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Abstract

This paper proposes a novel framework for image
retrieval. The retrieval is treated as searching for
an ordered cycle in an image database. The op-
timal cycle can be found by minimizing the geo-
metric manifold entropy of images. The minimiza-
tion is solved by the proposed method, fast active
tabu search. Experimental results demonstrate the
framework for image retrieval is feasible and quite
promising.

1 Introduction

Content-based image retrieval (CBIR) has been an active re-
search topic in multimedia for years. Compared to the text-
based retrieval engines, CBIR performs retrieval in a geomet-
ric space rather than an image space. Although CBIR has
achieved some success [Jing and Baluja, 2008], it is still far
from satisfactory. The major difficulty of CBIR is the insuffi-
ciency in the description of images and semantic space. Re-
cently, manifold based image representation approaches for
image retrieval have drawn lots of attentions [Yu and Tian,
2006]. Most of these methods consider the image feature
space as an embedded manifold and try to find the mapping
between the feature space and the manifold. For instance, in
[He et al., 2004] a method was proposed to find an embed-
ding of the image manifold where image retrieval was per-
formed. In [Cai et al., 2007], considered the retrieval prob-
lem as a classification problem on manifold and managed to
learn a classification function on the image manifold. How-
ever, the properties of the mapping from low-level feature
space to high-level semantic manifolds still remains unclear.
In addition, the dimensionality of the semantic space is also
unknown and hard to determine in advance. To avoid these
problems, we propose a novel framework for image retrieval
in this paper.

Geometric manifold entropy (GEOMEN) is the basis of
the proposed framework. GEOMEN describes the connec-
tion and relevance between data. Our aim is to find an or-
dered cycle by minimizing GEOMEN. The minimization can
be solved by fast active tabu search (FATS). FATS actually
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is the improved version of tabu search which is running on
the GPU-based platform. Here the word ′active′ means the
search is intelligent and works along a meaningful direction.
The proposed FATS method is quite efficient in solving the
large-scale combinatorial optimization problems.

The following highlights the major contributions of the pa-
per:

1. A new entropy function (GEOMEN) is defined to de-
scribe the connection and relevance between images.

2. The retrieval is treated as searching for an ordered cy-
cle in an image database. The proposed framework not
only works for image retrieval but also for other infor-
mation retrieval problems, as long as significant features
are extracted and employed.

3. Tabu search is a common solution to the optimization
problems. However, picking up the best candidate in
this method is very time consuming, especially for large-
scale data sets. In this study, we improve it and pro-
pose a fast and intelligent method, named fast active
tabu search. The main advantage of FATS is that it is
very efficient for the large-scale optimization problems.
Besides, FATS also can be applied to other related com-
binatorial optimization problems.

The rest of this paper is organized as follows: Section 2 dis-
cusses the definition of GEOMEN. We introduce the entropy
minimization through active tabu search in Section 3. Sec-
tion 4 presents the design of FATS on GPU. The framework
for image retrieval is described in Section 5. Experimental
results are presented in Section 6. Finally, we conclude the
paper in Section 7.

2 Geometric Manifold Entropy

The representation of geometric manifolds is the core of the
proposed method as well as the key to the success of retrieval.
In this study, we make use of the spatial position of data
points and local discrete curvature of manifolds as geomet-
ric representation of manifolds. This kind of representation is
called geometric manifold entropy, for short, GEOMEN.

In particular, given a set of unorganized data in an m-
dimensional space X = {xi|xi ∈ Rm, i = 1, 2, . . . , n},
we first define a cycle of length n as a closed path without
self-intersections. Each datum in this cycle is connected with
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two neighbors and the corresponding connection order O is
symbolized as

O = (o1, o2, . . . , on, o1),

where the entry corresponds to the index of data. Then, the
GEOMEN of the set X with the order O is represented as
the sum of two components: spatial position P (X, O) and
geometric G(X, O) as,

S(X, O) = P (X, O) + G(X, O). (1)

GEOMEN represents the smoothness and sharpness of the
cycle with the connection order O. In addition, it is also a
metric of disorder and similarity of the data in the embed-
ded manifolds. Since manifold ranking can be thought as the
problem of extracting a 1-dimensional manifold, actually a
curve, we only consider the representation of GEOMEN on
1-dimensional curves.

If the embedded manifold is a 1-dimensional curve, the
spatial component of GEOMEN is measured by the Eu-
clidean distance,

P (X, O) =
1

n

∑
(i,j)∈O

d2(xi, xj). (2)

Here d(xi, xj) = ‖xi−xj‖ represents the Euclidean distance
between xi and xj and symbol (i, j) means that points xi and
xj are connected in the cycle with the order O. At this time,
the geometric component of GEOMEN is composed of two
terms: the curvature κ of curves and a regularization term ρ.
This can be formularized as:

G(X, O) =
1

n

∑
(i,j,k)∈O

κ2(xi, xj , xk) +

1

n

∑
(i,j,k,l)∈O

ρ2(xi, xj , xk, xl). (3)

where (i, j, k) and (i, j, k, l) has the same meaning to (i, j).
In the continuous domain, the curvature of a smooth curve

is defined as the curvature of its osculation circle at each
point. In the discrete domain, we measure the curvature κ
of data at a particular point xj in the following manner:

κ(xi, xj , xk) = ‖λ(xi, xj) − λ(xj , xk)‖. (4)

In addition, since the discrete curvature is sensitive to noise,
to improve the robustness of our algorithm, we introduce in
the geometric component the regularization term:

ρ(xi, xj , xk, xl) = ‖(λ(xi, xj) − λ(xj , xk))−

(λ(xj , xk) − λ(xk, xl))‖. (5)

In Equations (4) and (5) the symbol λ(xi, xj) means

λ(xi, xj) =
xi − xj

d(xi, xj)
.

3 Entropy Minimization via Active Tabu

Search

From the definition of GEOMEN, if the data points are or-
dered enough, the entropy is supposed to be quite small. For
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(c) Optimal cycle

Figure 1: Finding the most ordered cycle through entropy
minimization. (a): the input data sampled from a circle; (b):
a random order with a higher entropy; (c): the optimal cycle
with the minimal entropy 0.384314.

instance, if a set of data distribute along a circle, as shown in
Figure 1(a), it is clear that the entropy is the smallest if and
only if the order is along the circle, as shown in Figure 1(c).
Other possible combinations, e.g. the cycle shown in Figure
1(b), incline towards the more disorder and the higher en-
tropy values. Therefore, with the purpose of finding the most
ordered cycle with the minimal entropy, we need to minimize
the GEOMEN,

O∗ = argmin
o

S(X, O). (6)

3.1 Active Tabu Search

Finding a globally optimal solution to Equation (6) is a NP
problem and completely impossible in practice as there exists
(n−1)!

2 possible combinations in a cycle with n(n≥3) points.
In this study, we approximate the global minimum of the en-
tropy through the proposed active tabu search, which is an
extension of the original tabu search [Glover, 1986] with the
active learning technology [Ertekin et al., 2007]. This method
makes the search more intelligent and efficient by a narrow-
ing search space. In our method, the neighborhood map and
the tabu list H need to be designed.

The neighborhood map means the transformation from a
cycle to another. It involves three aspects: 1) swapping a pair
of points in the cycle; 2) shifting a point to other positions in
the cycle; 3) inversing a specific fragment in the cycle. For
instance, given a cycle containing n points with the order

O = {o1, o2, o3, . . . , on, o1},

we can obtain a new cycle with the order

O = {o4, o2, o3, o1, o5, . . . , on, o4},

by swapping o1 and o4, the order

O = {o2, o3, o4, o1, o5, . . . , on, o2},

by shifting o1 to the position between o4 and o5, or the order

O = {o4, o3, o2, o1, o5, . . . , on, o4},

by inversing the fragment from o1 to o4.
The tabu list H is a short-term memory containing the rep-

resentation of transformations. It is used to prevent previous
transformations from being repeated. That is, the transforma-
tion in H is not permitted for a while in succeeding iterations.
The short time is described by the variable tabu-time. When a
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new transformation is added to H , its tabu-time is initialized
to be zero.

All elements, from the neighborhood set but not in the tabu
list H , constitute a candidate subset CSS. By searching in
the CSS, we can get the best candidate Obest with the min-
imal entropy as the optimal transformation in this iteration.
Before complete one-time iteration, we need to increase the
tabu-time of each transformation and remove those transfor-
mations whose tabu-time has reached the limitation from H .
After that, the corresponding transformation of Obest needs
to be added to H . For example, if Obest is obtained by swap-
ping oi and oj , we add swapping (oi, oj) to H .

However, picking up Obest is very time-consuming, espe-
cially for large-scale data sets, since it could involve a full
search in CSS. We employ the active learning technology
[Ertekin et al., 2007], which aims to reduce the labor cost of
learning and select the most informative sample. As such, we
do not need to search in the entire set CSS, but a randomly
chosen subset L with constant size. In this case, �L � �CSS,
where notion ′�′ stands for the size. We assume that two con-
ditions must be held: 1) Obest chosen from L is among the
top p% best in CSS with the probability η%; 2) the proba-
bility that at least one of the candidates in L is among the top
p% best is 1− (1− p%)�L. Therefore �L can be computed in
terms of p% and η%:

�L =

⌈
log(1 − η%)

log(1 − p%)

⌉
, (7)

where �L is obviously independent of �CSS. In addition, an
operation called aberrance is employed in order to make our
method avoid falling into local optimum. That is, when the
entropy is locally convergent, we randomly pick up a subset
of CSS to disorder the current order Ocur directly. The time
of this operation is restricted by the variable aberrance-time.

Given a set of data X , the active tabu search can be briefly
described as follows:

Step 1 Initialize the tabu-time and the aberrance-time with
constant numbers as their limitations, and the cycle of
input data with a random order O, and the tabu list H
with an empty set. Set Ocur = O, the current entropy
Scur = S(X, O), the optimal order Oopt = Ocur, and
the optimal entropy Sopt = Scur.

Step 2 Construct the neighborhood of Ocur and determine
CSS(Ocur). Then randomly pick up candidates from
CSS(Ocur) to construct L according to H .

Step 3 Refine the candidates in L and find Obest. If Scur >
S(X, Obest), update variables Ocur = Obest,Scur =
S(X, Obest).

Step 4 Increase the tabu-time of each element in the tabu list
H , and remove the elements whose tabu-time is greater
than the limitation.

Step 5 If the entropy is convergent, go to Step 6; otherwise,
go to Step 2. In implementation, we assume that the
entropy is convergent when it does not change after iter-
ating 500 times.

Step 6 If Sopt > Scur, update variables Oopt = Ocur

and Sopt = Scur. If the aberrance-time is equal to
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Figure 2: Entropy variation during iterations. A fluctuation
means the entropy has met a convergence. There are totally
4 times of fluctuation since we assigned the limitation of the
aberrance-time to be 4.

zero, go to Step 7; otherwise, decrease the aberrance-
time and perform the aberrance operation. Then set
Scur = S(X, Ocur), go to Step 2.

Step 7 Return Oopt and Sopt.

3.2 Examples

Figure 1 illustrates the procedure of finding the minimal en-
tropy on a synthetic toy of 32 input data, which gives an in-
tuition about how the active tabu search works. As the ex-
pectation in Equation (7) is to have low selection rate p% and
high probability η%, we take p = 0.9 and η = 99, caus-
ing �L = 512. Then we take 4 to be the limitation of the
tabu-time and the aberrance-time. Active tabu search finds
the most ordered cycle as shown in Figure 1(c). Figure 2
shows the process of entropy minimization. A fluctuation in
the figure means that an aberrance operation was performed.
The entropy finally converged at 0.384314 after iterating ap-
proximate 180 times.

4 Fast Active Tabu Search

Since the calculation of the entropy of each element in the set
L is independent, parallel computing is a good way to speed
up the calculation. Fast active tabu search (FATS) is a parallel
version of the active tabu search, which is implemented on the
graphic processing unit (GPU) via the CUDA technology.

4.1 Implementation

As shown in Figure 3, the CUDA programming model has
three layers, including grid, block, and thread. The sin-
gle instruction set executed by each thread is called kernel.
There is a small on-chip storage for fast data access, named
shared memory. For more details, please refer to the docu-
ment [NVIDIA, 2008].

FATS is implemented as follows. First, all transformations
are represented as a unified format (oi, oj). Then, transfor-
mations involving swapping, shifting and inversing are gen-
erated for each datum of a cycle respectively. Therefore, there
are totally three collections of transformations for the cycle.
That is, L is composed of three collections. Finally, the de-
sign of FATS in CUDA is shown in Figures 4 and 5. One
kernel is launched for a collection in each iteration. Inside a
kernel, the number of the block depends on the scale of the
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Figure 3: The programming model of CUDA.

input data (�D). Each block processes one specific transfor-
mation for a datum of the cycle. If the manifold is embedded
to an m-dimensional space, up to m threads will be created
inside a block. Each thread only needs to deal with one spe-
cific dimensionality of vectors according to its ID. To calcu-
late the entropy corresponding to the transformation (oi, oj),
only the data fragments

(. . . , oi−3, oi−2, oi−1,oi, oi+1, oi+2, oi+3, . . .)

and

(. . . , oj−3, oj−2, oj−1,oj, oj+1, oj+2, oj+3, . . .)

need to be loaded to the shared memory of the i-th block of
the specific kernel. The entropy of the order can be calculated
through the variation of GEOMEN. After calculating the en-
tropy for each transformation in a kernel, the minimum is ex-
tracted as the result and transmitted to CPU for succeeding
iterations.

Given a data set X with a random order O, the procedure
of FATS is described as follows:

Step 1 Set Oopt = O and Sopt = S(X, O). Copy the input
data to GPU.

Step 2 Copy Oopt and Sopt to GPU. Then, generate swap-
ping transformations (i.e. swapping collection) for each
datum of the cycle according to the tabu list H . Trans-
mit the swapping collection to the swapping kernel. Af-
ter calculating the entropy of each transformation on
GPU, transmit the minimal entropy Smin and its cor-
responding order Omin back to CPU. If Sopt > Smin,
set Sopt = Smin and Oopt = Omin.

Step 3 Execute the same operations to shifting and inversing
respectively.

Step 4 Update the tabu list H .

Step 5 If the termination condition, which is the same as ac-
tive tabu search, is satisfied, go to Step 6; otherwise go
to Step 2.

Step 6 Return Oopt and Sopt.

Figure 4: The block-level design of FATS. Each kind of ker-
nel is implemented as a separate call to GPU. There are to-
tally �D blocks of each kernel. The entropy Sopt is updated
alternatively in the loop.

Figure 5: The thread-level design of FATS. For example, in
the operation of addition, each thread only calculates one spe-
cific dimensionality of vectors.

4.2 Performance Analysis

In this work, we employ the NVIDIA GeForce 9800GT GPU,
which is an instance of the CUDA architecture. FATS is
tested on multiple data sets composed of 128-dimensional
vectors. Table 1 shows the performance of FATS with respect
to data scales. The running time is obtained after 500 itera-
tions. From the table, we conclude that the performance of
FATS is sensitive to the size of L (�L), but robust to the data
scale that is always the bottleneck of image retrieval. Thus,
FATS is very suitable for image retrieval. Figure 6 shows the
speedup ability of FATS. When the data scale increases, FATS
even can reache higher speedup over active tabu search. This
speedup stems from the efficiency of GPU computing cells
and much exploitation of parallelism.

5 Application to Image Retrieval

This section presents the application of FATS to image re-
trieval. In our framework of image retrieval, we view an im-
age as a point in the feature space, and compute the relevance
of images from the corresponding optimal cycle through en-
tropy minimization. For retrieval, we need to insert a query
image into the obtained cycle. The inserting position means
that inserting has the least effect on the GEOMEN value. That
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Table 1: Running time(secs) of FATS
�

�
�

�
�

�
�

Scale
�L

210 × 3 211 × 3 212 × 3 213 × 3 214 × 3

256 2.109 3.813 7.219 14.063 26.859
512 2.360 3.984 7.203 13.734 26.547
1024 2.875 4.500 7.687 13.968 26.343
2048 3.738 5.563 8.781 15.016 27.125
4096 4.859 6.975 10.589 17.156 29.219
8192 5.880 8.371 12.495 21.215 33.156

1,024x3 2,048x3 4,096x3 8,192x3 16,384x3
56x

58x

60x

62x

64x

66x

68x

#L

Sp
ee

du
p

Data Scale: 256
Data Scale: 512
Data Scale: 1024

Figure 6: Speedup ability of FATS.

is, after inserting a new image at this position, the variation
of the entropy (ΔS) is less than inserting at other positions.
Considering that the inserting position probably locates at the
boundary between image classes, we will alternately compute
the ranking score on its local neighborhood. Since manifolds
are locally flat, Euclidean distance is good enough to measure
the ranking score.

Given an image database and a query image Q, the pro-
posed framework for image retrieval is briefly described as
follows:

Step 1 Construct Equation (1) in the input image space.

Step 2 Solve the GEOMEN minimization problem using
FATS, and find the optimal cycle with the order Oopt.

Step 3 Insert Q into Oopt. The measure of determining the
inserting position is that ΔS must be the least after in-
serting.

Step 4 Rank the nearest neighbors of Q along the cycle ac-
cording to Euclidean distance between images. The less
the distance, the more the relevance.

Step 5 Return the relevant images.

Figure 7 demonstrates the procedure of inserting and rank-
ing for image retrieval. The query image Q was inserted into
the position between images 1 and 2 where ΔS was mini-
mal after inserting. Then the relevant images are chosen from
the neighbors of Q along the cycle and ranked as 1, 2, 3, . . .
according to Euclidean distance until enough images were re-
turned.

6 Experimental Results

We performed several experiments to evaluate the effective-
ness of FATS. Two data sets employed are respectively the
Corel image data set and the 101 Object Categories data

Figure 7: Illustration of the optimal cycle of images.

Table 2: Impact of �L on the performance of FATS

�L p% η% Time(secs) Entropy

212 × 3 0.025 95.37 198 2,291.32

213 × 3 0.015 97.50 339 2,043.45

214 × 3 0.010 99.25 514 1,878.41

215 × 3 0.009 99.99 895 1,766.69

216 × 3 0.005 99.99 1,543 1,704.79

set1. 1,024 images of 32 semantic categories (32 images for
each) from the Corel data set were selected to build the first
database. 6,272 images from Corel and another 1,920 im-
ages from 101 Object Categories together build the second
database (8,192 images in total). The second database was
much more heterogeneous than the first one.

We used the combination of a 64-dimensional color his-
togram and a 64-dimensional color texture moment (CTM)
[Yu et al., 2002] to represent an image. The color histogram
is calculated using 4 × 4 × 4 bins in HSI color space. CTM
gives a rough and robust texture characteristics, which utilizes
Local Fourier Transform to extract features in each channel of
the (SV cosH, SV sin H, V ) color space.

Table 2 shows the impact of �L on the performance of
FATS, which was on the second image database. Obviously,
the larger the �L, the less the entropy, but the more the time.
Thus, to balance the time and entropy, we fix �L to be 215×3
in our experiments. The reason that �L is multiple of the
power of 2 is that that kind of number leads to high perfor-
mance and simple implementation on GPU.

In order to exhibit the effectiveness of FATS, we compared
the following two methods, ridge regression (RidegReg) [Cai
et al., 2007] and support vector machine (SVM) [Zhang et al.,
2001]. The precision-scope and precision-recall curves are
used to evaluate the performance. In our context, the scope
denotes the number of top returned images, and the preci-
sion is the ratio of the number of top relevant images to the
scope. The recall represents the ratio of the number of re-
trieved relevant images to the total number of relevant images
in an image database.

Figure 8 shows the average precision-scope and precision-
recall curves of FATS on the two databases. The performance
of FATS is not very sensitive to the size of image database
although a little decrease of precision appears for the second

1http://vision.cs.princeton.edu/resources links.html�datasets
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Figure 8: Performance of FATS on two different image
databases.

image database. Figure 9 compares the performance of three
methods on the first database. Obviously, our method has a
better performance when the scope or the recall rate is less,
and the performance is still comparable to the RidgeReg and
remains superior to the SVM when the recall rate or scope
becomes higher.

7 Conclusions

A novel framework is proposed for image retrieval in this pa-
per. The retrieval is treated as searching for an ordered cycle
in an image database. The optimal cycle can be found by
minimizing GEOMEN through FATS. The use of GPU in the
minimization yields a very considerable speedup. Our frame-
work has an clear advantage over pervious manifold based
methods: our method can directly rank and return relevant
images and does not need to learn a mapping from the feature
space to the unclear semantic manifold space, further avoid-
ing the unnecessary exploration on the dimensionality of the
semantic space.
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