
Predictive Projections

Nathan Sprague
Kalamazoo College
1200 Academy St.

Kalamazoo, MI 49006

Abstract
This paper addresses the problem of learning con-
trol policies in very high dimensional state spaces.
We propose a linear dimensionality reduction algo-
rithm that discovers predictive projections: projec-
tions in which accurate predictions of future states
can be made using simple nearest neighbor style
learning. The goal of this work is to extend the
reach of existing reinforcement learning algorithms
to domains where they would otherwise be inap-
plicable without extensive engineering of features.
The approach is demonstrated on a synthetic pen-
dulum balancing domain, as well as on a robot do-
main requiring visually guided control.

1 Introduction
Scaling reinforcement learning algorithms to handle prob-
lems with high dimensional state spaces has been a longstand-
ing challenge. The problem is particularly acute for the case
of visually guided control, where the raw sensor data may
easily have thousands of dimensions. In such cases, a typi-
cal approach would be to provide the reinforcement learning
algorithm with a front-end that converts raw sensor data to a
low-dimensional state representation that is suitable for learn-
ing. The problem with this approach is that developing the
visual front-end may be more difficult than solving the learn-
ing problem itself. Worse, the process generally needs to be
repeated for each new learning task.

The goal of the work presented here is to develop a linear
dimensionality reduction algorithm that greatly simplifies the
process of finding state representations for control problems
in high dimensional continuous spaces. An appropriate state
representation for reinforcement learning should have at least
two properties: First, the dimensionality of the space should
not be too high. Otherwise the algorithm will be undone by
the curse of dimensionality. Second, when the same action is
taken in similar states, the outcome should be similar. This
makes it possible to safely generalize from observed to unob-
served states.

The proposed algorithm, predictive projections (PP), ad-
dresses both of these considerations. It builds on a body
of recent work in the area of distance metric learning (e.g.
[Goldberger et al., 2004; Weinberger and Tesauro, 2007]) in

which nearest neighbor learning is recast in a probabilistic
framework that allows for gradient based optimization of the
distance metric. These existing algorithms discover projec-
tions of the training data under which nearby points are likely
to have the same class label or similar regression targets. The
algorithm described in this paper makes use of the same ma-
chinery but attempts to find low-dimensional projections un-
der which current state vectors accurately predict future states
in the projected space. The intuition is that projections which
capture the state dynamics in this way are likely to contain
information that will be useful for control.

The remainder of this paper will introduce the predictive
projections algorithm and demonstrate its use on two prob-
lems. The first is a simulated pendulum balancing task, and
the second is a visual control problem on a real robot. In both
cases the algorithm is able to discover projections that enable
successful learning of the target task.

1.1 Metric Learning
The work presented here has its roots in the Neighborhood
Components Analysis (NCA) algorithm [Goldberger et al.,
2004]. The goal of the NCA algorithm is to discover a dis-
tance metric that minimizes error for nearest neighbor clas-
sification. The algorithm begins with a set of input vectors
x1, ..., xn in R

D, along with their class labels, c1, ..., cn. It
then searches for a linear transformation of the input space
that minimizes leave-one-out classification error in the trans-
formed space. This linear transformation, defined by the ma-
trix A, implicitly defines a Mahalanobis distance metric in
the original space, d(xi, xj) = (Axi−Axj)�(Axi−Axj) =
(xi−xj)�C(xi−xj), where C = A�A is a symmetric posi-
tive semi-definite matrix. Since xi and xj are D-dimensional
vectors, A is restricted to be in R

d×D. In this paper we will
be interested in the case where d < D; the transformed space
has lower dimensionality than the input space.

It would be difficult to directly find an A that minimizes the
k-nearest-neighbor classification error rate, because the num-
ber of errors will be a highly discontinuous function of A;
very small changes in A may change the set of nearest neigh-
bors for some points. The innovation behind the NCA algo-
rithm is to recast nearest neighbor learning in a probabilistic
framework. In this framework, expected error is a continu-
ous, differentiable function of A and thus may be minimized
using gradient based techniques.

1223

Under NCA, prediction is performed by choosing a single
neighbor according to a distance-based probability distribu-
tion:

pij =
exp(− ||Axi −Axj ||2)∑

k �=i exp(− ||Axi −Axk||2)
, pii = 0 (1)

where pij indicates the probability of selecting point j to pre-
dict the class of point i.

While NCA was originally developed in the context of
classification, several authors [Keller et al., 2006; Weinberger
and Tesauro, 2007; Sprague, 2007] have explored extensions
of the NCA framework to regression problems. In the clas-
sification formulation, the goal is to minimize the expected
number of misclassified points. In the regression formula-
tion, the goal is to minimize the expected squared prediction
error. The expected squared error for point i can be expressed
as:

δi =
∑

j

pij(yi − yj)2 (2)

Where yi indicates the target value associated with training
point xi. The algorithm proceeds by minimizing the expected
sum squared error across the entire training set:

f(A) =
∑

i

δi =
∑

i

∑
j

pij(yi − yj)2 (3)

This is minimized by differentiating with respect to A and
using gradient descent.

2 Predictive Projections
We assume that the control problems of interest can be de-
scribed as Markov decision processes (MDP). An MDP is
specified as a 5-tuple (S,A,P,R, γ) where S is the space
of possible states; A is the space of possible actions; P is a
transition function where P : S×A×S → [0, 1] represents a
probability distribution over state transitions;R : S×A → R

is a reward function indicating expected immediate reward;
and γ ∈ [0, 1) is a discount value applied to future rewards.

The first step in applying the predictive projections algo-
rithm is to collect a set of samples of the form (s, a, r, s′)
where s is a state vector, a is the action chosen in state s, r is
the resulting scalar reward value, and s′ is the resulting next
state. For all of the examples below, samples are collected by
choosing among the possible actions uniformly at random.

The predictive projections algorithm is motivated by the
observation that in many real world domains the raw state
vectors are noisy and high dimensional. The goal is to find a
low dimensional projection that adequately captures the rel-
evant task dynamics. This is accomplished by searching for
projections that allow for accurate prediction of future states.

It is straightforward to modify Equation (3) so that our
regression targets are vector valued future states instead of
scalars:

f(A) =
∑

i

δi =
∑

i

∑
j

pij

∣∣∣∣s′i − s′j
∣∣∣∣2 (4)

Here pij is calculated by substituting si and sj for xi and xj

in Equation (1).

The drawback of applying this objective is that it penalizes
inaccurate prediction in the original state space, even though
our assumption is that the raw state information is noisy and
may contain many uninformative dimensions. The resulting
gradient may easily be dominated by errors in predicting the
irrelevant information. Preliminary experiments using this
objective (not shown) were not successful.

The proposed solution is to make state predictions in the
same projected space used for neighborhood calculations. In
other words, the predictive projections algorithm searches for
a transformation matrix that renders the transformed state
vectors both predictive and predictable. This can be ex-
pressed by updating Equation (4) as follows:

f(A) =
∑

i

δi =
∑

i

∑
j

pij

∣∣∣∣As′i −As′j
∣∣∣∣2 (5)

The problem with this modified objective function is that it
can be trivially minimized by setting all of the entries of A to
0.

We remedy this by dividing the squared error term by the
squared Frobenius norm of A:

f(A) =
∑

i

δi =
∑

i

∑
j

pij

∣∣∣∣As′i −As′j
∣∣∣∣2

||A||2F
(6)

This has the effect of rendering the error term invariant to
changes in the scale of A. (Although pij does remain sensi-
tive to the scale of A.)

Differentiating Equation (6) with respect to A results in the
following gradient:

∂f

∂A
= 2A

∑
i

∑
j

pij

(
δi −

∣∣∣∣As′i −As′j
∣∣∣∣2

||A||2F

)
sijs

�
ij

+
pij

||A||2F

(
s′ijs

′
ij

� − I

∣∣∣∣As′i −As′j
∣∣∣∣2

||A||2F

)
(7)

For the examples presented in this paper Equation (6) is
minimized through the method of conjugate gradients 1. In
order to more efficiently evaluate the gradient, we truncate
the sums in (7) as suggested in [Goldberger et al., 2004]; the
inner sums are evaluated in descending order of probability,
and the sum is truncated when 99.9% of the probability mass
is accounted for. For the examples below, the minimization
generally converges in less than 15 minutes. Weinberger and
Tesauro have shown that algorithms of this type can be scaled
up to handle as many as 60,000 training points [2007].

Following this gradient acts to reduce the objective in two
different ways. It adjusts A to be more predictive by increas-
ing the probability that a neighbor will be chosen if it suc-
cessfully predicts the next state. It also adjusts A to be more
predictable, by moving target states together whenever there
is a high probability they will be chosen to predict each other.

The fact that the algorithm looks for predictable projec-
tions makes it necessary to pre-whiten the state vectors. Oth-
erwise the algorithm will preferentially preserve dimensions

1In particular, we use Carl Rasmussen’s “minimize” package:
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/.

1224

with low variance because they are comparatively easy to pre-
dict whether or not they contain useful structure. The idea is
that the original scaling of the data is not important while
finding predictive structure is.

So far, our discussion has not accounted for the fact that
there will generally be multiple possible actions. This is eas-
ily addressed by partitioning the samples according to which
action was taken in each and by treating each set of samples
as an independent learning problem, with the constraint that
they share a common A. It is straightforward to adapt the
algorithm described above to this scenario: The optimization
objective in Equation (6) is modified to be a sum of objectives
of the same form, and the gradient in Equation (7) is modified
to be the sum of the corresponding gradients.

In summary, the predictive projections algorithm proceeds
as follows:

• Collect samples under an arbitrary policy.

• Pre-whiten the state data.

• Partition samples according to which action was taken
in each.

• Select an initial A.

• Minimize the multiple-action version of Equation (6)
with respect to A.

The only parameters that need to be selected are the number
of rows of A and A’s initial value.

The output of the algorithm is the final A matrix. This ma-
trix can then be used to project state data into a space that is
more suitable for task learning. Although the objective in (6)
minimizes prediction error, the ultimate goal is not to make
state predictions, but to discover a projection of the state data
that captures the dynamics of the task. Predictions could be
used directly to provide a generative model of the task, but
we will not do so in this paper.

The predictive projections algorithm as described above
may not perform well in cases where the effects of differ-
ent actions are restricted to specific state dimensions. Since
there is no explicit penalty for failing to predict some dimen-
sions, the algorithm may minimize the objective function by
finding an A which is not full rank, thus accurately predict-
ing some dimensions while discarding others. This did not
prove to be an issue in the domains explored in this paper. In
domains where it is an issue, the problem could be addressed
by constraining A to be orthonormal and introducing a width
parameter in Equation (1) as is done in [Sprague, 2007]. This
would force the algorithm to retain exactly d dimensions in
the projected space when A is in R

d×D.

3 Examples
For the examples in this paper, we will use the least squares
policy iteration (LSPI) algorithm to handle task learning.
LSPI has some attractive properties: It can be applied to
continuous space problems, and it is an off-policy algorithm,
meaning that the same set of samples used for the predictive
projections algorithm can be used to find a policy.

LSPI attempts to find a good approximation of the opti-
mal value function Q∗(s, a), which expresses the expected

amount of discounted return that the agent will receive if it
takes action a in state s and acts optimally thereafter. If this
function is known, then the deterministic optimal policy can
be specified as:

π(s) = argmax
a

Q∗(s, a).

LSPI represents an approximation of the value function as
a linear combination of k basis functions φi(s, a):

Q̂(s, a; w) =
k∑

i=1

φi(s, a)wi = φ(s, a)�w (8)

The objective of the LSPI algorithm is to find a setting of
the w vector that results in a good approximation of the true
optimal value function Q∗(s, a).

A major challenge in applying LSPI is selecting appro-
priate basis functions. The predictive projections algorithm
greatly simplifies this process for high dimensional tasks.
Rather than specifying basis functions in the original state
space, we specify them in the projected space discovered by
the algorithm. This is likely to be easier both because the pro-
jected space has lower dimensionality than the original space
and because it is explicitly constructed to capture the dynam-
ics of the task. All of the examples presented in this paper
will make use of radial basis functions (RBFs) for the φi in
Equation (8).

3.1 Pendulum
The first example is a variation of the inverted pendulum bal-
ancing task described in [Lagoudakis and Parr, 2003] . In this
task the goal is to balance a pendulum by applying forces to
an attached cart. The state space of the problem consists of
the vertical angle θ and the angular velocity θ̇ of the pendu-
lum. The state dynamics are described by the equation:

θ̈ =
g sin(θ)− αmlθ̇2 sin(2θ)/2− α cos(θ)u

4l/3− αml cos2(θ)

where g is the gravitational constant, m is the mass of the
pendulum, and l is its length. The constant α is equal to
1/(m + M), where M is the mass of the cart. The variable
u represents the amount of force that is applied to the cart.
For the experiments presented here, u will take one of three
possible values: −50 Newtons (left), +50 Newtons (right),
or 0 Newtons. These actions are noisy, with uniform noise in
the range [−10, 10] added to each action. New actions are se-
lected at .1 second intervals, and the specified force is applied
until the next action is chosen. If the angle of the pendulum
ever falls below the horizontal, the trial ends, and there is a
reward of −1. Each time step that the pendulum stays above
the horizontal results in a reward of 0. All constants are the
same as those described in [Lagoudakis and Parr, 2003]2.

In the original version of this task, the learning algorithm is
given direct access to the state variables θ and θ̇. In the mod-
ified version, six dimensions containing normally distributed

2The LSPI implementation used in this paper, as well as an im-
plementation of the pendulum simulator can be downloaded from
http://www.cs.duke.edu/research/AI/LSPI/.

1225

−2 0 2

−5

0

5

True Distribution

−5 0 5
−3

−2

−1

0

1

2

3
Initial A

−100 0 100
−200

−100

0

100

200
Final A

Figure 1: State projections before and after applying the PP algorithm. Corresponding points have the same color in all three
figures.

random values are appended to the original state variables,
and the resulting vector is projected through a randomly gen-
erated mixing matrix:

s = X ∗ [θ, θ̇, z1, z2, z3, z4, z5, z6]�.

Here s is the resulting state vector, and X is a randomly gen-
erated mixing matrix in R

8×8 where each entry is uniformly
selected from the range [−1, 1]. The zi are selected according
to zi ∼ N (0, 10). For comparison, the variance of θ and θ̇
are approximately 0.35 and 5.97 respectively.

The point of this task is to illustrate that the predictive pro-
jections algorithm is able to discover the two relevant state di-
mensions without direct access to the mixing matrix X . The
task proceeds as follows: First, a random X is created. Next,
a set of samples is generated during 500 trials, where each
trial is initialized with the pendulum upright and stationary,
and is limited to a maximum of 100 steps. This generally
results in between 4300 and 4500 total samples.

Once the mixed samples are generated, they are pre-
whitened and passed to the PP algorithm. The A matrix is
arbitrarily initialized to:

A =
[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
This constrains the metric space discovered by PP to be two
dimensional.

Figure 1 illustrates a representative example of the results
obtained by the PP algorithm. Figure 1a shows a set of sam-
ples in the original space. Figure 1b shows the location of
the same samples in the projected space defined by the initial
A. Figure 1c shows the samples in the projected space de-
fined by A after the PP algorithm has converged. Although
the points in 1c have been rotated and rescaled relative to the
“true” distribution illustrated in 1a, it is clear that the PP al-
gorithm has successfully extracted the two state dimensions
while suppressing the noise dimensions.

In order to investigate the appropriateness of the of the pro-
jections discovered by PP for learning, we repeated the pro-
cess described above 100 times, generating 100 different pro-
jections and 100 corresponding policies. For each run, a new
X is generated along with a new set of samples. After run-
ning the PP algorithm, the samples are projected through the

0

1000

2000

3000

ba
la

na
ci

ng
 s

te
ps

Figure 2: Balancing steps for the pendulum task.

A matrix and finally rescaled to be contained inside the unit
square. This rescaling is done to simplify the specification of
the radial basis functions that are used by the LSPI algorithm.

For a particular state and action value, all basis functions
are zero except for those corresponding to the current action,
which have the form:(

1, e−
‖s−μ1‖2

2σ2 , e−
‖s−μ2‖2

2σ2 , · · · , e−
‖s−μn‖2

2σ2

)�

Here the μi’s are the positions of the radial basis functions
in the projected and scaled space, and σ = .02 is a width
parameter in that same space.

In [Lagoudakis and Parr, 2003] radial basis functions are
positioned in a 3 × 3 grid centered at the origin. They are
spaced to provide good coverage of state values that corre-
spond to states where the pendulum has not already fallen
past a point where it can be recovered. In this modified ver-
sion of the task, it is not possible to predict in advance the
position or orientation of that recoverable region in the pro-
jected space. Therefore, rather than positioning the RBFs in
a fixed grid, we randomly select a subset of training points in
the projected and scaled space to serve as RBF centers. The
selection of samples is accomplished by randomly ordering
all of the sample points, and sequentially selecting points as
long as no other point is within a distance of .05. Once the
end of the list of points is reached, all candidate points that
are within .05 of any of the previously selected points are
removed, and the process is repeated until no candidates re-

1226

Figure 3: The robot and a sample of its visual input (inset).

main. This ensures that no sample point will be farther than
.1 from an RBF center. The resulting number, n, of RBF cen-
ters ranged from 16 to 43 depending on the selection process
and the distribution of points.

Once LSPI has discovered a policy for each of the 100 runs,
those policies are tested by executing them for 100 trials each.
Each trial is terminated after 3000 successful balancing steps.
The results are presented in Figure 2. The error bars show
95% confidence intervals for the mean number of steps for
each run. Error bars for trials within runs are not displayed.
The stars illustrate the maximum and minimum mean number
of balancing steps across the 100 runs. The average number
of balancing steps is more than 2000, or more than 3 minutes
of real time. These results are comparable to, though some-
what lower than, those presented in [Lagoudakis and Parr,
2003] where the learning takes place directly in the original
state space using radial basis functions that are hand posi-
tioned. Looking over the discovered projections suggests that
those runs that do not result in successful policies do not fail
because the predictive projections algorithm failed to find an
appropriate projection. Instead, the samples were not well
distributed, or the randomly positioned RBFs ended up in in-
appropriate locations.

3.2 Robot
The second task is a visual navigation problem on a mo-
bile robot. The robot is an iRobot Create with a small lap-
top mounted on top. An inexpensive USB webcam provides
visual input. The task involves moving within a 132cm ×
132cm enclosure without colliding with the walls. Figure 3
shows the robot and the enclosure as well as an example of
the input from the camera3

At each time step the robot chooses from one of three pos-
sible actions: Left (turn in place −18o), Right (turn in place
18o), and Forward (move ahead 7.5cm). A reward of 1.0 is
received each time the robot moves forward without trigger-
ing its bump sensor. If the robot ever collides with a wall, it
receives a reward of 0, and the trial is terminated.

The robot collects training data by following a random pol-

3Robot control is handled through the COIL li-
brary(http://code.google.com/p/libcreateoi/). Vi-
sual processing is handled by the OpenCV library
(http://sourceforge.net/projects/opencvlibrary/).

icy for 6000 steps. After each collision, the robot turns in
place 180o and begins a new trial from the resulting position.

The images captured by the camera consist of 160 × 120
color pixels. These images are first cropped down to 160 ×
100 (cropping out the front of the robot) and then rescaled
to 20 × 20 pixels. This results in a 1200 dimensional input
vector: three color channels with 400 entries each. In the
interest of computational efficiency, these 1200 dimensional
vectors are reduced to 25 dimensions by applying principal
components analysis (PCA) and keeping only the 25 dimen-
sions with the highest variance. For the results presented be-
low, these 25 dimensions account for approximately 91% of
the variance in the data set.

In this case, the goal of the predictive projections algorithm
will be to reduce the resulting 25 dimensional input vectors to
2 state dimensions that are appropriate for learning the navi-
gation task. The 25 dimensional input vectors are whitened,
and the 2× 25 A matrix is initialized to

A =
[

1 0 0 0 ...
0 1 0 0 ...

]
.

Thus the initial projection corresponds to the first two prin-
cipal components. We also experimented with randomly ini-
tializing the A matrix, with comparable results.

After the predictive projections algorithm has converged,
the final A matrix is orthonormalized using the Gram-
Schmidt process. This is not necessary, but it makes com-
paring the projection discovered by PP to those discovered
by PCA more straightforward, and it leads to a slightly bet-
ter policy. As in the pendulum task, the two dimensional
state vectors are scaled to fit in the unit square after they
are projected through the matrix A. The resulting two-
dimensional samples are passed to LSPI for policy learn-
ing. Once again we use RBF basis functions. However,
for this task the RBF centers are positioned at the 16 points
{.2, .4, .6, .8}×{.2, .4, .6, .8} rather than being randomly po-
sitioned and σ2 = .03. For the sake of comparison, we also
use LSPI to learn a policy in the space defined by the first two
principal components. The same training data and the same
set of basis functions is used.

Figure 4 shows the projection defined by the first two prin-
cipal components, as well as the projection discovered by the
predictive projections algorithm. The color of the samples in
this figure represent the action that is selected at that point
under the corresponding policy. Green represents Forward,
red represents Left and blue represents Right.

The projection discovered by the PP algorithm clearly un-
covers the intrinsic two dimensional structure of this task.
The horizontal axis corresponds to translation while the ver-
tical axis corresponds to rotation. In contrast, the projection
discovered by PCA is not relevant to the task. The first prin-
cipal component seems to capture the amount of wall present
in the image while the second captures the overall lighting
level. These different projections result in substantially dif-
ferent policies. It is difficult to define an effective policy in
the space recovered by PCA because states that are function-
ally very different (wall on the left versus wall on the right)
end up near each other in the projected space. In contrast,
LSPI is able to discover a simple policy in the space discov-

1227

Figure 4: State projections under PCA and PP. A subset of samples are labeled with their corresponding visual input.

random PCA PP
0

10

20

30

40

re
w

ar
d

Figure 5: Comparison of reward for three different policies.

ered by the PP algorithm. The robot moves forward when
the wall is sufficiently far away and turns left or right as ap-
propriate when it approaches a wall. This figure would look
essentially the same if we had not orthonormalized A, except
that the distribution of points on the right would be somewhat
elongated along the “translation” axis.

The two policies were tested by executing them for 80 trials
each. Each trial begins at a random position and orientation
in the enclosure and continues for 50 steps or until a collision
occurs. Figure 5 compares the amount of reward received
under the two policies, as well as the amount of reward re-
ceived by a random policy under the same conditions. The
stars indicate maximum and minimum reward values across
all trials. The dotted horizontal line corresponds to the maxi-
mum amount of reward received by a human operator during
three trials of steering the robot from an optimal starting posi-
tion. As expected, the policy derived from the PP projection
dramatically outperforms the random policy, as well as the
policy derived from PCA.

The fact that the PP policy does not consistently perform at
the same level as the human operator results from two main
factors. First, the starting position is random, so it may be
necessary to make several turns at the beginning of a trial.

Second, this task suffers from some perceptual aliasing. Since
the robot has a limited field of view, there are functionally
distinct states that appear identical. For example, if the robot
is facing a wall near a corner, it has no way of knowing that
the corner is there. This can cause the robot to dither; It turns
left until the corner disappears out of its field of view to the
right, then it turns right until the corner disappears out of its
field of view to the left. This is a separate issue from that
addressed by the predictive projections algorithm.

4 Related Work
A project that is close in spirit to the work presented here is
the action respecting embedding (ARE) algorithm described
in [Bowling et al., 2005]. That algorithm uses semidefinite
programming to find a non-linear embedding of state data in
which actions represent distance preserving transformations.
The ARE algorithm is less restrictive in the class of trans-
forms it is able to discover but more restrictive in its con-
ception of the effects that actions must have in the recovered
space. In its original formulation, ARE would be impossi-
ble to apply to the tasks presented in this paper because it
does not provide a mechanism for mapping new points into
the discovered manifold. However, the authors have recently
described several variants of the algorithm that scale to larger
data sets and make it possible to map out-of-sample points
[Biggs et al., 2008]. It would be worthwhile to compare the
performance of these algorithms to predictive projections on
the tasks explored in this paper.

There have been a number of recent algorithms designed to
automatically generate an appropriate set of basis functions
for learning Markov decision problems. The most popular of
these is the proto-value functions (PVF) approach described
in [Mahadevan and Maggioni, 2007] In the proto-value func-
tion framework, sample state trajectories are used to learn a
diffusion model of the state dynamics. For discrete state sys-
tems, this is a weighted graph where connections are inferred
from observed transitions. For a system with continuous state
values, a subset of observed states serves as the nodes in the
graph, and nodes are connected to their k nearest neighbors.

1228

In either case, basis functions are found by calculating the
eigenvectors of the graph Laplacian of the learned diffusion
matrix. The eigenvectors with the smallest eigenvalues form
a compact representation that captures the large-scale tempo-
ral features of the transition process. Empirically, these basis
functions have shown good performance on a number of chal-
lenging test problems.

To our knowledge, the proto-value function framework has
not been applied to the type of noisy, high dimensional con-
trol problems addressed in this paper. It seems likely that the
neighborhood calculations required for constructing the dif-
fusion model could be dominated by noise dimensions, par-
ticularly in very noisy tasks such as the modified pendulum
domain described above. In that case, the PVF approach and
predictive projections would be complementary: The PP al-
gorithm could find a low dimensional state projection that
contains relevant state information, and the PVF algorithm
could then be used to discover a set of appropriate basis func-
tions in that space.

Another closely related project is the basis iteration algo-
rithm described in [Sprague, 2007]. This algorithm also uses
gradient based metric learning to discover an appropriate pro-
jection, but it focuses directly on finding a metric that allows
for accurate estimation of the optimal value function. It ac-
complishes this by iterating value function estimation with
updates to the projection matrix. This algorithm has the ad-
vantage of incorporating reward information, but it depends
on starting with an initial projection that enables a reasonable
estimate of the optimal value function. This can be difficult,
especially when reward is absent or very intermittent. The
work presented here was motivated, in part, by the fact that
the basis iteration algorithm fails to find appropriate projec-
tions for the tasks described above.

The work presented here was directly inspired by the anal-
ysis presented in [Parr et al., 2008]. That paper demonstrates
that the Bellman error in algorithms, such as LSPI, that make
use of linear methods, can be expressed as a combination of
errors in the prediction of next feature values and errors in
predicting reward. The PP algorithm attempts to find projec-
tions that make it possible to minimize feature error.

5 Discussion and Future Work
One direction for future work is to explore ways to incorpo-
rate reward information in the process of finding projections.
Ultimately, a good projection is one that makes it possible
to maximize reward on the task. It is not difficult to envi-
sion cases in which there are predictive projections that are
not actually relevant to a task, as well as cases where relevant
projections are predictive of reward but not of future states.
The most straightforward approach would be to add a term to
Equation (6) that penalizes error in reward prediction.

6 Conclusion
For real world control problems, the state description pro-
vided by sensor data is often not well suited for specifying
controllers. In these cases it is necessary to project raw state
data onto some feature space that captures the essential ele-
ments of the state dynamics. The simple premise of the pre-

dictive projections algorithm is that we should search for a
feature space such that features of the current state are max-
imally predictive of features of the next state. The effective-
ness of that approach has been demonstrated on a visually
guided navigation task. For that task, appropriate visual fea-
tures are learned almost entirely from scratch, and as a result
it is possible to discover a nearly optimal control policy using
a standard reinforcement learning algorithm.

Acknowledgments
I wish to thank the anonymous reviewers for their helpful
comments and suggestions.

References
[Biggs et al., 2008] Michael Biggs, Ali Ghodsi, Dana

Wilkinson, and Michael Bowling. Scalable action re-
specting embedding. In Proceedings of the Tenth Inter-
national Symposium on Artificial Intelligence and Mathe-
matics (ISAIM), 2008.

[Bowling et al., 2005] Michael Bowling, Ali Ghodsi, and
Dana Wilkinson. Action respecting embedding. In Pro-
ceedings of the 22nd International Conference on Machine
Learning, Bonn, Germany, 2005.

[Goldberger et al., 2004] Jacob Goldberger, Sam Roweis,
Geoff Hinton, and Ruslan Salakhutdinov. Neighbourhood
component analysis. In Neural Information Processing
Systems, 2004.

[Keller et al., 2006] Philipp W. Keller, Shie Mannor, and
Doina Precup. Automatic basis function construction
for approximate dynamic programming and reinforcement
learning. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 449 – 456, Pittsburgh,
PA, 2006.

[Lagoudakis and Parr, 2003] Michail G. Lagoudakis and
Ronald Parr. Least-squares policy iteration. Journal of
Machine Learning Research, 4:1107–1149, 2003.

[Mahadevan and Maggioni, 2007] Sridhar Mahadevan and
Mauro Maggioni. Proto-value functions: A Lapla-
cian framework for learning representation and control in
markov decision processes. Journal of Machine Learning
Research, 8:2169–2231, 2007.

[Parr et al., 2008] Ronald Parr, Lihong Li, Gavin Taylor,
Christopher Painter-Wakefield, and Michael L. Littman.
An analysis of linear models, linear value-function ap-
proximation, and feature selection for reinforcement learn-
ing. In International Conference on Machine Learning
(ICML), 2008.

[Sprague, 2007] Nathan Sprague. Basis iteration for reward
based dimensionality reduction. In Proceedings of the
6th IEEE International Conference on Development and
Learning (ICDL), London, 2007.

[Weinberger and Tesauro, 2007] Kilian Weinberger and Ger-
ald Tesauro. Metric learning for kernel regression. In
Eleventh International Conference on Artificial Intelli-
gence and Statistics. Puerto Rico, 2007.

1229

