Succinct Approximate Counting of Skewed Data*

David Talbot
Google Inc., Mountain View, CA, USA
talbot@google.com

Abstract

Practical data analysis relies on the ability to count
observations of objects succinctly and efficiently.
Unfortunately the space usage of an exact estima-
tor grows with the size of the a priori set from
which objects are drawn while the time required
to maintain such an estimator grows with the size
of the data set. We present static and on-line ap-
proximation schemes that avoid these limitations
when approximate frequency estimates are accept-
able. Our Log-Frequency Sketch extends the ap-
proximate counting algorithm of Morris [1978] to
estimate frequencies with bounded relative error
via a single pass over a data set. It uses constant
space per object when the frequencies follow a
power law and can be maintained in constant time
per observation. We give an (e, §)-approximation
scheme which we verify empirically on a large nat-
ural language data set where, for instance, 95 per-
cent of frequencies are estimated with relative error
less than 0.25 using fewer than 11 bits per object in
the static case and 15 bits per object on-line.

1

Frequency estimation lies at the heart of many applications of
statistics. As data sets grow in size, estimating the frequency
of distinct objects becomes challenging in many settings. Re-
cently there has been significant interest in constant space
data structures for the analysis of unbounded data streams
[Cormode and Muthukrishnan, 2005]. Unfortunately, such
constructions are of limited practical use for frequency esti-
mation from skewed data as their expected error grows with
the size of the stream. For large but finite data sets, however,
we can construct frequency estimators that use constant space
per object and constant time per observation with bounded
relative error.

Fundamentally the problem we face is that any lossless fre-
quency estimation scheme will use more space per object and
take more time per observation as our data sets grow in size:
not only do we need to maintain more counters as we observe

Introduction

*Work completed at the University of Edinburgh, U.K.

1243

more distinct objects, we must also use more space to repre-
sent each counter if we are to distinguish between them with-
out error. Once the counters no longer fit in main memory,
we must either resort to slow secondary storage or to sorting
the data set; either approach implies that the time taken to
process each observation will grow with the amount of data.
When data follows a power law, the situation is exacerbated
by the need to maintain counters for a large number of low-
frequency objects. Here we focus on this important class of
distribution observed in many practical settings.

Our main contribution is a simple frequency approxima-
tion scheme, the Log-Frequency Sketch, that can circumvent
these constraints when approximate answers are acceptable.
We expect it to be of practical interest in applications that in-
volve large-scale data analysis. The Log-Frequency Sketch
estimates the frequencies of objects € U via a single pass
over a data set D with the following guarantees

(1) (Bounded relative error) Estimates are within a constant
factor of their true frequencies with high probability.

(ii) (Constant space) Estimates are maintained using con-
stant space per object independent of |U]|.

(iii) (Constant update complexity) Estimates are maintained
in constant time per observation independent of | D).

In Section 2 we state the problem formally and consider
lower-bounds; in Section 3 we review related work; in Sec-
tion 4 we present a static approximation scheme which we
extend to the on-line setting in Section 5. Section 6 demon-
strates empirically the space savings that can be achieved with
these data structures and in Section 7 we conclude.

2 Problem Statement

We wish to count the frequency of distinct objects observed
in a data set D and drawn from an a priori universe U. We
refer to the set of objects z € U that have non-zero frequency
F(z) in D as the support S. We seek ‘scalable’ solutions
whereby the space used per object z € S is independent of
|U| and the time required to process each observation is inde-
pendent of |D|. We assume that the frequencies F'(z),x € S
follow a power law whereby Pr[F(z) > f] o< f~ for some
parameter « (the skew) and that the support is sparse (i.e.,
|U| > |S]). These assumptions are commonly met in prac-
tice, particularly when U is combinatorial in nature.

We denote the frequency of an object x € U after ¢ obser-
vations 2z € D have been processed by Fi(x). A frequency
estimator supports the following two operations:

o (Estimate) Given an observation € U return Fi(x);

e (Update) Given an observation x € U update the esti-
mator such that Fy(z) = Fy_1(x) + 1.

2.1 Lower bounds on exact estimators

When U and S are small, exact frequency estimation is triv-
ial: maintain |S| counters and update the appropriate one after
each observation. Unfortunately a simple counting argument
[Carter ef al., 1978] implies that any data structure support-
ing exact set membership queries for a set S C U must use

at least log (l‘g“) bits per object on average and hence must
grow with the size of the a priori universe U.

For example when counting observations of n-grams in a
natural language corpus, not only must we use more counters
as more distinct n-grams are observed, we must also use more
space to identify each counter as the vocabulary grows in size:
the more distinct n-grams that may be observed a priori, the
more space we must use to identify each observed type.

As soon as lossless counters can no longer be maintained in
main memory, we must either resort to slow secondary stor-
age or estimate the frequencies by sorting and then scanning
the observations in D. This implies that we must perform
O(In | D|) comparisons on average per observation in D and
hence will spend more time per observation as DD grows in
size. (Note that this is also true in a distributed setting.)

2.2 Approximation schemes

Statistical analysis often introduces approximations such as
modeling assumptions. It is therefore natural to consider how
approximate data structures may allow us to leverage more
data, more efficiently. An approximate data structure is one
that is allowed (occasionally) to fail to distinguish between
two or more € U. Allowing such errors fundamentally
alters the space complexity of the data structure problem.

An approximate key/value map in which a value v € V
is associated with each key € S requires at least log 1/e +
H(p) bits per key on average where H(p) is the entropy of the
distribution over values in the map and € is an upper bound
on the probability of a false positive, i.e. thata value v € V' is
returned for akey z € U\ S [Talbot and Talbot, 2008]. Hence
we may store object/frequency pairs in space that depends
only on the skew of the frequencies « and the error rate €
independent of the a priori universe U, if errors are allowed.

A frequency approximation scheme F'(z),z € U provides
an estimate of the true frequency F'(x). To be useful, an ap-
proximation scheme must provide guarantees on its accuracy.
To quantify errors here we use the relative error for x € S,
ie. lpey = |F(x) — F(z)|/|F(z)|. This captures the intuition
that small absolute errors are less significant when they oc-
cur for high-frequency objects. For x € U \ S, we use the
absolute loss since F'(x) = 0.for such objects.

We consider approximation schemes with bounded ex-

pected relative error whereby for some € > 0

o [F@) = F@)l

zeU f!

and (e, d)-approximation schemes that guarantee that with
probability at least (1 — §) the loss will not exceed € on any
single use of the data structure, i.e. for the relative loss

Pr(|f(x) - F(2)| < eF(a)] > (1 - 9).

Here the frequency estimator F'(z), z € U will be a random
variable due to the random selection of hash functions for any
given instantiation of the data structure. We restrict ourselves
to data structures offering guarantees that hold without a pri-
ori assumptions regarding the distribution of queries Pr[z],
x € U but note that such assumptions might be used to fur-
ther optimize space-usage in specific applications.

3 Related Work

A number of succinct approximate frequency estimators have
been proposed. The Spectral Bloom filter [Cohen and Matias,
2003] has bounded 0-1-loss, but comes with no guarantees on
the size of errors. It is also unclear what constant terms are
hidden in the analysis of its space usage [Cohen and Matias,
2003]. The Space-Code Bloom filter [Kumar et al., 2004]
uses a version of the coupon collector problem, e.g. [Motwani
and Raghavan, 1995], to estimate frequencies with bounded
relative error. Unfortunately, the high variance of the coupon
collector estimator when either a small or large number of
‘coupons’ have been sampled implies that this construction
will waste space over large ranges of frequencies. Moreover,
its configuration requires significant a priori assumptions re-
garding the input distribution and no explicit analysis of the
space/error trade-off is given in [Kumar er al., 2004].

The Log-Frequency Bloom filter [Talbot and Osborne,
2007] uses the low-entropy of a power law to store such fre-
quencies succinctly off-line with bounded relative error. Our
work extends this construction to the on-line setting by adapt-
ing the approximate counting algorithm of Morris [1978].

Over the past decade there has been significant work on
the analysis of unbounded data streams [Alon et al., 1996].
Frequency estimators that use constant space independent of
both |S| and |U| have been proposed, e.g. [Cormode and
Muthukrishnan, 20051, with bounded errors that depend on
| D|. Unfortunately, these estimators are of little practical in-
terest for estimating the frequency of individual objects other
than those that make up a significant fraction of D (so-called
heavy-hitters) since when |D| is large the error bound €|D|
will be far greater than the average frequency for z € U.

4 Static Approximation Schemes

We now describe two static approximation schemes for rep-
resenting frequencies succinctly when these follow a power
law. These schemes are based on the Log-Frequency Bloom
filter [Talbot and Osborne, 2007] which itself is a simple ex-
tension of the Bloom filter data structure [Bloom, 1970].

1244

4.1 An approximate set membership tester

A Bloom filter consists of a bit array B of size m initialized to
0 and & hash functions h;, i € [k], h; : U — [m]. Given a set
of n objects S C U, a Bloom filter can be used to implement
an approximate set membership test by setting each of the
bits Blh;(x)],i € [k] to 1 for z € S. Once S has been stored
in this way, we can check whether a query object x € U is
an element of S by hashing = under the & hash functions and
examining the bits in B. No false negatives will occur for
x € S and if some of the bits in B remain 0 after all of S has
been stored, there is a non-zero probability that one of the
k hash functions will index a 0 in B when evaluated for an
object z € U \ S. When this occurs we know that x € U \ S.
A false positive occurs when we fail to find a zero among the
k bits examined for an object x € U \ S. Given m, n and
k, the probability that a random object x € U \ S results
in a false positive can be computed since the number of bits
that remain 0 in B will be very close to its expected value
w.h.p. For fixed n and m the expected false positive rate is
minimized by choosing & such that the expected proportion
of bits that remain 0 is 0.5 [Bloom, 1970].

4.2 An approximate frequency table

The Log-Frequency Bloom filter [Talbot and Osborne, 2007]
stores a static set of object/frequency pairs {(x, F(z))|x €
S} using a bit array B and an indexed set of hash functions,
H = {h; : U — [m]|i € [00]}. A frequency F'(x) is as-
sociated with an object x € S by storing a unary code that
approximates log(F'(z)). Logarithmic quantization converts
a power law into an approximately geometric distribution,
hence unary codes resemble Huffman codes for the quantized
frequencies. Algorithm A uses this data structure to imple-
ment an (¢, §)-approximation scheme which guarantees that
the probability of an error exceeding e on any single use is
less than ¢ while Algorithm B constructs an estimator with
bounded relative error. Algorithms C and D extend these
estimators to function in an on-line setting.

All our data structures use space m = | B| that is linear in
the number of objects stored n = |.S| and the average natural
logarithm of their associated frequencies <y; space usage is
therefore stated in terms of n-y.

Static (¢,)-approximation scheme (Algorithm A)
Given n, v, ¢ > 0 and § > 0, choose m such that

m/ny = log(e)1/elog 1/4 bits,

andletb =1+ eand k =log1/d.
To store F'(z) for € S evaluate the first k[log, F(x)]
hash functions in H and set the corresponding bits in B to 1.
To retrieve an estimate F (z) for z € S, evaluate hash func-
tions b € H in index order until a 0 is found in B. If r is the
number of hash functions evaluated prior to finding the first 0
then return F'(z) = bliJ.
Theorem 1. Algorithm A implements an (€,9)-
approximation scheme for F(x),x € S under the relative
loss using log(e)1/elog 1/ bits on average.

Proof. The number of hashes performed when quantizing
base b will be proportional to 1/1n(b)log 1/6 which, using

1245

In(1 +) = « for small z, is approximately 1/elog1/4. By
an argument that is identical to that for the original Bloom fil-
ter, setting m to be a factor log(e) greater than the total num-
ber of hashes performed when storing .S ensures that w.h.p. at
least half the bits in B remain 0 once the whole of S has
been stored (likewise this configuration minimizes the space
usage). By storing the ceiling of the logarithm base b = 1+ ¢
we incur a relative quantization error of at most € for any
F(z), z € S. Since each increment on the logarithmic scale
is encoded using k£ = log 1/ hash functions, we must find
an additional k bits set in B at random in order to incur any
additional error when retrieving a frequency. As half the bits
in B remain 0, the probability of this event and hence of a
relative error greater than e is at most 2~ 1°8(1/9) — ¢ O

Static bounded relative error estimator (Algorithm B)
Given n, v and € > 0 choose m such that
ny

_ (1 1+e)—1
)
and let b = e™/™,

M el—1/e

To store F'(z),z € S, evaluate the first [log, F'(x)] hash
functions in H and set the corresponding bits in B to 1.

To retrieve an estimate F'(z) for x € S, evaluate hash func-
tions h € H in index order until a 0 is found in B. Let r be
the number of hash functions evaluated prior to finding the
first O then return F'(z) = b".

Theorem 2. Algorithm B has expected relative error of at

most € independent of F'(x). For small € it uses approximately
e/e bits on average.

m

Proof. Let p be the proportion of bits that remain 0 in 3 once
S has been stored. By our choice of quantization base b, we
perform m hashes to store S hence w.h.p. p = (1—1/m)™ =~
1/e. The expected relative error for any F'(x),z € S is then

i I fpitFl
E[£rel|F(x):f] S Z/)(l—p)lfbhc‘ﬂ (1)
=0
b—1
S, ¢ @

where in Eq. (1) we use the fact that the quantization er-
ror cannot be greater than a factor of b and ¢ counts the
number of ones found in the bit array at random after the
first [log, F'(x)] hash functions have been evaluated: each
additional increment occurs independently with probability
(1 — p) and multiplies the estimate by a factor of b. Eq. (2)
uses the fact that the error converges for our choice of b and p
and follows by substituting these values and rearranging. Us-
ing In(1 + z) = « for small x, the space usage m/n~ is seen
to be approximately e/e. O

Algorithms A and B show that logarithmic quantization
and unary coding result in a natural spacing between code-
words in a Bloom filter such that the expected relative error of
F (z) is constant and the probability that an estimate deviates
from F(z) decays geometrically. Unlike a standard Bloom
filter, Algorithm B results in a fraction 1/e of the bits in

B remaining 0. By differentiating the expected relative error
we can see that for small e this is the optimal configuration.
Using more than 1 hash function per increment (as in Algo-
rithm A) is suboptimal when bounding the expected relative
error, but necessary when we want stronger guarantees on the
probability that the estimator deviates on any single use.
Neither Algorithm A or B give any guarantees on fre-
quency estimates F'(x) for z € U \ S for which F(z) = 0.
Assuming that e < 1 we can add guarantees for these un-
der the absolute loss by additionally storing each x € S in
a separate Bloom filter using k¥ = log 1/4 hash functions for
Algorithm A and & = ¢ + log 1 /¢ for Algorithm B. Prior to
estimating the frequency for a key x € U, we first query this
separate Bloom filter and return O if it is not present.

S On-line Approximation Schemes

An on-line frequency estimator constructed via a single pass
over a data set avoids the need to precompute F'(x),z € S.
On-line estimation poses two additional problems:

(1) Errors may be compounded over multiple updates;
(i) A succinct counter may be slow to update.

If S and U are too large to allow exact counters to be held
in memory, we must rely on approximate estimators on-line.
Each time we observe an object x € U, we will therefore re-
trieve an estimate F}(z) rather than the true frequency Fi(z).
An approximate estimator may also not have sufficient reso-
lution to reflect an increment of 1 exactly (cf. the logarithmic
quantization scheme used in Section 4).

A succinct approximate encoding of a set of ob-
ject/frequency pairs should assign short codes to the most
common frequencies leaving longer codes for the rarer fre-
quencies [Talbot and Talbot, 2008]. For a power law distribu-
tion, most objects will have low frequencies and hence these
should be assigned short codes. A large proportion of 0b-
servations, on the other hand, will be drawn from a small set
of high-frequency objects which must then be assigned longer
codes. If the time needed to update our data structure depends
on the size of the code representing the current observation’s
frequency, on-line counting may be inefficient.

5.1 Approximate Counting

Morris [1978] presented an elegant algorithm for estimating
frequencies approximately on-line. His algorithm allows a
binary counter of size approximately loglog N to be used to
count up to a maximum frequency N. Morris’ approximate
counting algorithm results in an unbiased estimator that has
approximately constant relative error independent of F'(z).
Approximate counting is an adaptive Monte Carlo sam-
pling algorithm. For each observation x € D, we generate
a uniform random variate v € (0,1) and update a counter
R(z) iff u < A, where r is the current value of the counter,
1
G(r+1)—G(r)
and G : Z; — R is any non-decreasing function. If
R(z),z € S are initialized to 0, then G(z) will be an un-
biased estimator of F}(x) since the update rule implies that

E[Gria ()| R(x)] ElGi(x)|R(x)] +1. (3)

A, =

~
~

1246

If G is the exponential function bE() then the variance of
G(x) is approximately quadratic in F'(z). Using Chebyshev’s
inequality, the probability ¢ that this estimator deviates from
its expected value by more than a factor of e can be bounded
and an (e, d)-approximation for F'(z) constructed by choos-
ing b = 1 + 2¢26 [Morris, 1978].

Morris’” algorithm reduces the space requirements of a
counter exponentially but suffers from the following draw-
backs when F' follows a power law and .S and U are large:

(i) Fixed-width binary counters use O(loglog N) space
where N depends on | D| but most counts will be small;

(ii) The space required to identify counters R(z) exactly for
each object = € U will depend on |U]|.

We now present algorithms that circumvent these drawbacks
by approximating the approximate counters R(x) using the
Log-Frequency Bloom filter scheme presented in Section 4.

Biased approximate, approximate counting (Algorithm C)
Given a bit array B and set of indexed hash functions H as in
Section 4, process each observation x € D as follows:

(i) Set » = 0 and evaluate hash functions h,y; € H in
index order incrementing r until we find a 0 in B;

(ii) Generate a random variate © € (0,1) and iff u <
1/(b"tt —b") set Blh,11(z)] = 1.

Retrieve estimates F'(x), z € U as in Algorithm B.

Algorithm C is a natural application of Morris’ algorithm
to obtain an on-line version of Algorithm B; unfortunately, it
is biased and inefficient. The expected bias incurred on each
update can be computed from the change in the conditional
expectation of the estimator as a single observation is pro-
cessed. Here we must average over three random variables:
the uniform variate u generated in step (ii), the number of
bits ¢ found erroneously to be 1 when retrieving r in step (i)
and (if we perform an update in step (ii)) the number of bits
j found erroneously to be 1 when estimating Ry (x) after-
wards. Here p is the proportion of zeros in B and assuming
that h € H are independent, the probability of retrieving ¢
bits erroneously when estimating Ry () does not depend on
when these errors occur but only on their number

E[Gi1(2)|Ri(x) = 7]

ipr[}?t(l’) =741 <(1 —Prfu < ATH])(,(TH)_,_
i=0

Priu< A,] > Pr(Ri(z)=r+i+1+ j]b<”+i+j+1>>
§=0

b3 o p(l—p) b —1

MQWHM@ﬂ+z;MxN< —
b(1 - p)
1—0b(1-p)
The third term in Eq. (4) is the bias accumulated over a sin-
gle update. This term is 0 in Morris’ original algorithm,
cf. Eq. (3), and will affect high-frequency objects dispropor-

tionately in Algorithm C resulting in non-uniform errors.

“4)

E[Gi(@)|Re(x) =] + 1+

)

The need to retrieve J:Bt(x) on each observation of = also
makes Algorithm C inefficient. When F(x) follows a power
law, a small number of high-frequency objects for which
F(z) = O(|D|) will use O(|D|log, |D|) probes. We now
propose an algorithm that avoids both these flaws.

The Log-Frequency Sketch (Algorithm D)

Let 3 = 3772, p(1 — p)?b/. Given a bit array B and set
of indexed hash functions H as in Section 4, process each
observation x € D as follows:

(i) Generate a random variate u € (0,1);

(ii) Set r =0 and evaluate hash functions h,;; € H incre-
menting r while u <1/(8b"t1-b") and Blh,41(7)]=1;

(iii) If (ii) terminates due to finding a O in B then set
Blh,+1(z)] = 1; otherwise do nothing.

Retrieve estimates F'(z),z € U as in Algorithm B.

Theorem 3. Algorithm D results in an estimator F () with
constant bounded relative error independent of F(x).

Proof. (Sketch) The revised update probability used in step
(ii) offsets the expected bias incurred when processing an ob-
servation. This can be seen by re-computing the conditional
expectation Eq. (4) and noting that the expected increment is
now 1 as in Eq. (3). The variance of the revised estimator
is approximately O(F(z)?) as in Morris’ original algorithm
hence we may use Chebyshev’s inequality to bound the prob-
ability that it deviates from F'(x) by more than a factor of ¢
for any F'(z) uniformly. O

The following theorem shows that Algorithm D has con-
stant expected update complexity per observation.

Theorem 4. Algorithm D performs at most 1 + 1/(b — 1)
probes per observation independent of | D| and F(z).

Proof. An upper bound on the number of probes r;,,, per-
formed on average in step (ii) can be computed by assuming
that B contains no zeroes and ignoring (3. Since probes in
step (ii) are now conditioned on A, < u we have

e}) 2

E[rmas) <1+

=0

L
b—1

z:1+(

bi
which depends only on the error rate.

6 Experiments

We evaluated Algorithms A to D by using them to estimate
the frequencies of n-gram sequences observed in natural lan-
guage text. Applications such as speech recognition and ma-
chine translation rely on such frequencies to estimate lan-
guage model scores used to prune a typically exponential hy-
pothesis space. Estimating and storing such frequencies is
known to be challenging, e.g. [Brants e al., 2007].

The n-gram data consisted of all 1 to 5-grams observed in
10 million sentences drawn from the Gigaword Corpus [Graff
et al., 2005]. Algorithms A and B took the pre-computed n-
gram frequencies as input while Algorithms C and D used
the corpus directly. We queried each data structure with n-
grams drawn from a held-out set of 1 million sentences and

1247

computed the empirical relative error for n-grams with non-
zero frequency; we also measured the proportion of estimates
that incurred a relative error greater than 0.25 and 0.5. The
probability of returning a non-zero estimate for n-grams not
observed in the training data was set to 0.015 in all cases us-
ing an additional 6 hash functions to encode that z € S.

All results show averages over 25 instantiations of each
data structure with different random seeds to the hash func-
tions. The space usage given on all plots is bits per distinct
n-gram type in the training data. For Algorithm D we also
recorded the number of probes performed per observation
when constructing the data structure.

For Algorithms C and D an interesting open question is
how to determine the size of the bit array B a priori for a
given data set. We could use a sketch-based data structure
[Cormode and Muthukrishnan, 2005] to estimate the number
of distinct objects and the skew of the data via an initial pass
and set the expected memory requirements accordingly. Here
we side-step this issue by allocating the same amount of space
to Algorithm D as is used by Algorithm B off-line.

6.1 Optimizing for integer counts

The analysis of Sections 4 and 5 holds for any positive fre-
quencies; here, however, we are interested only in counting
observations and can restrict ourselves to integer counts. This
allows us to optimize the space-usage of the data structures.

Firstly we can replace the ceiling operator used for static
quantization by a floor operator; this complicates the analy-
sis but is preferable since our static data structures can only
overestimate the quantized count that is stored. Secondly
when b < 2 the logarithmic quantization scheme will have
more codes than are necessary since for small 7 we will have
[T — b'| < 1. We can save space by removing these codes
from the codebook. This results in deterministic updates for
the online algorithms in this range since A, = 1. Results
obtained using this optimization are labelled optimized.

0.5

T — T
Relative error bound
Empirical error (Unoptimized, 10 bits)
Empirical error (Optimized, 10 bits)

+

x

0.4

0.3

&

PRt i MW 4 i ¥

B e e
+- i

ij#‘ﬁ*ﬁﬁ“ﬁm%w e

Average relative error

0.1

|
1000

|
10000

| L
100000

Frequency F'(x)

Figure 1: Relative Error for Algorithm B.

08 ————— 11— :
o
4

— —
Algorithm C (15 bits)
Algorithm D Unoptimized (15 bits)

Algorithm D Optinfized (15 bits)

0.7

0.6

0.5

0.4

Average relative error

I 1 |
1000

I 1 |
10000

0 L | L L 1 L L
100000

1
100

Frequency F'(x)

Figure 2: Relative Error for Algorithms C and D.

c=0.5 0‘plimized (11 bil;)
).25 Optimized (11 bits)
€ = 0.5 Unoptimized (11 bits)
€ = 0.25 Unoptimized (11 bits)

0.9

0.8

0.7

Prlerror < €| =46

0.6

2,

. ;
‘.
.
- . Pa0s®s % *
- o %o o ey AR
RS X L s SO
3

-

0.5 . X s
PO

0.4

1 1 | 1 |
1000

0.3 L | L L 1 L
10000 100000

1
10 100

Frequency F'(x)

Figure 3: Distribution of Errors Algorithm D .

6.2 Results

Figure 1 shows that Algorithm B has bounded relative er-
ror that is approximately constant; the larger fluctuations at
higher frequencies are due to data sparsity in this range (very
few objects have such large frequencies). Unoptimized, Al-
gorithm B performs close to the bound of Theorem 2 (Sec-
tion 4) while optimized its error rate is significantly lower.
While not shown here, Algorithm A also performed close to
the bounds given by Theorem 1 and significantly better when
using the integer optimization.

Figure 2 shows that the error for Algorithm C diverges as
predicted by our analysis in Section 5. The bias-corrected
Algorithm D, however, maintains an approximately constant
relative error and our integer optimization further improves
its performance. Estimates are particularly good for low fre-
quencies due to lower variance in the probabilistic updates in
this range.

1248

Figure 3 shows the proportion of frequency estimates with
relative error less than 0.5 and 0.25 respectively for Algo-
rithm D both optimized and unoptimized. These plots sug-
gest that the errors made by this estimators are relatively
concentrated around their expected value; this may be at-
tributed to the geometrically decaying probability of error in
the Bloom filter encoding (see Section 4).

Extending this empirical analysis, we found that Algor-
thims B and D could estimate 95 percent of n-gram frequen-
cies with relative error less than 0.25 using 11 bits and 15 bits
respectively. This compares very favourably with gzip which
used 41 bits per n-gram to store the static frequency data and
does not support random access. We note also that the update
complexity per observation for Algorithm D tended towards
the bound given in Theorem 4 but was strictly lower in prac-
tice.

7 Conclusions

We have presented a range of succinct approximate counting
algorithms for skewed data with robust guarantees on their
expected error. We believe that algorithms such as these may
help with the exploitation of larger data sets in a range of
applications. In future work we intend to adapt these data
structures for a distributed setting.

References

[Alon er al., 1996] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments. In Pro-
ceedings of STOC ’96, pages 20-29, 1996.

[Bloom, 1970] B. Bloom. Space/time tradeoffs in hash coding with
allowable errors. Comm. of ACM, 13:422-426, 1970.

[Brants et al., 2007] T. Brants, A.C. Popat, P. Xu, FJ. Och, and
J. Dean. Large language models in machine translation. In Pro-
ceedings of EMNLP-CoNLL 2007, Prague, 2007.

[Carter er al., 1978] L. Carter, R:W. Floyd, J. Gill, G. Markowsky,
and M.N. Wegman. Exact and approximate membership testers.
In Proceedings of STOC ’78, pages 59-65, 1978.

[Cohen and Matias, 2003] S. Cohen and Y. Matias. Spectral Bloom

filters. In Proceedings of the 2003 ACM SIGMOD, International
Conference on Management of Data, pages 241-252, 2003.

[Cormode and Muthukrishnan, 2005] G. Cormode and S. Muthukr-
ishnan. An improved data stream summary: The Count-Min
Sketch. Journal of Algorithms, 55:58-75, 2005.

[Graff et al., 2005] D. Graff, J. Kong, K. Chen, and K. Maeda. En-
glish Gigaword Second Edition, 2005. LDC2005T12.

[Kumar et al., 2004] A. Kumar, J. Xu, J. Wang, O. Spatscheck, and
L. Li. Space-code Bloom filter for efficient per-flow traffic mea-
surement. In Proceedings of INFOCOM 04, 2004.

[Morris, 1978] Robert Morris. Counting large numbers of events in
small registers. Comm. of the ACM, 21:840-842, 1978.

[Motwani and Raghavan, 1995] R. Motwani and P. Raghavan. Ran-
domized Algorithms. Cambridge University Press, 1995.

[Talbot and Osborne, 2007] D. Talbot and M. Osborne. Ran-

domised language modelling for statistical machine translation.
In Proc. of 45th Annual Meeting of the ACL, 2007.

[Talbot and Talbot, 2008] D. Talbot and J. Talbot. Bloom maps. In
Proc. of 4th Workshop on Analytic Algorithmics and Combina-
torics 2008 (ANALCO’08), pages 203-212, San Francisco, 2008.

