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Abstract

Gaussian Processes (GPs) are promising Bayesian
methods for classification and regression problems.
They have also been used for semi-supervised
learning tasks. In this paper, we propose a new al-
gorithm for solving semi-supervised binary classi-
fication problem using sparse GP regression (GPR)
models. It is closely related to semi-supervised
learning based on support vector regression (SVR)
and maximum margin clustering. The proposed al-
gorithm is simple and easy to implement. It gives a
sparse solution directly unlike the SVR based algo-
rithm. Also, the hyperparameters are estimated eas-
ily without resorting to expensive cross-validation
technique. Use of sparse GPR model helps in mak-
ing the proposed algorithm scalable. Preliminary
results on synthetic and real-world data sets demon-
strate the efficacy of the new algorithm.

1 Introduction

Supervised learning algorithms require enough labeled train-
ing data to learn reasonably accurate classifiers which gener-
alize well. But, in many application domains like bioinfor-
matics or text processing, labeled data are often expensive to
get. In such applications, unlabeled data are easily available
in abundance. Semi-supervised learning uses large amount
of unlabeled data, along with the labeled data, to build better
classifiers. Zhu [2005] gives a detailed review of the literature
on semi-supervised learning.

In this paper, we consider the semi-supervised learning
problem which involves binary classification task and assume
that a decision boundary passes through the low density re-
gion which separates the two classes [Zhu, 2005]. Bennett
and Demirez [1998] formulated a semi-supervised support
vector machine (SVM) problem and proposed to solve it us-
ing mixed integer programming method. The resulting solu-
tion labels the unlabeled data so as to maximize the margin.

Xu et al [2004] proposed an extension of a maximum mar-
gin clustering problem to a semi-supervised learning prob-
lem by formulating it as a constrained semi-definite pro-
gramming (SDP) problem. The SDP solvers are, however,
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computationally very expensive. Lawrence et al [2005] pro-
posed a Gaussian process based algorithm using the null cate-
gory noise model (NCNM) for semi-supervised classification
(SSC). This algorithm designs a sparse GP classifier and finds
the decision boundary which avoids dense unlabeled data re-
gion. However, the effective likelihood associated with this
noise model is not log-concave. Therefore, the Gaussian ap-
proximation to the noise model can have negative variance.
Sindhwani et al [2007] proposed a graph-based construction
of semi-supervised GP classifier. This method adapts a co-
variance function, based on the geometry of unlabeled data.
The resulting GP classifier is however not sparse. Thus,
there is a need to design a simple and sparse GP classifier
for SSC which gives comparable/better generalization perfor-
mance with state-of-the-art GP classifiers.

In this paper, we propose new algorithms for semi-
supervised classification, which combine maximum margin
clustering idea with support vector regression (SVR) and
sparse GP regression (GPR) models. Zhang et al [2007] pro-
posed a simple and practical approach for clustering based on
maximum margin and SVR. We first propose to extend these
ideas to semi-supervised classification. This algorithm does
not directly result in a sparse solution, unless re-training is
used. Sparse solutions are preferred because of lower com-
putational complexity and ease of interpretation. In many
applications involving decision making, one is interested in
developing probabilistic models. SVR based algorithm for
SSC does not provide probabilistic interpretation of the re-
sults on unseen test data. Tuning of hyperparameters is done
using expensive techniques like cross-validation. Such tech-
niques are not reliable in SSC where the number of labeled
examples is small. With this motivation, we propose to de-
sign a sparse GPR model for SSC. The algorithm is simple
and easy to implement. Further, the use of sparse GPR model
helps in making it scalable. As is the case with standard GP
based algorithms, hyperparameter tuning is done easily with-
out resorting to techniques like cross-validation. We evalu-
ated the performance of the proposed algorithm on synthetic
and real-world data sets. Comparisons with the SVR based al-
gorithm and the NCNM algorithm indicate that the proposed
algorithm is a useful alternative to design sparse classifiers
for SSC.

In the next Section, maximum margin clustering and GP
based algorithms for semi-supervised classification are re-
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viewed. The proposed algorithms are presented in Section 3.
Section 4 gives experimental results which demonstrate the
effectiveness of the proposed sparse GPR based algorithm on
various data sets. Section 5 concludes the paper.

2 Background

In semi-supervised classification, we are given a training data
set composed of L labeled examples, D = {xi, yi}L

i=1,

xi ∈ Rd, yi ∈ {−1, 1}, and U unlabeled examples, D′ =
{x∗

i }U
i=1. Traditional classifiers are designed using only the

set D. In SSC, our aim is to use D′ along with D to deter-
mine y∗

i , i = 1, . . . , U and design a classifier having better
generalization performance. We now give a brief overview of
maximum margin clustering and some GP based approaches
for semi-supervised classification discussed in the literature.

2.1 Maximum Margin Clustering

In clustering problems, the class labels are unknown. Given
the input data {x∗

i }U
i=1, the aim of a clustering algorithm is to

assign labels y∗
i to the training data such that similar data

points have the same label. Use of large margin methods
for clustering problems is gaining wide popularity [Xu et al.,
2004; Zhang et al., 2007]. Zhang et al proposed a practi-
cal approach for maximum margin clustering. They observed
that an iterative algorithm for maximum margin clustering us-
ing support vector machine (SVM) classifier did not perform
well because of the problem of poor local minima. So, to
improve the performance, they proposed to replace the SVM
classifier by SVR with Laplacian loss.

In regression problems, we are given a pair of input-output
samples, {(x∗

i , y
∗
i )}U

i=1 where y∗
i ∈ R. Let the function

value at x∗
i be represented by an unobservable latent vari-

able f(x∗
i ). The goal of SVR problem is to find a function

f(x∗) = wT φ(x∗) + b which best fits the data. Here, φ is a
mapping induced by a kernel function k. The primal problem
for SVR with Laplacian loss can be written as

minw,b,ξ∗

i

1

2
‖w‖2 + C

∑
i ξ∗i

s.t. |y∗
i − (wT φ(x∗

i ) + b)| = ξ∗i ∀ i
(1)

where C > 0 is a hyperparameter. Zhang et al [2007] used
the following SVR formulation to devise an iterative algo-
rithm for maximum margin clustering:

minw,b,y∗

i
,ξ∗

i

1

2
‖w‖2 + C

∑
i ξ∗i

s.t. |y∗
i − (wT φ(x∗

i ) + b)| = ξ∗i ∀ i

y∗
i ∈ {−1, 1} ∀ i,−l ≤ eT y∗ ≤ l

(2)

where a cluster balance constraint has been added to the for-
mulation (1) to avoid meaningless solutions, l ≥ 0 is a con-
stant controlling the class imbalance and e is the vector of
ones. As mentioned earlier, y∗

i ’s are not known in clustering
problems. In the iterative SVR based algorithm for cluster-
ing, the idea is to initialize y∗

i ’s using a simple clustering al-
gorithm. The dual problem of (2) is then solved and optimal
w is obtained using Karush-Kuhn-Tucker (KKT) conditions.
Given this w, the optimal values of b and y∗ can be obtained
by solving the following problem:

minb,y∗

i
|y∗

i − (wT φ(x∗
i ) + b)|

s.t. y∗
i ∈ {−1, 1} ∀ i

−l ≤ eT y∗ ≤ l

(3)

This formulation (3) can be solved easily by sorting the values
of wT φ(x∗

i ) and then setting b such that the cluster balance
constraint is satisfied and the objective function value in (3)
is minimized. In the iterative SVR algorithm for maximum
margin clustering, the dual of (2) and the formulation (3)
are solved repeatedly till some stopping condition is satis-
fied [Zhang et al., 2007].

2.2 Gaussian Processes for Semi-Supervised
Classification

We now briefly describe GPs and some algorithms which use
GPs for semi-supervised classification.

The learning in GPs involves learning of latent functions
f of the input variable. In standard GPs, the latent variables
{f(xi)} are random variables with prior distribution, P (f) =

N (f ;0,K), where f = (f1, . . . , fL)
T

, fi = f(xi) and K is
a L × L covariance matrix whose ij-th element is k(xi,xj),
k(·) being the kernel function. We call the parameters associ-
ated with the kernel function as kernel hyperparameters. The
posterior distribution over f is P (f |y) ∝ P (y|f)P (f). If the
output observations yi’s are assumed independent from the
input data, P (y|f) =

∏
P (yi|fi) where P (yi|fi) is called a

noise model. For regression case the noise model can take
the form of Gaussian while for the classification case it can
be the probit noise model [Rasmussen and Williams, 2006].

Lawrence et al [2005] proposed to use the “Null Category
Noise Model” (NCNM) for SSC using sparse GP classifiers.
This model results in a region in the input space, analogous
to the notion of margin in support vector machines, that ex-
cludes unlabeled data points. For this purpose, a new cat-
egory for the output variable y was introduced. With this,
y ∈ {−1, 0, 1}. Further, a constraint was imposed such that
unlabeled data point never comes from the category, y = 0.
When a data point is labeled, the model acts as a standard
binary classification model. On the other hand, for an un-
labeled point, the assignment of label to it depends on the
mean and variance of P (fi|xi). Note that the effective like-
lihood associated with the proposed noise model is not log-
concave. Therefore, the best Gaussian approximation to the
noise model can have negative variance. Such cases are han-
dled by setting a negative variance to zero. Also, posterior
variance can increase when a point is included. To make the
inference tractable, approximation inspired by Assumed Den-
sity Filtering (ADF) was proposed. This technique approxi-
mates the posterior with a Gaussian by matching the moments
between the true posterior and the approximation [Rasmussen
and Williams, 2006].

Sindhwani et al [2007] proposed to use a graph based con-
struction of semi-supervised GP classifier. This approach is
based on the intuition that, for many real world problems,
unlabeled examples often identify structures such as a low di-
mensional manifold, whose knowledge may improve infer-
ence. Such geometric properties of unlabeled data are in-
corporated into the covariance function. Expectation Prop-
agation ideas were used for approximating posterior process
and model selection. But, the resulting GP classifier was not
sparse.

Thus, there is a need to have a simple and sparse GP clas-
sifier for SSC.
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3 Simple Algorithms for Semi-Supervised

Classification

In this section, we present an SVR based algorithm for semi-
supervised classification using the idea of maximum margin
clustering. This algorithm is then extended to design a sparse
GPR model for semi-supervised classification.

3.1 Semi-Supervised Classification using SVR
(SSuSVR)

The problem formulation (2) can be easily extended to solve
the SSC problem. In particular, the new problem can be writ-
ten as

minw,b,y∗

i
,ξi,ξ

∗

i

1

2
‖w‖2 + CL

∑L

i=1
ξi + CU

∑U

i=1
ξ∗i

s.t. |yi − (wT φ(xi) + b)| = ξi, i = 1, . . . , L

|y∗
i − (wT φ(x∗

i ) + b)| = ξ∗i , i = 1, . . . , U

y∗
i ∈ {−1, 1} ∀ i,−l ≤ eT y∗ ≤ l

(4)
where CL and CU are positive hyperparameters. By fixing
y∗

i ’s, it is easy to write the dual of the above problem. The
optimal w can be found using the KKT conditions. For this
optimal w, the optimal b and y∗

i ’s can be obtained by solving
the following problem:

minb,y∗

i
CL

∑L

i=1
ξi + CU

∑U

i=1
ξ∗i

s.t. |yi − (wT φ(xi) + b)| = ξi, i = 1, . . . , L

|y∗
i − (wT φ(x∗

i ) + b)| = ξ∗i , i = 1, . . . , U

y∗
i ∈ {−1, 1} ∀ i,−l ≤ eT y∗ ≤ l

(5)
The above problem can be solved along the lines suggested
in subsection 2.1. Thus the algorithm for semi-supervised
classification repeatedly finds the solutions of the dual of (4)
and (5) until a stopping condition is satisfied. We call this
algorithm as SSuSVR (Semi-supervised Classification using
SVR) and it is given below:

Algorithm 1 Semi-Supervised Classification using SVR
(SSuSVR)

Train a SVM classifier using labeled points and find y∗.
repeat

Train SVR by solving the dual of (4).
Compute w from the KKT conditions.
Compute the bias b using the method described in 2.1.
Set y∗

i = sgn(wT φ(x∗
i ) + b) ∀ i = 1, . . . , U .

until Algorithm converges or maximum number of itera-
tions are finished

Note that the positive hyperparameters, CL and CU are
typically determined using cross-validation. In the case of
SSC, only a few labeled examples are available and there-
fore, the cross-validation technique is not guaranteed to give
proper values of hyperparameters. Further, the Laplacian loss
function used in the formulation (4) does not directly result in
a sparse solution of the problem. Also, the resulting model is
not probabilistic. These problems can be alleviated by using
sparse GPR models for SSC. GPs use a principled approach
for hyperparameter determination and also give confidence
about prediction. We now discuss the proposed GP based al-
gorithms for semi-supervised classification.

3.2 Semi-Supervised Classification using GPR
(SSuGPR)

For Gaussian process regression, we can write y = f + ψ,
where ψ ∼ N (ψ; b, σ2

NI). Consequently, the problem of
finding f and b is equivalent to solving the following opti-
mization problem:

minf ,b
σ2

N

2
fT K−1f +

∑
i (yi − (fi + b))

2
. (6)

The kernel hyperparameters are determined by maximizing
the marginal likelihood function [Rasmussen and Williams,
2006].

We now describe a GPR based algorithm for semi-

supervised classification. Let N = L + U , F = (fT f∗T )
T

and K̃ denote the covariance matrix obtained using both
the labeled and unlabeled examples. In the case of semi-
supervised classification, the formulation (6) can be modified
to

minF,b,y∗

σ2

N

2
FT K̃−1F + CL

∑L

i=1
ξ2
i + CU

∑U

i=1
ξ∗i

2

s.t. yi − (fi + b) = ξi, i = 1, . . . , L
y∗

i − (f∗
i + b) = ξ∗i , i = 1, . . . , U

y∗
i ∈ {−1, 1} ∀ i,−l ≤ eT y∗ ≤ l

(7)
The above problem is similar to (4) except that it uses the
squared error loss instead of the Laplacian loss and uses a dif-
ferent regularizer. Any of these loss functions ensures that the
decision boundary passes through the low density region, by
penalizing any deviation from f + b = y. The squared error
loss function has the advantage that it is differentiable every-
where and GP regression formulation can be directly used.
Though it is possible to give different weights to labeled and
unlabeled examples, we set CL and CU to 1 corresponding to
standard GP regression. For fixed y∗ and b, the above prob-
lem can be solved for F using standard optimization tech-
niques. Given f and f∗, y∗ and b can be obtained by solving
the following problem:

miny∗,b

∑L

i=1
ξ2
i +

∑U

i=1
ξ∗i

2

s.t. yi − (fi + b) = ξi, i = 1, . . . , L
y∗

i − (f∗
i + b) = ξ∗i , i = 1, . . . , U

y∗
i ∈ {−1, 1} ∀ i, −l ≤ eT y∗ ≤ l

(8)

Alternately, one can use the Laplacian loss function and solve
the following problem to determine y∗ and b.

miny∗,b

∑L

i=1
|ξi|+

∑U

i=1
|ξ∗i |

s.t. yi − (fi + b) = ξi, i = 1, . . . , L
y∗

i − (f∗
i + b) = ξ∗i , i = 1, . . . , U

y∗
i ∈ {−1, 1} ∀ i, −l ≤ eT y∗ ≤ l

(9)

Though one can solve the formulation (8), it is simpler to
solve the formulation (9). We conducted an experiment to
compare the performances of the formulations (8) and (9) and
observed that they are close. So, we preferred to solve the
formulation (9). The resulting iterative algorithm to design
a GPR model for semi-supervised classification is given in
Algorithm 2.

Discussion The classifier designed using the proposed
SSuGPR algorithm is similar to the probabilistic least squares
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Algorithm 2 Semi-Supervised Classification using GPR
(SSuGPR)

Initialize σN and kernel hyper-parameters.
Train a GP classifier using labeled points and find y∗.
repeat

Fix y∗, train GPR and predict f∗.
Calculate the bias b as described in 2.1.
Set y∗

i = sgn(f∗
i + b), i = 1, . . . , U .

until Algorithm converges or maximum number of itera-
tions are finished

classifier [Rasmussen and Williams, 2006]. For a new test
sample x∗, the probability that it belongs to class +1 can be
calculated by first computing the posterior mean f∗ and vari-

ance σ2
∗. Then, P (y∗ = 1|x∗) = Φ( f∗+b√

1+σ2
∗

) where Φ(·)
denotes a cumulative Gaussian [Rasmussen and Williams,
2006].

GPR models clearly have advantages over SVR models.
Firstly, in addition to prediction, GPR models also give con-
fidence about prediction. Further, the hyperparameters can
be adapted directly by maximizing the marginal likelihood,
without resorting to cross-validation. Alternatively, they can
be adapted by optimizing the predictive distribution based
measure, as is done in the probabilistic least squares classi-
fiers [Rasmussen and Williams, 2006].

The computation cost of training a GPR model is O(N3)
which is mainly due to the requirement to invert a matrix.
This high cost makes the standard GPs unsuitable for large
data sets. Sparse approximate GPR model aims at performing
all the operations using a representative data set, called basis
vector set, from the input space. By fixing the size of this
set to dmax, it is possible to reduce the training complexity
of GPR to O(Nd2

max). Further, the computations of predic-
tive mean and variance can be done using only this represen-
tative set, thereby reducing the inference time significantly.
There exist several algorithms to design a sparse GP regres-
sion model. We used the Informative Vector Machine (IVM)
proposed by Lawrence et al [2005]. IVM uses a two loop
approach for GPR training. The relevant basis vectors are se-
lected in the inner loop using differential entropy score (com-
puted using posterior variance information), while the hyper-
parameters are adapted by marginal likelihood maximization
in the outer loop. IVM is more suitable for large data sets
because of inexpensive score evaluation per example in the
inner loop.

3.3 Semi-supervised Classification using sparse
GPR (SSuGPS)

We now present the algorithm for semi-supervised classifica-
tion using IVM. Note that any efficient algorithm for sparse
GPR design can be used for this purpose.

Unlike the SSuSVR and SSuGPR algorithms, the SSuGPS
algorithm results in a sparse model, thereby improving the
computational efficiency in terms of both running time and
memory requirements. Because of this, the SSuGPS algo-
rithm is scalable and this is demonstrated in the next section.

Algorithm 3 Semi-Supervised Classification using sparse
GPR (SSuGPS)

Initialize dmax, σN and kernel hyper-parameters.
Train a GP classifier using labeled points and find y∗.
repeat

Fix y∗, train IVM and predict f∗.
Calculate the bias b as described in 2.1.
Set y∗

i = sgn(f∗
i + b), i = 1, . . . , U .

until Algorithm Converges or maximum number of itera-
tions are finished

4 Experiments

In this section, we compare the performances of the proposed
SSuGPR and SSuSVR algorithms. Also, the SSuGPS algo-
rithm is compared with the sparse GP algorithm1 (NCNM)
for SSC proposed by Lawrence et al [2005]. We performed
the experiments on eight real-world data sets for binary clas-
sification problem. The data sets are summarized in Table 1.
Detailed information about the Waveform, Ionosphere and
Letter data sets can be found in UCI repository [Asuncion and
Newman, 2007]. The USPS data set was obtained from the
site, http://www-i6.informatik.rwth-aachen.de/˜keysers/usps.html.
The remaining data sets are available at
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

For the Splice data set, we only used variables 28 − 34
instead of original 60 input variables since they are more
relevant. For all the experiments, we used Gaussian kernel

function defined by k(xi,xj) = v exp{−‖xi−xj‖
2

2σ2 } where
v, σ > 0. In all the experiments related to the proposed algo-
rithms, CL and CU were set to 1, the kernel hyperparameters
were initialized using the technique described in [Schölkopf
and Smola, 2002] and were adapted by maximizing the
marginal likelihood. In the case of SVR based algorithm,
CL and CU were set to C and the hyperparameters (v, σ,
and C) were initialized as suggested in [Zhang et al., 2007].
LIBSVM2 toolbox was used to train SVR. For the NCNM
algorithm, different initial conditions for hyperparameters
were tried and the results reported correspond to the best
performance.

Data Set κ L U T

Ionosphere 0.2 36 140 175

Pima 0.2 58 324 384

Splice 0.03 50 450 500

Thyroid 0.25 12 96 107

Waveform 0.2 50 1950 3000

Letter 0.03 10 777 768

Ringnorm 0.03 100 400 500

USPS 3 vs 5 0.1 607 607

Table 1: Summary of the datasets. L, U and T denote the sizes of the labeled,

unlabeled and test sets respectively. κ was set based on the difference of proportions of

examples belonging to the two classes. l in equation (7) was set to 2κU .

4.1 Synthetic Data Set

We first consider an illustrative toy problem to demonstrate
the decision boundaries obtained using the proposed algo-

1
The software is available at http://www.cs.man.ac.uk/˜neill/ivm/.

2
The software is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.
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rithms. The toy 2-dim data set, shown in Figure 1, is a col-
lection of 520 unlabeled examples (small black dots) and 40
labeled examples (solid squares and circles). The decision
boundaries obtained using the GP classifier (using only la-
beled examples) and the SSuGPR algorithm are shown in Fig-
ure 1. The plots in Figure 2 demonstrate the decision bound-
ary and contours of the mean of the predictive distribution,
obtained using the SSuGPS algorithm. This figure clearly
demonstrates how the proposed algorithm utilizes unlabeled
data for determining the final decision boundary. Note also
that the decision boundary, obtained using the SSuGPS al-
gorithm, passes through the low density region, as desired.
However, the generalization performance can deteriorate if
the low-density region assumption does not hold.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1: The decision boundaries obtained by the GP Classifier (using only labeled

data) and the SSuGPR algorithm for the toy data set are shown by dotted and solid lines

respectively.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5 0
0

0
0

0

−0.5 −0
.5

−0.5

−0.5

−0.5

0.
5

0.5

0.5 0.5

0.5

Figure 2: The decision boundary obtained by the SSuGPS algorithm (using

dmax = 100) is shown by a solid line. Contours with prediction values 0.5 and

-0.5 are shown by the dashed dotted lines. Labeled examples from class one and two

are indicated by dark circles and squares respectively. Unlabeled points are indicated by

light circles. � and ∇ show unlabeled points from class one and class two respectively,

in the basis vector set.

4.2 Comparison of methods to compute b

To compare the solutions of formulations (8) and (9) we con-
ducted a small experiment on two data sets, Ringnorm and
USPS digits “3 vs 5”. We ran the SSuGPS algorithm twice,
each time using one of the formulations (8) and (9) to com-
pute b and compared the generalization performances. It was
observed that the the test set errors (%) for the Ringnorm data
set were 5.60 and 6.26, while those for the USPS digits “3 vs

5” data set were 7.15 and 6.86. Since the generalization per-
formances were reasonably close, we preferred to use the for-
mulation (9) in all the experiments, as it is simpler to solve.
However, it needs further investigations to compare (8) and
(9) in terms of solution simplicity and generalization error.

4.3 Real World Data Sets

All the data sets used in the experiments are fully labeled. So
we decided to ignore the labels of some fraction of training
data so that the problem can be treated as SSC. In the exper-
iments, each training data set was randomly divided into two
parts, labeled and unlabeled. This procedure was repeated for
10 realizations of each data set. dmax was set to .2(L + U).
The comparative test set error values for different algorithms
on various data sets are reported in Table 2. From this table,
it is clear that the generalization performance of the SSuGPS
algorithm is almost close to that of the SSuGPR algorithm on
several data sets. On the data sets like Ionosphere and Splice,
the SSuGPS algorithm performed better than the SSuGPR al-
gorithm. This is possibly due to the different set of hyper-
parameters chosen during training. Note also that these two
algorithms performed better than the SSuSVR and NCNM al-
gorithms on majority of the data sets. The SSuSVR algorithm
performed better than the other algorithms on the Letter data
set while the performances of the NCNM and SSuGPR al-
gorithms were better than the other algorithms on the Pima
data set. The high values of standard deviations, observed in
some cases, are due to the small sized labeled examples and
poor hyperparameter choices made in one or two realizations.
The performances of the proposed GP based algorithms were
much better than those of the SVM classifiers trained using
only labeled data (results not included due to the space con-
straints), on all the data sets except on the Pima data set.

Data Sets SSuSVR SSuGPR SSuGPS NCNM

Ionosphere 15.31 ± 3.98 15.20 ± 5.66 11.03 ± 4.92 19.54 ± 6.11

Pima 30.34 ± 5.05 28.98 ± 4.01 33.44 ± 5.80 29.45 ± 4.43

Splice 19.32 ± 4.50 18.68 ± 2.87 17.06 ± 2.42 17.52 ± 3.08

Thyroid 21.03 ± 10.78 16.17 ± 7.72 15.42 ± 7.76 19.35 ± 4.36

Waveform 19.67 ± 4.47 12.82 ± 1.75 13.19 ± 1.91 15.30 ± 2.70

Letter 6.25 ± 1.76 7.88 ± 6.76 8.94 ± 5.75 6.68 ± 2.03

Ringnorm 9.88 ± 5.89 5.40 ± 1.74 6.26 ± 1.70 17.72 ± 5.40

Table 2: Comparison of the proposed algorithms with the NCNM algorithm on

different datasets. Test set errors (%) reported are the averages over 10 trials.

To study the effect of the size of the labeled data on the gen-
eralization performance of the classifiers designed using dif-
ferent algorithms, we conducted one experiment on the USPS
digits “3 vs 5” data set. The fraction, r, of labeled examples
was varied between 0.01 and 0.1. The results are summarized
in Table 3. It is clear from the table that the GP based algo-
rithms performed poorly compared to the SSuSVR algorithm
when the fraction of labeled examples is small. As the frac-
tion of labeled examples increased, the performances of the
GP based algorithms were close to that of the SSuSVR algo-
rithm. Note also that the performances of the SSuGPS and
NCNM algorithms are comparable.

4.4 Large Data Set Experiment

To compare the generalization performances of the SSuGPS
algorithm with the NCNM algorithm on a large data set, we
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r SSuSVR SSuGPR SSuGPS NCNM

0.01 9.77± 2.95 11.78 ± 3.44 15.40 ± 4.84 19.69 ± 4.68

0.025 5.07± 0.86 5.52 ± 1.31 6.56 ± 1.58 7.15 ± 2.76

0.05 4.48 ± 1.40 4.32 ± 0.80 5.85 ± 1.33 4.91 ± 0.88

0.1 3.10 ± 0.84 2.95 ± 0.77 3.51 ± 0.71 3.36 ± 0.94

Table 3: Test set errors (%) on the USPS (digits 3 vs 5) data set.

conducted an experiment on the USPS data set. This data
set has 7291 training set examples and 2007 test set exam-
ples. For the binary classification problem, we considered
each digit vs rest. The problem was set up as SSC by us-
ing only a fraction r of labeled examples. r was varied be-
tween 0.01 and 0.05. Each experiment was run ten times,
randomly selecting the labeled data points. The results using
the SSuGPS algorithm are reported in Table 4. The results for
the NCNM algorithm, reported in [Lawrence et al., 2005], are
given in Table 5. In both the cases, dmax was fixed to 500.
From these tables, it is clear that for small values of r, the
SSuGPS algorithm performed better. The performances of
the two algorithms were almost close as r increased. Note
that in the experiments, we did not use the same partitions of
the data as used in [Lawrence et al., 2005]. But we believe
that averaging the results over 10 runs gives a good estimate
of the performance of the algorithm. From these experiments
we can see that the proposed sparse GPR based algorithm is
simple and performs better than the NCNM algorithm.

r 0 1 2 3 4

0.01 3.71±1.39 1.07±0.27 5.68±1.34 5.26±1.31 7.23±5.41

0.025 2.28±0.55 0.82±0.12 3.80±0.55 3.49±0.57 4.09±1.02

0.05 1.48±0.28 0.88±0.53 2.83±0.43 2.67±0.32 4.92±3.54

r 5 6 7 8 9

0.01 6.79±2.08 3.19±0.69 3.42±1.28 5.76±1.14 4.28±0.74

0.025 3.97±0.40 2.11±0.66 1.66±0.41 4.40±0.67 3.53±0.78

0.05 3.24±0.52 1.56±0.26 1.69±0.53 4.03±0.48 2.59±0.51

Table 4: Test set errors (%) on the USPS data set using the SSuGPS algorithm

r 0 1 2 3 4

0.01 17.9±0.00 7.99±6.48 9.87±0.00 8.27±0.00 9.97±0.00

0.025 11.4±8.81 0.98±0.10 9.87±0.00 6.51±2.43 9.97±0.00

0.05 1.72±0.21 1.01±0.10 3.66±0.40 5.35±2.67 7.41±3.50

r 5 6 7 8 9

0.01 7.97±0.00 8.47±0.00 7.32±0.00 8.27±0.00 8.82±0.00

0.025 7.97±0.00 8.47±0.00 7.32±0.00 8.27±0.00 8.82±0.00

0.05 7.11±1.94 1.69±0.15 7.32±0.00 7.42±1.89 7.60±2.72

Table 5: Test set errors (%) on the USPS data set using the NCNM algorithm

To get an idea of the CPU times of different algorithms, we
used the USPS data set and considered the binary classifica-
tion problems of digits “0 vs rest” and digits “1 vs rest”. The
number of labeled examples used was 364. The number of
basis vectors was set to 500. The experiments were done us-
ing 2.4 GHz dual core AMD CPU based machine with 4 Gb
of main memory running Red Hat Linux. For the digits “0
vs rest”, the CPU times of the SSuSVR, SSuGPS and NCNM
algorithms were 3982, 804 and 593 seconds respectively. For
the digits “1 vs rest”, the corresponding times were 3610,
774 and 685 seconds respectively. From these experiments,
it is clear that the sparse GP based algorithms are faster than
the SVR based algorithm. Though, the SSuGPS algorithm is
comparatively slower than the NCNM algorithm, its gener-

alization performance is better than that of the NCNM algo-
rithm. This is evident from Tables 4 and 5. Note that we did
not do any detailed study of a timing comparison of different
algorithms as it was not the aim of this paper.

5 Conclusion

In this paper, we proposed simple and efficient algorithms for
semi-supervised classification using SVR and sparse GPR.
The algorithms combined the ideas of maximum margin clus-
tering with regression models. The GPR based algorithms
have several advantages over the SVR based algorithm. Fur-
ther, the sparse GPR based algorithm is scalable. Prelimi-
nary experiments on various real-world benchmark data sets
demonstrated that the proposed sparse GPR based algorithm
is a useful alternative to other sparse GP based algorithms for
semi-supervised classification.
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