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Abstract

Event detection is a critical task in sensor networks
for a variety of real-world applications. Many real-
world events often exhibit complex spatio-temporal
patterns whereby they manifest themselves via ob-
servations over time and space proximities. These
spatio-temporal events cannot be handled well by
many of the previous approaches. In this paper,
we propose a new Spatio-Temporal Event Detec-
tion (STED) algorithm in sensor networks based on
a dynamic conditional random field (DCRF) model.
Our STED method handles the uncertainty of sen-
sor data explicitly and permits neighborhood in-
teractions in both observations and event labels.
Experiments on both real data and synthetic data
demonstrate that our STED method can provide ac-
curate event detection in near real time even for
large-scale sensor networks.

1 Introduction

The advent of wireless sensor networks has fostered growing
interest in many real-world applications, such as coal mine
surveillance [Xue er al., 2006], disaster monitoring [Yao and
Gehrke, 2003], and object tracking [Hellerstein et al., 2003].
In such monitoring applications, automatic event detection is
an essential task, which aims at identifying emergent physi-
cal phenomena and make real-time decisions about physical
environments. When a particular event under our monitor or
an abnormal event is detected, the monitoring system sounds
an alarm for immediate attention, so that prompt actions can
be taken to minimize adverse impact of abnormal events.
Previous approaches to event detection can be classified
into three broad categories: (1) threshold-based approaches
[Abadi et al., 2005], in which an event is regarded to oc-
cur when sensor readings exceed some predefined thresholds;
(2) pattern-based approaches [Xue et al., 2006], in which
an event is represented as spatio-temporal patterns and event
detection is performed using pattern matching techniques;
and (3) learning-based approaches [Wang and Yu, 2005;
Wang et al., 2008], which model spatio-temporal dependen-
cies of sensor data and make probabilistic inference about
events. Among these techniques, learning-based approaches
are very promising because spatio-temporal correlations can
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be explicitly modeled to deal with the inherent uncertainty
of sensor data. Therefore, the false alarm rates can be ef-
fectively reduced for event detection. In this category, dy-
namic Bayesian networks (DBNs) and Markov random fields
(MRFs) have been widely employed to formulate spatial and
temporal constraints in the estimation process.

Despite much progress in this area, most of the existing
works on event detection have been restricted to inference
in the spatial or the temporal dimensions separately, while
the challenge of integrating spatial and temporal constraints
has not been addressed. In real-world situations, since sensor
nodes are deployed in a physical space (spatial relationship)
and sensor readings are collected over a period of time (tem-
poral relationship), the changes in sensor readings caused by
an event usually exhibit strong spatio-temporal correlations.
Such spatial and temporal relationships are very critical to
perform accurate event detection. Figure 1 gives an exam-
ple of spatio-temporal events. At time ¢, an event is identi-
fied to occur at two adjacent sensor nodes in the field. As
time moves on, the event spreads to affect the neighboring
sensor nodes at time ¢ + 1. This observation indicates that,
a same event is likely to happen at adjacent sensor nodes at
different time slices, and one sensor node is likely to be influ-
enced by the same event in consecutive time slices. Because
of the uncertainty in sensor data, such co-occurrences often
exhibit long-term dependencies at multiple spatial and tempo-
ral scales. For example, an event may occur causing a group
of geographically close-by (but not immediately next) sensor
nodes to be affected for an interval of time slices. There-
fore, detecting such complex events must take a global view
of both space and time in an integrated way.

In this paper, we propose a new Spatio-Temporal Event De-
tection (STED) algorithm using a dynamic conditional ran-
dom field (DCRF) model. The DCRF model extends CRFs
by incorporating temporal constraints among contiguous spa-
tial fields [Sutton et al., 2004]. Our STED method handles
the uncertainty of sensor data explicitly and permits neigh-
borhood interactions in both observations and event labels.
Compared to generative models, including DBNs and MRFs,
DCREFs relax the strong independence assumption among ob-
servations and capture spatio-temporal dependencies among
observations and events in a unified probabilistic framework.
In order to achieve near real-time event detection, we also de-
rive an approximate inference method to efficiently estimate
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Figure 1: Illustration of Spatio-Temporal Events

the occurrences of events from the history of observed data.
We evaluate the performance of our STED method on both
real-world data and synthetic data, and show that our STED
method can provide accurate event detection in near real time
even for large-scale sensor networks.

2 Related Work

In recent years, research on event detection has received much
interest in the sensor network area. In general, we classify ex-
isting solutions to event detection into three main categories:
threshold-based approaches [Abadi et al., 20051, pattern-
based approaches [Solis and Obraczka, 2005; Xue et al.,
2006; Li et al., 2007] and learning-based approaches [Wang
and Yu, 2005; Wang er al., 2008].

For threshold-based approaches, an event is considered
to occur when sensor readings exceed a pre-defined thresh-
old value. For example, REED [Abadi et al., 2005] ex-
tends the capability of TinyDB for supporting join operations
to achieve event detection. Threshold-based approaches are
simple to implement. However, threshold values alone are in-
accurate and incapable of capturing spatio-temporal charac-
teristics of events, which would incur high false alarm rates
for monitoring applications of sensor networks.

Pattern-based approaches, on the other hand, represent
events as spatio-temporal patterns in sensor readings and per-
form event detection using efficient pattern matching tech-
niques. Existing techniques typically employ contour maps
[Xue et al., 20061, isolines [Solis and Obraczka, 2005], and
gradient maps [Li ef al., 2007] to model patterns of events.
An event is detected when a user-specified pattern matches
recent snapshots of sensor data. The major limitation of these
approaches is that they require event patterns to be precisely
predefined a priori so that exact pattern matching techniques
can be applied for event detection.

More recently, learning-based approaches have been pro-
posed to model spatio-temporal dependencies among sensor
data and apply probabilistic inference for event detection. In
[Wang et al., 2008], dynamic Bayesian networks (DBNs) are
applied to detect abnormal events in underground coal mines.
Markov random fields (MRFs) are adopted to model spatial
relationship at neighboring sensor nodes and perform infer-
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ence about events [Wang and Yu, 2005]. However, these ap-
proaches rely on stringent independence assumptions among
observation in order to ensure computational tractability. In
contrast, conditional random fields (CRFs) relax this assump-
tion by directly modeling the conditional distribution over
hidden states given the observations, which has been demon-
strated to be able to capture complex human motions from
video sequences [Sminchisescu et al., 2005].

To model complex spatio-temporal events, we would like
to design a model that satisfies the following properties: (1)
the model should be able to capture long-range dependencies
among observations at different spatial and temporal scales;
(2) the model should be probabilistic and should be learnable
from the given training data; (3) the model should be able to
make near real-time inference on event occurrences. In the
next section, we will present such a model.

3 Spatio-Temporal Event Detection

In this section, we first review preliminaries on conditional
random fields and then provide a detailed description about
our proposed approach for spatio-temporal event detection.

3.1 Preliminaries on Conditional Random Fields

Conditional random fields (CRFs) [Lafferty et al., 2001] are
undirected graphs that encode a conditional probability distri-
bution using a given set of features. Formally, a conditional
random field models the conditional probability of a state se-
quence y given the observed sequence x as:

1
p(ylx) = 7 11 2(ve %)
ceC

Above (1), y = {y:},x = {ay} fort = 1,...,T and
y is a labeling of the observed sequence x. C'is the set of
cliques in G, where G denotes the graph representation of the
CRF model. @ is a potential function defined on the cliques,
and Z(x) is the normalizing partition function. The poten-
tial functions ®(y., x.) are usually written in the form of the

factorization of a set of feature functions { f}, }:

q)(ya xc) = exXp (Z Ak fr (YC7 Xc)
k
Such a formulation is a linear-chain CRF which imposes a
first-order Markov assumption on the hidden variables. Fig-
ure 2 shows its corresponding graphical model.
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Figure 2: Linear-Chain Conditional Random Field

A linear-chain CRF can be used to encode temporal re-
lationship by defining feature functions over the edges of
neighboring y’s. Therefore, it has been widely applied for la-
belling and segmenting in natural language processing. How-
ever, linear-chain CRFs have difficulty in effectively model-
ing both spatial and temporal constraints in our problem.



3.2 Our Proposed Approach

This section details our STED (Spatio-Temporal Event De-
tection) algorithm based on a dynamic conditional random
field (DCRF) model.

Spatio-Temporal Events

We first define an event space as a collection of spatio-
temporal patterns. These patterns can be the movement of
an object, or any pattern that constitutes a finite space of en-
tities. Each entity E can entail a set of observations in sen-
sor readings, x(F, s, t), in a probabilistic manner, where ¢ is
the time slice and s is spatial coordinates of sensor nodes.
Our objective is to detect whether an event ' occurs at spe-
cific locations s at time ¢ given a collection of observations
x(E, s,t).
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Figure 3: Two Common Types of Spatio-Temporal Events

Figure 3 illustrates two common types of spatio-temporal
events, which we call diffuse events and moving events, re-
spectively. A diffuse event originates from a point source and
spread in all directions in the spatial space. A moving event
occurs at a region and moves in one direction over time. Ex-
amples of real-world spatio-temporal events includes spread-
ing fires in forests, gas leakage in underground mines, and
moving warm currents in oceans.

Our DCRF Model

To model such spatio-temporal events, we need a probabilis-
tic model to capture both the spatial relationship of sensor
nodes at each time slice and the temporal relationship be-
tween neighboring sensor nodes across different time slices.
To achieve this, we apply a dynamic conditional random field
(DCREF) [Sutton ef al., 2004] to model such spatio-temporal
correlations in an integrated way.

DCRFs extend linear-chain CRFs by incorporating tem-
poral constraints among successive spatial fields. As with
a DBN, a DCRF model can be specified by a template that
gives the graphical structure, features, and weights for two
time slices. Formally, let C' be a set of clique indices and
F = {fx(¥1,c,x,t)} be a set of feature functions and A =
{Ar} be a set of real-valued weights. The distribution p is
defined as a dynamic conditional random field if and only if:
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Above (3), y = {y1,...,yr} is a sequence of random
vectors y; = (Yi1, - --,Yim), Where y; is the state vector at
time ¢ and y;; is the value of variable j at time 4. Interested
readers please refer to [Sutton et al., 2004] for detailed spec-
ifications of DCRFs.

O Observed x O Unobserved y

Time t

Figure 4: Our Dynamic Conditional Random Field Model

Figure 4 gives an example of the graphical representation
of our DCRF model. In the figure, shaded nodes indicate ob-
served measurements x, and non-shaded nodes indicate the
hidden labelings y about events, with the values to be inferred
from observations x. In the model structure, solid lines rep-
resent spatial relationships between sensor nodes at the same
time slice, and dashed lines represent temporal constraints
between sensor readings across different time slices. Such
relationships can be encoded by defining domain-specific
feature functions for the DCRF model. For example, we
can define a feature function as f(yi ¢, Yji+1, Tit, Tj41) =
(]| wip — @141 |? < €), where (w) is an indicator func-
tion which equals 1 if the condition w holds and O otherwise.
This feature function measures the consistency between the
hidden nodes y; ; and y; ;41 at two adjacent sensor nodes s;
and s;. In other words, if an event is detected at sensor node
s; at time ¢, it is likely to spread to its neighboring node s; at
the next time if their corresponding sensor readings x; ; and
T ¢41 are similar at two consecutive time slices.

Parameter Estimation in DCRF's
The goal of parameter estimation is to determine the weights
A = {)\} of the feature functions in a DCRF given a training

data set D = {x(, y(}N  The weights are estimated dis-
criminatively by maximizing the conditional log-likelihood
of labeled training data:

L(A) = log, py™|x).
The derivative of the log-likelihood £ with respect to A is:

g—/\i = 35 Alydx0n) )
4 t
=22 D oaeex ) fr(yre.x, ).

% t Yt
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It is easy to observe that the conditional log-likelihood
function is convex with respect to the weights \g, and thus,
it can be optimized using numerical gradient algorithms. Un-
fortunately, this optimization runs an inference algorithm at
each iteration, which can be intractably inefficient in large
and dense networks. We therefore resort to maximizing the
pseudo-likelihood of the training data, which has been shown
as an effective method for fast, approximate parameter esti-
mation in CRFs [Besag, 1975]. The essential idea is to break
the model down into a collection of independent nodes by
conditioning each node on the values of its direct neighbors
(also known as the Markov Blanket of the node). The key
advantage of maximizing pseudo-likelihood rather than the
likelihood is that its gradient can be computed extremely ef-
ficiently, without running an inference algorithm.

Inference in DCRFs

Given an observation sequence x and the estimated param-
eter A, inference in DCRFs involves solving two inference
problems: the first is to compute the marginal probabilities
p(¥t,c|x,A) of the states over all the cliques y; ., and the
second is to compute the optimal labels as:

y* =arg m;}xp(y|x; A). (6)

In our problem, since we aim at estimating the states of
event occurrences for all the sensor nodes at each time slice,
the number of combinations over such a large domain is expo-
nential. This makes exact inference intractable for event de-
tection, especially in large-scale sensor networks. Therefore,
we apply loopy belief propagation (LBP), an approximate in-
ference algorithm, to solve the two inference problems.

Belief propagation aims to iteratively update a vector m =
(my(x,)) of messages between vertices x,, and x,,. The up-
date from z,, to x, is given by:

My (2y) — Z@(mu,xv) H me(2y,),

Ty LEt?éIv

(N

where ®(z,,x,) is the potential function on the edge
(Zw,x,). Given a message vector m available, approximate
marginals are computed as:

p(xu,xv)%nq)(xu,xv) H mt(xu) H mw(xv)a

TtF Ty Ty F T
(3)

where « is a normalization constant. We can compute the ap-
proximate marginal probability using such a belief propaga-
tion scheme. Similarly, we can also use a belief propagation
scheme to compute the optimal labels y* based on the Viterbi
algorithm. The corresponding update is defined as:

My () — max P(xy,, Ty) H M (Xq,). ©)

T1FTy

In belief propagation, each round of belief propagation is
called a message sending procedure. Since different sched-
ules for message sending can affect the convergence of infer-
ence, we adopt three schedules for belief propagation: (1) a
random schedule, which simply sends messages across edges
in a fully random order. (2) a tree-based schedule [Wain-
wright et al., 2001], which propagates messages along a set
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of cross-cutting spanning trees of the original graph. (3) a
Residual Belief Propagation (RBP) schedule, which was re-
cently proposed by [Elidan et al., 2006]. For a graph with
V nodes and E edges, a tree-based schedule needs to send
O(V') messages at each iteration while a random schedule
needs to send O(E) messages. The advantage of RBP is that
it is a dynamic schedule, in which the message values dur-
ing inference are used to determine which update to perform
next. Such dynamic schedules are shown to converge much
faster than previous static schedules like tree-based or random
schedules. In RBP, an upper bound on the error of a message
can be computed and then used as a priority for scheduling
future message updates.

In our experiments, we will analyze how different belief
propagation schemes would affect the overall computational
complexity of our DCRF model, particularly for event detec-
tion in large-scale sensor networks.

The STED Algorithm
We now give a detailed description of our STED (Spatio-
Temporal Event Detection) algorithm. The STED algorithm
operates in two phases:

e Offline training phase: In the offline phase, we collect a
training data set D = {x(?), y(¥}, where y*) represents
the label for event occurrences. Based on the training
data, we estimate the optimal parameters A = {\;} for
our DCRF model.

Online detection phase: In the online phase, given a se-
quence of observations, X;_j+1, - .., X, obtained at a
time interval k, where k < ¢, we can estimate an optimal
label sequence y* about event occurrences by applying
collective inference, as follows:

y* = al"gm)?x]?(}’t—k-&-la cee 7yt|xt—k+11 ceey Xy A)7
where the optimal label sequence y;—k+1, - ..,y are es-
timated jointly. Accordingly, y; is the estimated labels

about event occurrences at time ¢ for the sensor nodes.

4 Experimental Evaluation

To evaluate the performance of our proposed algorithm, we
performed experiments on both real-world data and synthetic
data. All the experiments were run on a Dual 2.13GHz Intel
Core2 6400 PC with 2GB RAM.

4.1 Baselines and Metrics

We use three different algorithms as the baselines for com-
parison. The first baseline is an MRF model that has been
used in [Wang and Yu, 2005]. The second one is a DBN
model in which Markov chain Monte Carlo MCMC) is used
for structure learning. We also compare the performance of
our algorithm with a 2D-CRF model. The structure of this
model is similar to what we build in our DCRF model at each
time slice. However, spatio-temporal relationships are not
modeled across consecutive time slices because the 2D-CRF
model implicitly assumes that different time slices are con-
ditionally independent. This baseline is used to demonstrate
the capability of our DCRF model in incorporating spatio-
temporal constraints effectively. In our experiments, we used



exact inference for MRF, DBN and 2D-CRF, and chose the
L-BFGS method [Nocedal and Wright, 1999] to optimize the
parameters for our DCRF model.

The evaluation metrics used in our experiments include the
precision, recall and Fl-score measure. Let us define the
number of sensor nodes that we predict to have an event as
C, the number of sensor nodes that actually have an event
in the set we predict as A, and the number of sensor nodes
that actually have an event as B. The precision, recall and
F1-score are defined as follow:

A

Precision = —, Recall = —

recision ok eca ,
Fl-Score — 2 X Precision x Recall

Precision 4+ Recall

4.2 Experiments on Real Data

Experiments were first carried out on real data collected
from a sensor network. We deployed 30 off-the-shelf motes
(TMote Sky) with the light sensors (Hamamatsu S1087 PAR)
to measure the light strength in our office area. All the motes
were programmed to collect two samples of light strength ev-
ery minute. The samples were packaged to a sink node at
2405MHz radio frequency and then sent to a computer via
a USB serial port. We chose light as the sensing modality
for our experiments because it is relatively easy to control
the light intensity in an indoor setting, and introduce spatio-
temporal events by covering light sensors with paper cups.

For the task of event detection, we stimulated a diffuse
event over time by covering a group of sensor nodes with col-
orful paper cups. Figure 5 shows our experimental setup for
data collection. As shown in the figure, the simulated event
originates from an inside region at time ¢;, and it then spreads
outwards at time t2 and t3, respectively. Note that, after the
event spreads to the outside, those sensor nodes that are af-
fected by an event at a previous time became unaffected. In
the end, we obtained a complex spatio-temporal pattern that is
difficult to be handled by previous methods, where two sen-
sor nodes that are not physically close by either in time or
space may actually belong to the same event. Our proposed
approach can detect these events successfully.
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Figure 5: Experimental Setup for Data Collection

We first performed experiments to compare the accuracy of
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our STED algorithm against the three baselines (MRF, DBN
and 2D-CRF). The results based on three cross-validation are
summarized in Table 1. We can see that, our STED algorithm
outperforms the three baseline methods in all three perfor-
mance measures. This indicates that, by utilizing a DCRF
model, our STED algorithm can effectively model spatial and
temporal relationship among observation and events, which
makes online event detection more accurately.

| Algorithms [ Precision | Recall | F1-Score ]
STED (DCRF) | 88.2% 93.8% | 87.6%
MRF 72.2% 81.2% 76.4%
DBN 47.4% 56.3% 51.5%
2D-CRF 70.0% 87.5% 77.8%

Table 1: Performance Comparison with Baselines

We also compared the inference efficiency of our STED al-
gorithm using three different BP schedules. Our experiments
show that the inference time per time slice of our STED al-
gorithm is around 0.15 second for all the BP schedules. We
can conclude that, for this small-scale data set, different BP
schedules do not significantly influence the inference time of
our STED algorithm.

So far we have demonstrated our STED algorithm can per-
form accurate event detection in real time based on this real
data set. However, one important requirement still remains
to be verified, that is, whether our algorithm would be able
to provide near real-time event detection in large-scale sen-
sor networks. Therefore, in the following, we investigate the
scalability of our algorithm on a large-scale synthetic data set.

4.3 Experiments on Synthetic Data

To test the scalability of our STED algorithm, experiments
were also performed on a large-scale synthetic data set. We
simulated a sensor network at a square field of 100 x 100
meters. The number of sensor nodes was set at 500, and
the locations of sensor nodes were randomly generated in the
field. Similar to [Dogandzic and Zhang, 2006], we simulated
two moving events in the sensor network using the Gaus-
sian measurement-error model. For sensor nodes with the
presence of events, the Gaussian means were set as (3 = 2
and py = 8, respectively, and the noise variance was set as
o2 = 0.5. For the rest of sensor nodes, the Gaussian mean
was set as ;4 = 5 and the noise variance was set as 02 = 0.5.
Based on this setting, we generated another independent data
set for testing. Both the training data set and the testing data
set consist of 500 time series at the length of 1000.
Similarly, we would like to first compare the accuracy of
our STED algorithm against other baseline methods. How-
ever, note here that the scale of this data set is large, so
it is very computationally expensive to train a DBN and a
2D-CRF. Therefore, we only compared our STED algorithm
against MRF. We report that our STED algorithm achieves an
F1-score of 92.30% while the F1-score of MRF is 90.52%.
Table 2 shows the inference time per time slice for our
STED algorithm with different BP schedules. We can see
that, the random schedule is far less efficient than the tree-
based schedule and RBP because O(F) message updates



need to be performed at each time. In contrast, the inference
times per time slice are 8.9 and 2.8 seconds for the tree-based
schedule and RBP, respectively. This indicates that, the tree-
based schedule and RBP can provide more efficient inference
than the random schedule when applied to a larger data set.
Noteworthily, the inference time for RBP is only 2.8 seconds
per time slice, making it extremely useful for near real-time
event detection in large-scale sensor networks.

| Algorithms | Inference Time Per Time Slice (seconds) |

Random 37.2s
Tree-based 8.9s
RBP 2.8s

Table 2: Inference Time with Different BP Schedules

5 Conclusions and Future Work

In this paper, we proposed a new probabilistic approach for
detecting spatio-temporal events in sensor networks. Our
STED algorithm utilizes a DCRF model to effectively cap-
ture spatio-temporal dependencies among observations and
events in a unified framework. We validated the effectiveness
and efficiency of our algorithm through experiments on real
and synthetic data. Experimental results show that our STED
algorithm can significantly improve the accuracy of previous
approaches and provide near real-time event detection.

We plan to extend our work in several directions: one fu-
ture study is to look into the feasibility of using an online
CRF model that could better satisfy the requirement of real-
time event detection in sensor networks. Another possible di-
rection is to explore how we can automatically learn feature
functions from a collection of time series data for multivariate
spatio-temporal event detection.
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