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Abstract

This paper addresses the problem of activity and
event discovery in multi dimensional time series
data by proposing a novel method for locating multi
dimensional motifs in time series. While recent
work has been done in finding single dimensional
and multi dimensional motifs in time series, we ad-
dress motifs in general case, where the elements
of multi dimensional motifs have temporal, length,
and frequency variations. The proposed method is
validated by synthetic data, and empirical evalua-
tion has been done on several wearable systems that
are used by real subjects.

1 Introduction

Activity discovery and classification using wearable sensor
data has always been in the interest of several research com-
munities. Supervised and unsupervised methods have been
proposed to discover signal patterns that represent certain ac-
tivities [Bao and Intille, 2004]. Although supervised meth-
ods have more accurate outcome in detecting known patterns,
they require knowledge from a domain expert to be fed into
the system. In addition, due to the sensitivity of such methods
to the quality and quantity of the training data, they are only
able to discover activities that are defined and known by the
domain expert a priori.

Nowadays, the proliferation of convenient handheld de-
vices, wearable sensors, and broadband wireless services for
monitoring and guidance has lead to generation of tremen-
dous amount of data. There is a great interest in designing
signal mining algorithms that can discover frequent and non-
frequent unknown phenomena in such data. This informa-
tion is useful in higher level reasoning and analysis of subject
behavior during a short or long period of time. Time series
motifs are approximately repeated subsequences in a longer
time series data [Chiu et al., 2003]. Motifs can be thought
as constructing elements or perceptual primitives [Minnen et
al., 2007a] of activities. Several studies have shown the po-
tential of using motifs for detecting and classifying activities
and events [Minnen et al., 2007b],[Tanaka et al., 2005] in the
past few years. A significant advantage of using unsupervised
activity discovery methods is that it eliminates the training
and setup phase required by other methods previously used

such as decision tree and hidden Markov model. This is es-
pecially valuable in nowadays increasing proliferation of dif-
ferent wearable sensors to monitor human activities.

The notion of motifs in time series data has been first de-
fined by [Lin et al., 2002] and addresses recurring patterns
in single time series. Several attempts have been made to
generalize this notion to multi-dimensional time series data
[Tanaka et al., 2005] [Minnen et al., 2007a]. Since most
of the real world applications deal with several data sources
and therefore, require methods to analyze multi dimensional
data. However, none of these methods considers the reality
of motifs in systems which include a number of independent
sensors, especially wearable systems used for activity mon-
itoring, where motifs representing an activity have different
length and timing characteristics in each signal (a signal is
data gathered by a sensor). To clarify more, as it is shown in
Figure 1.b activities are usually projected in different sensors
(signal data) with small timing differences. However, as de-
picted in figure 1.a, current state-of-the-art multi dimensional
motif discovery [Minnen et al., 2007a] [Tanaka et al., 2005]
and activity discovery [Minnen et al., 2007b] approaches only
consider synchronous motifs distributed on each dimension
of the signal. As Figure 1.b suggests, when motifs in each
dimension are not synchronized, discovering them and con-
structing activity primitives are not a naive task anymore. In
this paper, we present and evaluate an approach for activity
discovery in multi time series data using multi signal motifs.
The major contribution of this study is to propose a new motif
definition and discovery algorithm in multi time series data.

Section 2 will cover some previous leading work in mo-
tif detection and activity discovery. Section 3 introduces our
multi dimensional motif discovery and optimization method,
which is an extension of the well-known approach proposed
by [Chiu et al., 2003]. In section 4, we present the evaluation
results of our approach for activity discovery and sub dimen-
sional motif detection. Finally, conclusion and future work
are presented in the last section.

2 Background and Related Work

2.1 Motif Detection

Motif discovery is an active research topic in bioinformatics.
The large data size in such applications has inspired research
community to design several algorithms to increase the speed
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Figure 1: Two different types of multi dimensional motifs in
a set of time series a) 2-dimensional motif with synchronous
occurrence of motif elements b)2-dimensional motif with
temporal variation of motif occurrences

of motif detection in biosequences (e.g. DNA). One of the
most efficient algorithms is proposed by [Buhler and Tompa,
2001], where random projection concept is introduced as a
mean of reducing computational complexity (and therefore,
increasing the speed of the process). Later, [Chiu et al., 2003]
introduced the concept of motif for time series data and used
projection technique to propose a probabilistic approach that
is able to find motifs in single time series data in sub quadratic
time. In [Tanaka et al., 2005], authors use Principle Compo-
nent Analysis (PCA) to transform multidimensional time se-
ries to one dimensional time series to detect motifs that hap-
pen on all dimensions of a set of time series. More recently,
[Minnen et al., 2007a] extended the motif discovery method
for single time series to detect motifs that happen in some di-
mensions of a multi dimensional signal. Although this gener-
alization increases the applicability of motif discovery meth-
ods, it still assumes that motifs along all the dimensions are
happening synchronously (e.g., see figure 1.a), which restricts
the applicability of the method to data coming from systems
with highly accurate actions (e.g., space shuttles with accu-
rate and almost noise free sensors).

2.2 Activity Discovery and Classification

Activity recognition and classification has been of special in-
terest among research communities such as computer vision
and body sensor networks for years. One of the major uses
of activity recognition is to discover life habits and trends,
which is especially attractive to medical and healthcare com-
munities. A remarkable number of studies have been pub-
lished addressing activity recognition targeting applications
that each has different considerations and assumptions[Bao
and Intille, 2004]. Most of these studies, propose using of su-
pervised and semi-supervised methods for activity discovery
and classification, meaning that a phase of setup and training
is necessary. Consequently, the result of the classifier heavily
depends on the quality and quantity of the training data set.

As an outstanding example, the study [Tapia et al., 2004]
uses hierarchical hidden semi-Markov model to track daily
activities of assisted living community residents. The method

requires a training phase and works on data coming from sim-
ple state-change sensors which are massively installed in the
environment. The presented method is supervised in the sense
that a professional user must define activities and determine
the sensors corresponding to each activity. In another study
[Parkka et al., 2006] evaluated the performance of custom de-
cision trees, automatically generated decision trees, and arti-
ficial neural networks in recognizing activities using realistic
data from wearable sensors. It is shown that custom deci-
sion tree has the most stable performance for all activities
while the automatically generated decision tree has the best
overall activity classification. It is also stated that artificial
neural network does not perform well since gathered data is
noisy. It is obvious that in such methods, the more effort the
field expert user puts on customizing the discovery system,
will result in better performance of discovering certain activi-
ties and events, however, this human customization is a costly
task that is desired to be eliminated in less critical situation.

Beside the supervised methods for activity classification,
recently, Minnen et al. [Minnen et al., 2007b] proposed the
idea of using motif discovery algorithms for automatic classi-
fication of activities. In their study, authors propose a method
to estimate the length of motifs in a signal, which eliminates
the requirement of a domain expert user to supervise the motif
discovery algorithm performance. They also show how auto-
matic motif length estimation can increase the performance
of motif discovery algorithms in discovering exercise activi-
ties captured by inertial sensors. A great advantage of apply-
ing motif discovery algorithms for activity classification is its
automatic operation which eliminates the requirement for su-
pervision of domain experts (which is generally costly, time
consuming, and difficult).

In this study we continue the idea of using motif discovery
as an unsupervised approach for activity discovery by extend-
ing the definition of motifs in multi time series. The extended
definition of motifs is a more realistic representation of ac-
tivities and events in time series. Our proposed approach
will leverage the benefits of random projection method and
extends it by designing an activity clustering algorithm that
constructs activity perceptual primitives from time series mo-
tifs.

3 The Unsupervised Method to Discover

Activities in Multi Dimensional Time Series

3.1 Single Dimensional Motif Discovery

For better presentation of the main contribution of this study,
which is enhancing the applicability of motif discovery in
multi dimensional time series, we will briefly overview the
state-of-the-art time series motif discovery mechanism that is
the basis of this work. However, since these methods have
been reviewed by many previous work, we encourage the
readers to read [Chiu et al., 2003] [Minnen et al., 2007a] for
the detailed description and evaluations.

To clarify more, it should be noted that in this paper, sin-
gle dimensional and multi dimensional are used to describe
time series and motifs which consist of one and more than
one data dimensions, respectively (Some previous work have
used terms such as univariate and multivariate time series.)
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Motif discovery is basically the process of finding recur-
ring subsequence in a time series. Since the shape of the pat-
terns is unknown, O(n2) comparisons are required to com-
pare every two subsequences and find subsequences that iter-
ate in the time series (we assume n is the length of the time
series and also note that the length of the subsequences is a
constant m << n). Because the size of the time series is
usually large in most applications, studies have been done to
reduce the quadratic run time of the algorithm. The most well
know approach is proposed by [Chiu 2003], where discreteza-
tion and random projection are used to reduce the comparison
space size and the number of candidate motif subsequences,
respectively. In the descretization step, SAX [Lin et al., 2003]
method is used. SAX is a symbolic representation of time se-
ries that reduce the size of a time series by discretizing a sig-
nal using piecewise aggregation approximation [Keogh et al.,
2000]. It is shown that although applying this method to time
series data decreases the accuracy of signal representation,
information loss is bounded and by choosing appropriate pa-
rameters (such as the number of discrete levels) adequate in-
formation about the behavior of the signal can be preserved.

After SAX conversion, all subsequences in the time series
are compared to each other using random projection [Buh-
ler and Tompa, 2001]. Random projection is the process of
randomly comparing some values from two subsequences.
Since, when two subsequences match, their random projec-
tion also must match, this method is useful to avoid perform-
ing of full comparison between subsequences that highly dif-
fer. Result of several iterations of random projection is saved
in a collision matrix that represents the similarity of subse-
quences. Generally, element i, j of collision matrix repre-
sents the number of times random projections of subsequence
i and subsequence j have been matched to each other. Figure
2 depicts a block diagram representation of the motif discov-
ery process.

Figure 2: General overview of single dimensional motif dis-
covery algorithm (a) A time series (b) Time series SAX con-
version (c) SAX words construction (d) Collision table via
random projection

3.2 Multi Dimensional Motif Discovery via Graph
Clustering

In order to extend the motif discovery algorithm to multi
dimensional time series, considering the practical problems
associated with current methods, we have developed a two-
stage algorithm that extracts non-synchronous multi dimen-
sional motifs from a set of time series. Currently the state of
the art studies addressing detecting multi dimensional motifs
in time series [Tanaka et al., 2005] [Minnen et al., 2007a]
[Minnen et al., 2007b] use Logical AND and Logical OR
to concatenate collision matrices resulted from subsequence
matching in each of time series dimensions. Although these
approaches can discover synchronous motifs, in reality, they
show poor performance because motifs in all dimensions do
not occur completely synchronous and their relative timing
differs time to time (e.g. the timing between moving right
and left feet in walking activity slightly varies). In addition,
while two motifs in two time series, can represent the same
activity, the length of these subsequences can be completely
different, making it impossible to relate them using simple
methods such as Logical AND and Logical OR, Since in these
methods, the length of motifs are considered to be the same
in all dimensions of the time series. To overcome the two
major problems stated above (motif synchronization and mo-
tif length variation in different dimensions of time series) we
have designed a two phase algorithm.

In the first phase of our algorithm, single dimensional mo-
tifs in all dimensions of the time series are discovered. To
do so, the method in [Chiu et al., 2003] is implemented
and optimized by the complementary mechanism introduced
in [Yankov et al., 2007]. While the optimization mecha-
nism makes the discovery method resilient to uniform scal-
ing, since the discovery algorithm requires m (length of the
motif) as an input, it is required to perform the discovery task
on the time series considering all possible motif lengths. It
should be noted that we aimed to use these methods, since
they are the most efficient methods in the literature up to now,
however, our algorithm for the second phase only depends
on the result of single dimensional motif discovery and these
methods can be replaced by any valid algorithm.

Let’s assume the input to the algorithm is a set of k time
series, where n is the length of the time series. By applying
the single dimensional motif discovery of the first phase, a set
R = {ri}, |R| = W of motifs are discovered, where ri rep-
resents a single dimensional motif with several occurrences
in one of the time series. Each occurrence of motifs in ri is
denoted by ri,j , where ri,1 is the first occurrence and ri,sizei

is the last occurrence of motif ri in its associated time series
(sizei = the total number of occurrences of motif in ri).

The next phase of the algorithm is to construct multi di-
mensional time series motifs via combining discovered sin-
gle dimensional motifs. In this study, we have used a graph
clustering approach to group the single dimensional motifs,
and will show its efficiency in the next section. To perform
the motif clustering, first we construct a coincidence graph G
as follows: In directed graph G = (V,E), each motif ri is
represented by a vertex vi. Edge ei,j (edge connecting vertex
i to vertex j) has weight wi,j which is calculated as:
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wi,j = coincident(ri, rj)/sizei

Where coincident(ri, rj) is the total number of times that
there is a temporal overlap between occurrences of ri and rj .
As wi,j gets closer to one, it denotes a higher coincidence fac-
tor between two single dimensional motifs. Figure 3 depicts
an example of three time series and the coincidence adjacency
matrix generated from it. Note that the table in the figure in-
cludes the weights of the edges of the coincidence graph.

Figure 3: Three example time series and the weight of the
edges in their adjacency matrix

Algorithm 1 Multi dimensional motif construction
1: Input: G(V,E), α, sizei and wi,j forall i and j
2: Output: Si set of clustered motifs, each representing a

multi dimensional time series motif
3: Sort the vertices vi in G based on the number of incidents

(sizei)
4: for each vertex vk in the sorted list of vertices do
5: for all neighbors of vk, if ek,j > α do
6: Add vj to Sk

7: Update the weight of edges connected to vj by re-
moving the motif occurrences of rj that has coinci-
dent with rk

8: end for
9: Update the sorted list of vertices

10: end for
11: return all nonempty Sk

The procedure to cluster the graph and construct multi di-
mensional motifs is stated in Algorithm 1. Starting from the
motifs with most occurrences in the time series, the algorithm
groups motifs that have high coincidence with each other. af-
ter performing each grouping iteration, the coincidence graph
is updated by eliminating the motif occurrences that are as-
sociated to an activity (multi dimensional motif). Note that
α(0 < α < 1) is the threshold to determine the minimum
correlation two motifs should have to construct a multi di-
mensional activity. This factor can be determined statistically
by a field analyzer or can be determined dynamically by sta-
tistical analysis of weights of the coincidence graph (We have
used the dynamic approach in our experiments).

The key feature of the above method for discovering multi
dimensional motifs, comparing to previous studies [Minnen

et al., 2007b] [Tanaka et al., 2005] are a) Since the relation
between two single dimensional motifs is based on any tem-
poral overlap, slight variation of timing does not affect the
results. b) Each single dimensional motif is discovered in-
dependently, which enables them to be of any size and fre-
quency. c) Discovered multi dimensional motifs can span on
any subset of time series.

3.3 Improvement of the Single Dimensional Motif
Discovery Algorithm

As mentioned before, the presented method for discovering
multi dimensional motifs is based on clustering the single di-
mensional motifs discovered using the probabilistic approach
of [Chiu et al., 2003]. Due to the existence of the noise in the
time series, it is well known that motif discovery algorithms
fail to discover some of the occurrences of motif seeds. Al-
though by relaxing the threshold distance in which two sub-
strings match together, one can increase the probability of
discovering all motif occurrences, this will lead to possible
detection of wrong subsequences as motifs. An advantage of
the two phase algorithm to discover multi dimensional motifs
is the ability to increase the accuracy of the results of the first
phase (single dimensional motif discovery) by the results of
the second phase (motif clustering). Generally, when two mo-
tifs have high temporal coincidence, an exclusive occurrence
of one of them suggests high probability for discovering an
additional occurrence of the second motif (with increasing
the acceptable noise threshold). Algorithm 2 uses this idea to
discover potential motif occurrences that are not discovered
in the first phase.

Algorithm 2 Single dimensional motif discovery optimiza-
tion

1: Input: R = ri initial set of discovered single dimensional
motifs

2: Output: R = ri modified set of discovered single dimen-
sional motifs

3: for each rk and rl in R, if 1 > wk,l > β do
4: for all rk,x (occurrences of rk) do
5: if there is no coincidence between occurrences of rl

and rk,x then
6: Re-evaluate rl for additional occurrences of mo-

tifs
7: Update rl

8: end if
9: end for

10: end for
11: Return R

β (0 < β < 1) is the precision factor, which determines
the revisiting criteria of the algorithm. As β gets closer to
one, the algorithm only considers highly correlated motifs
and evaluates their missing occurrences while a small β re-
quires more reevaluations of the motifs occurrences. It is ob-
vious that small β values result in larger execution time, how-
ever, it is recommended that in dealing with noisy data, which
increases the error probability in motif detection, a smaller β
is used, to increase the accuracy of the motif discovery.
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4 Empirical Results

In this section, we will provide the evaluation results of our
multi dimensional motif discovery algorithm on several data
sets. Here, to show the applicability and timing characteris-
tics of the method, we first evaluate the method using syn-
thetic data, however, in the most of the experiments our em-
phasis was on the data collected from inertial sensors such as
accelerometers and gyroscopes worn on the body or embed-
ded in several devices to monitor activities of subjects.

4.1 Synthetic Data

To generate the synthetic data, motifs were planted in a set
of randomly generated time series. Figure 4 shows a small
snapshot of the discovered multi dimensional motifs using
our method and the sub dimensional motif discovery method
presented in [Minnen et al., 2007a]. As depicted in figure 4.b,
the previous work only detects motifs that are well synchro-
nized. In this test case, since motifs have different temporal
relations in each occurrence, it fails to discover some of the
dimensions and occurrences correctly. It is important to note
that it is possible to increase the distance error threshold in
the previous work, to able the algorithm to discover the time
shifted motifs, however, increasing the threshold will result
in increasing rate of falsely detected motifs.

Figure 5 shows how the algorithms execution times scale
over the number of time series dimensions, when the length
of all time series and motifs are 10000 and 60 respectively.
As graph shows, both algorithms are scaled linearly, however,
the linear factor is bigger in our algorithm since the single di-
mensional motif discovery should be performed against each
time series, while in the previous work, increasing the dimen-
sion only affects the calculations required for constructing
the collision table. Note that the in our approach, although
the execution time of the clustering algorithm (phase 2) is
quadratic, the time required to calculate motif clusters is neg-
ligible versus the time required to discover single dimensional
motifs (phase 1), since the size of the input to the clustering
algorithm is the number of detected single dimensional mo-
tifs which is substantially smaller than the size of the time
series.

Figure 5: The scalability of the two approaches with increas-
ing the number of dimensions. A1 is our approach and L1 is
[Minnen et al., 2007a]

4.2 Real Data

In order to further evaluate the performance of the method,
we tested the method for data gathered from sensors embed-

ded in two different wearable systems, SmartCane [Wu et al.,
2008] and SmartShoe [Dabiri et al., 2008]. Both systems in-
clude accelerometers, gyros and pressure sensors. Two dif-
ferent scenarios were tested on the SmartCane system, one
being normal use of the cane in walking and the other one
was the cane falling on the ground (The scenarios were sep-
arated since the range and quality of the data differs signif-
icantly in the two scenarios). Eight time series were col-
lected from the SmartCane in the normal walking and five
were recorded in the falling scenario. Also, six signals were
collected from the SmartShoe. Study in [Minnen2 2007]
suggests that although comparing the results of such activity
monitoring mechanisms to a hand labeled ground truth allows
quantitative measurement of performance, still issues such as
detecting additional motifs are not incorrect results. The ad-
ditional motifs can be a result of actions that the field expert
does not expect or they can be due to the noise in the data or
error in the method, while less number of detected motifs can
be due to the noise in the time series or the inaccuracy of the
discovery method.

Table 1 summarizes the average accuracy of the activity
discovery by applying multi dimensional motif discovery al-
gorithm to the time series data collected from the above sys-
tems in 1000 seconds, comparing to hand-labeled classifica-
tion of the data. Note that hand-labeled data of the SmartCane
walking data compromises three different activities (each
spans on some time series dimensions) while there were two
and three activities for SmartShoe and SmartCane fall appli-
cations, respectively. Since the notion of the activity defined
in this paper is an extension of the actions defined in [Min-
nen et al., 2007a][Tanaka et al., 2005], we could not conduct
a direct accuracy and performance comparison between the
methods (previous work do not consider time shifted multi
dimensional motifs, which is the main scenario happened in
our systems). It also includes the results of evaluating the
single dimensional motif discovery improvement mechanism
proposed in section 3.3. Comparing the results in Table 1
to the results provided in [Bao and Intille, 2004] (which has
accuracy varying between 42%-96% for different supervised
activity classification algorithms performed on different sys-
tems) the results of our unsupervised method seems to be
promising. It is worth to mention that the performance of any
method heavily relies on the test data and as it is presented in
Table 1, our results accuracy varies between 62% and 85%. In
addition, since our method leverages and expands the method
of [Chiu et al., 2003], parameters such as the motif lengths
and scaling factor changes the outcome of the algorithm and
we have manually optimized them in our evaluation scenario
to effectively evaluate the contribution of this study.

5 Conclusion and Future Work

Using time series motifs to discover activities and events has
been shown to be beneficial in the past [Minnen et al., 2007b]
[Tanaka et al., 2005]. In this study, we described an approach
to discover multi dimensional motifs in time series. The ma-
jor contribution of the method is its ability to discover multi
dimensional motifs that have time and value irregularities,
which is a common case in activity monitoring applications.
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Figure 4: A simple set of synthetic time series and the result of multi dimensional motif discovery using (a) our approach and
(b) the approach of [Minnen et al., 2007a].

Table 1: The results of performing the unsupervised activity
discovery approach on three applications

SmartCane SmartShoe SmartCane
Walk Fall

Multi dim. ac-
tivity discovery
accuracy

71% 85% 62%

Single dim.
motif discovery
improvement

9% 17% 12%

The method is based on the well known single dimensional
motif discovery approach of [Chiu et al., 2003]. We proposed
to construct activity primitives based on clustering single di-
mensional motifs. The clustering was done on the coinci-
dence graph which is based on the temporal coincidence of
motifs in different time series dimensions. We also presented
a feedback approach to improve the accuracy of single di-
mensional motif discovery process. In addition to evaluating
the approach using synthetic data, we used real data collected
from previously deployed wearable systems. Although the
activity discovery method using motif concept is an unsuper-
vised approach, which eliminates the need for a field expert, it
still shows acceptable outcome. For the future work, we plan
to evaluate using different clustering approaches for grouping
the single dimensional motifs.
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