adt (u)/vol TV + (1 — a)§~ (u)/vol V.  (4)
Therefore, we get the weight of the joint graph as
wt (u,v)
) + 1 _
vol Ty (1=

w(u,v) = plu, 0)3(u) = v lwo)

vol™V

&)

Assume that the first n; examples are with class labels
y = (y1,Y2, - ,Yn,) and the last n, examples are unla-
beled. Given the weight matrix W, the normalized weight
matrix W = A"z WA~ 2 where A = diag(d1, 02, ,0y)
is a diagonal matrix with diagonal elements §; = i Wij.
The optimal class assignment ¢ is found by minimizing the
following energy function on the joint graph:

n%in ZZ]‘:I Wij (9 — ;) = 9" Ly
S.t. Y=y

where L = I — W is the normalized Laplacian matrix and
vy, stands for the first n; elements of y. The optimal class
labels assigned to the unlabeled examples, denoted as y,,, has
the closed-form y,, = —L;} L.;y; where the indices u and
I stand for the parts of the Lapacian matrix that are related

to the labeled and the unlabeled examples, respectively. The
algorithm is summarized in Figure 3.

(6)

S Experiments

The databases and non-metric distances used in our experi-
ments are listed in Table 1. For UNIPEN, since it contains 5
classes, we merge class 1 and 2 into one class and the oth-
ers into another class. Similarly, for Kimia, we reassign the

data belonging to class 1 to 3 as the first class and other data
as the second class. Each database has several data sets, say,
four for Proteins, Cat-Cortex and USPS and two for the other
databases. In total, we run experiments on 20 data sets.

Since previously there is no non-metric label propagation
methods, here we evaluate the performances of Denoise, Flip,
Diffusion, Shift and NMLP. In Diffusion, 3 is set to 0.1; in
Shift, n is set to —\,, which is the minimum 7 to make
D metric; in NMLP, the threshold 6 is set to 1% and « is
set to (ZADO |Ail) / (3= [A]). Such a setting is based on
the fact that the eigenvalue reflects the variance of the corre-
sponding feature. How to get the optimal value for « is an
open problem and will be studied in future. In addition, we
also evaluate two degenerated versions of NMLP. The first
uses only the positive eigenvalues, denoted as Positive; the
second uses only the negative eigenvalues, denoted as Neg-
ative. Actually, Positive is equivalent to Denoise as well as
NMLP when o = 1, while Negative is equivalent to NMLP
when a = 0. Directly executing label propagation with
the original non-metric distance is also evaluated, denoted as
Direct. In the experiments the graph edges are defined by
wi; = exp(%) where § = e~?d and d is the average
pairwise distance among the data.

On each data set, we randomly select 5% and 10% sam-
ples to be used as labeled data and the remaining samples
as unlabeled data. The results are shown in Tables 2 and 3.
Note that NMLP judges in its first step that the non-metric of
Proteins is caused by noise, while other data sets are intrin-
sically non-metric. The results show that the performance of
NMLP on data sets with intrinsic non-metric is almost always
the best, and its performance on data sets where the non-
metric is caused by noise, i.e., Proteins, is also good. The
performance of Positive is better than all other methods ex-
cept NMLP; this suggests that the crucial information of non-
metric chiefly lies in positive eigenvectors, as supported by
the fact that the performances of Negative are quite poor. The
inferiority of Direct compared with NMLP demonstrates the
infeasibility of applying label propagation with original non-
metric distance. The performances of the spectrum transfor-
mation methods are unstable and worse than NMLP on most
data sets; this phenomenon is consistent with the analysis pre-
sented in Section 3.

We also study the influence of the setting of o on the per-
formance of NMLP. We evaluate the performance of NMLP
with a varying from 0.3 to 1 with 0.05 as interval. We use the
first data set of each database and the lower labeled data rate
(5%) setting. Other settings are as same as that used before.
The results are shown in Figure 4. We can see that in Pro-
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Table 2: Error rates (mean=std.) when 5% data are labeled. The best performance on each data set is bolded, and its comparable
performances are underlined (statistical significance examined via paired ¢-tests at 95% significance level).

Database Flip Diffusion Shift Positive Negative Direct NMLP

Proteins-1 0.039£0.004  0.403£0.093  0.0354+0.005  0.035+0.005 0.4294+0.083  0.035+£0.005 0.035£0.005
Proteins-2 0.155+£0.078  0.349£0.032  0.155+0.078  0.1554+0.080  0.375+0.084  0.151+£0.077  0.155+0.080
Proteins-3 0.015£0.020  0.015£0.004  0.0144+0.018 0.0154+0.020 0.318+0.144  0.014+0.018 0.015+0.020
Proteins-4 0.069£0.021  0.019£0.000 0.072+0.022  0.069+0.021 0.365+0.155 0.071£0.021  0.069+0.021
Cat-Cortex-1 0.097£0.078  0.198£0.201  0.201+£0.121  0.079+0.109  0.295+0.127 0.361£0.200  0.065£0.094
Cat-Cortex-2 0.170£0.127  0.180£0.209  0.0924+0.062  0.104+0.089  0.419+0.248  0.143+0.089  0.078+0.063
Cat-Cortex-3 0.211£0.188  0.115£0.221  0.1124+0.045 0.102+0.111  0.389+0.189  0.152+0.111  0.092+£0.109
Cat-Cortex-4 0.233£0.212  0.220£0.133  0.2124+0.053  0.2284+0.149  0.405+0.185 0.394+0.173  0.185+0.109
Kimia-1 0.304£0.139  0.433£0.116  0.347+£0.189  0.276+0.127 0.494+0.064 0.338+0.175  0.276£0.127
Kimia-2 0.268+£0.154  0.464+0.101 0.2764+0.143  0.237+0.166 0.461+0.072 0.259+0.176  0.237+0.166
UNIPEN-1 0.382+£0.063  0.231£0.094 0.2314+0.085 0.2304+0.082  0.466+0.080 0.232+0.090 0.228+0.081
UNIPEN-2 0.326£0.087 0.247£0.068  0.2094+0.094  0.200+0.096 0.444+0.065 0.210£0.049  0.200£0.095
USPS-1 0.280£0.084  0.422+0.006  0.2584+0.069  0.2514+0.076  0.480+0.040 0.265+0.091  0.250+£0.076
USPS-2 0.289+0.083  0.515£0.041  0.2954+0.091  0.275+0.083 0.489+0.040 0.280+£0.097  0.275+0.083
USPS-3 0.253£0.079  0.363£0.115  0.2064+0.091  0.201+0.076  0.455+0.091 0.217+£0.067  0.200£0.077
USPS-4 0.253£0.057  0.385+£0.099  0.2524+0.075 0.2284+0.062 0.456+0.067 0.264+0.130  0.227+0.061
music-EMD-1 | 0.465£0.082 0.491£0.049  0.486+0.058  0.463+0.064 0.480+0.077 0.501£0.059  0.463+0.059
music-EMD-2 | 0.488+0.055 0.478+£0.041 0.4914+0.077 0.4714+0.065 0.4784+0.111 0.485+0.079  0.467+0.064
music-PTD-1 | 0.463£0.060 0.505£0.055 0.4954+0.071 0.4654+0.060 0.501+0.082 0.467+£0.085  0.455+0.059
music-PTD-2 | 0.475£0.049 0.489£0.033  0.473+0.053 0.467+0.041 0.471+0.031 0.478+0.045 0.467+0.041

Table 3: Error rates (mean+std.) when 10% data are labeled. The best performance on each data set is bolded, and its
comparable performances are underlined (statistical significance examined via paired ¢-tests at 95% significance level).

Database Flip Diffusion Shift Positive Negative Direct NMLP

Proteins-1 0.034+0.007  0.3364+0.066  0.032+0.008 0.032+0.008 0.438+0.087  0.032+£0.008 0.032+0.008
Proteins-2 0.109£0.065 0.345+£0.035 0.1124+0.075  0.107+0.066 0.386+0.047  0.107+£0.066 0.107+£0.066
Proteins-3 0.004+0.012  0.0204+0.011  0.003+0.011  0.004+0.012  0.282+0.111  0.003+0.011  0.004+0.012
Proteins-4 0.067£0.032  0.019£0.002 0.0674+0.032  0.067+0.032  0.474+0.206 0.067+0.032  0.067+0.032
Cat-Cortex- 1 0.067£0.067 0.046£0.016  0.1284+0.069  0.022+0.012 0.226+0.058 0.147+0.082  0.024+0.017
Cat-Cortex-2 0.162+0.142  0.14940.158  0.10640.080 0.1314+0.133  0.468+0.276  0.125+0.110  0.092+0.070
Cat-Cortex-3 0.074£0.055 0.044£0.012  0.113+0.074  0.067+0.073  0.339+0.113  0.152+0.089  0.039+0.016
Cat-Cortex-4 0.067£0.051  0.106£0.104  0.1624+0.063  0.0804+0.064 0.333+0.094 0.308+0.115  0.060+0.051
Kimia-1 0.094£0.034  0.437£0.113  0.0994+0.032  0.057+0.037 0.392+0.045 0.085+0.036  0.057+0.037
Kimia-2 0.099£0.039  0.455+£0.091 0.1514+0.068 0.090+0.040 0.381+0.037  0.096£0.044  0.090£0.040
UNIPEN-1 0.280+0.117  0.15240.092  0.2014+0.078  0.1284+0.100 0.446+£0.086  0.173+0.078  0.125+0.098
UNIPEN-2 0.244£0.067 0.195+£0.052  0.16440.060  0.136+0.082  0.4224+0.052  0.164£0.060  0.135+0.080
USPS-1 0.158+0.032  0.376+£0.088 0.1624+0.054 0.156+0.038 0.447+0.041  0.155+0.043  0.155+0.038
USPS-2 0.183+£0.063 0.462+0.079 0.2054+0.071  0.1854+0.067 0.469+0.039  0.185+0.067  0.184+0.067
USPS-3 0.147£0.068  0.328+£0.022  0.1564+0.059  0.142+0.077 0.389+0.046  0.160+0.066  0.142+0.077
USPS-4 0.168+0.059  0.36740.008 0.15640.050 0.148+0.047 0.405+£0.046  0.171£0.050  0.148+0.046
music-EMD-1 | 0.476£0.104 0.507£0.102 0.4964+0.071 0.4644+0.089 0.473+0.090 0.491+0.067  0.462+0.089
music-EMD-2 | 0.46240.060 0.503+0.039 0.482+0.058  0.431+£0.079 0.460+0.075 0.489+0.074  0.431+0.079
music-PTD-1 | 0.48940.053 0.48440.074 0.489+0.096 0.484+0.038 0.529+0.113  0.496+0.079  0.478+0.037
music-PTD-2 | 0.478£0.070  0.520£0.040 0.4824+0.040 0.4761+0.066 0.483+0.061 0.511£0.057 0.474+0.065

teins, where NMLP finds the non-metric is caused by noise,
« = 1 is the best; on other databases, where NMLP finds
the non-metric is intrinsic, & = 1 is not the best or there are
other a values which can do as well as &« = 1. This shows
that the judgement on the cause of non-metric is reasonable.
Moreover, it can be seen that the estimated « is close to the
optimal « value on most databases.

6 Conclusion

Non-metric distances are better than metric distances in many
applications since they reflect human perception better in

some cases, however, previously it is unknown how to exe-
cute label propagation on graphs constructed based on non-
metric distances. This paper presents probably the first study
on non-metric label propagation. The key challenge here
lies in the fact that the violation of triangular inequality ax-
iom makes the direct application of existing label propaga-
tion methods suffer from the problems of inconsistency and
conflict. We show that by applying spectrum transformation,
non-metric distances can be converted into metric ones, and
thus label propagation can be used. However, such methods
are inappropriate since they may change the original seman-
tic relations. We prove that any non-metric distance can be
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Figure 4: Error rates under different v values. The dashed vertical line indicates the « value estimated by NMLP.

decomposed into two metric distances, based on which we
propose the NMLP (Non-Metric Label Propagation) method
and its effectiveness is validated in experiments.

An interesting future work is to apply the NMLP method to
real tasks where non-metric distances have been found better
than metric ones. Another future work is to design other kinds
of non-metric label propagation methods.

Acknowledgements: We want to thank Yu-Yin Sun and Xin-
Pan Xiao for their comments on a preliminary draft.
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