Learning the Optimal Neighborhood Kernel for Classification

Jun Liu'?, Jianhui Chen', Songcan Chen?, and Jieping Ye'
!Department of Computer Science and Engineering
Arizona State University
2Department of Computer Science and Engineering
Nanjing University of Aeronautics and Astronautics
{J.Liu, Jianhui.Chen, Jieping.Ye} @asu.edu, S.Chen@nuaa.edu.cn

Abstract

Kernel methods have been applied successfully in

nonparametric manner. Lanckriet et al. [2004a; 2004b] pro-
posed the framework of Multiple Kernel Learning (MKL) by
representing the learnt kernel matrix as a linear combination

many applications. The kernel matrix plays an im-
portant role in kernel-based learning methods, but
the “ideal” kernel matrix is usually unknown in
practice and needs to be estimated. In this paper, we
propose to directly learn the “ideal” kernel matrix
(called the optimal neighborhood kernel matrix)
from a pre-specified kernel matrix for improved
classification performance. We assume that the pre-
specified kernel matrix generated from the specific
application is a noisy observation of the ideal one.
The resulting optimal neighborhood kernel matrix
is shown to be the summation of the pre-specified
kernel matrix and a rank-one matrix. We formulate
the problem of learning the optimal neighborhood
kernel as a constrained quartic problem, and pro-
pose to solve it using two methods: level method
and constrained gradient descent. Empirical re-
sults on several benchmark data sets demonstrate
the efficiency and effectiveness of the proposed al-
gorithms.

1 Introduction

Kernel methods [Scholképf and Smola, 2002] work by em-
bedding the data into a high-dimensional (possibly infinite-
dimensional) feature space, where the embedding is implic-
itly specified by a kernel. They have been applied success-
fully in many areas such as computer vision and bioinfor-
matics [Scholkopf and Smola, 2002; Lanckriet er al., 2004a;
2004b]. The so-called kernel matrix, specified by the inner
product of data points in the feature space is symmetric and
positive semidefinite. The kernel matrix specifies the geom-
etry of the feature space, and induces a notion of similarity
in the sample space. The learning of a good kernel matrix
is essential for the successful application of kernel methods.
However, it is commonly the case in practice that the “ideal”
kernel matrix is unknown and needs to be learnt.

The problem of learning the optimal kernel matrix has
been addressed by many researchers. The pioneer work
by [Chapelle et al., 2002] learned the parameters of some
pre-specified kernel function using gradient descent method.
More recent works focus on learning the kernel itself in a

1144

of a set of pre-specified kernel matrices, and casted the prob-
lem as a semidefinite program or a quadratically-constrained
quadratic program. Several efficient methods for accelerat-
ing the computation of MKL have been proposed in [Bach
et al., 2004; Sonnenburg et al., 2006]. Bousquet and Her-
rmann [2002] proposed to learn the spectral classes of kernel
matrices, and analyzed the complexities of the learnt kernel
matrices. Kulis et al. [2006] learned low rank kernel matrices
from the given distance and similarity constraints on the data.
Luss and Aspremont [2007] proposed to learn a proxy ker-
nel matrix by treating the indefinite kernel matrix as a noisy
observation of the positive semidefinite kernel matrix, with
the attractive property that the support vectors and the proxy
kernel can be simultaneously computed.

In many applications, the kernel matrix generated can be
treated as a noisy observation of the ideal one. In this pa-
per, we focus on learning an optimal kernel matrix, called
the optimal neighborhood kernel (ONK) matrix, from the
pre-specified positive semidefinite kernel matrix for improved
classification performance. The ONK matrix is shown to be
the summation of the pre-specified kernel matrix and a rank-
one matrix. We formulate the problem of learning ONK as
a convex quartic problem. Our proposed ONK formulation
is different from the neighborhood mismatch kernel proposed
in [Weston et al., 2003], where the kernel matrix was con-
structed by utilizing the neighborhood samples.

We propose two iterative methods for solving the result-
ing convex quartic problem: level method and constrained
gradient descent. Level method is a memory-based method
from the cutting plane family [Nemirovski, 1994]. Recently,
the cutting plane methods have been successfully applied to
a number of convex optimization problems in machine learn-
ing, e.g., the bundle method employed in [Teo et al., 2007] for
solving regularized risk minimization, and the analytic center
cutting plane method [Luss and Aspremont, 2007] for solv-
ing the robust classification problem with indefinite kernels.
Nemirovski [1994] showed that, level method has a better
convergence rate than the Kelley bundle method for solving
the general nonsmooth convex optimizations, and achieves
better practical performance than methods such as subgra-
dient descent. However, since the level method keeps all

the “prehistory” information, its computational cost can be
high. In contrast, gradient descent is a non-memory-based
method. To solve the constrained optimizations, we can ex-
tend gradient descent to its constrained case using gradient
mapping [Nemirovski, 1994]. We show that one of the key
steps in constrained gradient descent is the Euclidean pro-
jection onto a particular domain, which is a special case of
the singly linearly constrained quadratic programs [Dai and
Fletcher, 2006]. We cast the Euclidean projection as a zero
finding problem, which can be solved in linear time. Empir-
ical results on several benchmark data sets demonstrate the
efficiency and effectiveness of the proposed algorithms.

The rest of the paper is organized as follows: we formulate
the learning of the optimal neighborhood kernel in Section 2,
present the algorithms for solving the convex quartic problem
in Sections 3 & 4, report empirical results in Section 5, and
conclude the paper in Section 6.

Notations Vectors are represented in bold notation, e.g., x €
R™, and x < 0 is understood componentwise. Matrices are
represented in italic script, e.g., X € R™*" and X > 0
means that X is square, symmetric, and positive semidefinite.
| X || 7 denotes the Frobenius norm of the matrix X, and ||x||2
denotes the Euclidean norm of the vector x.

2 Learning the Optimal Neighborhood Kernel

Assume that we are given a collection of training data
{(xs,y:i)}7, where x; € R, and y; € {£1}. We consider
the SVM formulation in the primal form:

1 n
&?gé ivaVV4-C7§£;§i
= (D
subject to y; (Wl (x;) +b) > 1 — &,

gizovizlvza"'vnv

where £ = [£1,&2,...,&,]T denotes the vector of slack vari-
ables, ¢(.) is a kernel feature mapping, C' is the regulariza-
tion parameter, and (w, b) determines the hyperplane in the
feature space. The dual problem of (1) is given by

max 2aTe—a’YKYa
@ 2
subjectto o€ P={0< a < Ce,a’y =0},

b

where e is a vector containing n 1’s, y = [y1,¥2, ..., Yn]|"
Y = diag(y), K is the kernel matrix specified by the ker-
nel k(.,.) as K;; = r(x;,%;) = ¢d(xi)Td(x;), and
[1,az,. .., a,]T € R™ can be solved by quadratic program-
ming. For an unknown test sample x, we compute

9(x) =Y awyir(xi, %) + b,
=1

and x is classified as +1 if g(x) is positive, and —1 otherwise.

2.1 The Optimal Neighborhood Kernel Matrix

We assume that the pre-specified kernel matrix K is the noisy
observation of the “ideal” kernel matrix G. We thus propose

1145

to learn the kernel matrix GG in the neighborhood of K by
solving the following optimization problem:

2a"e—a'YGYa+p|G- K[} (3)
where the parameter p > 0 controls the magnitude of the
penalty on the square distance between the optimal neighbor-
hood kernel matrix G and the pre-specified kernel matrix K.
It is easy to verify that, the objective function in (3) is
convex in G and concave in «. Therefore, this is a convex
concave optimization problem, and the existence of a sad-
dle point is given by the well-known von Neumann Lemma
[Nemirovski, 1994]. Moreover, since the optimization is
strictly feasible, the minimization and maximization can be
exchanged, resulting in the following optimization problem:

2"e —a"YGYa +p|G - K||7. (4)

We first show that the optimal neighborhood kernel matrix G
that solves the optimization problem in (4) is the summation
of the pre-specified kernel matrix K and a rank-one matrix,
as summarized in the following theorem:

min
G0

max
acP

min
G0

max
acP

Theorem 1 The optimal G* to the inner minimization prob-
lem of (4) can be analytically solved as

)

Proof: The inner minimization problem of (4) can be writ-
ten as

. _ 1 T
G =K+ (Ya)(Ya)T.

min

2a’e — aTYGY G- K|
min 2ae—a a+p 7

(6)
which is convex in G. We first remove the constraint G > 0,
and compute the optimal G* for (6). It is easy to show that
the optimal G* satisfies

—(Ya)(Ya)' +2pG* — 2pK =0,

which leads to (5). Meanwhile, it is clear that G* > 0. Thus,
the resulting G* is exactly the optimal solution to (6). O

Based on Theorem 1, the optimization problem in (4) can
be reformulated as

fla))2, (D)

which is a convex quartic problem. We propose to solve this
convex quartic problem by level method in Section 3, and
constrained gradient descent in Section 4.

aTa

min
(a3

1
2a’e+ a’YKYa + —(
epP 4p

2.2 Discussion

It follows from (5) that when p tends to +o00, G* approaches
K, that is, the learnt optimal neighborhood kernel matrix re-
duces to the pre-specified kernel matrix.

The difference between the optimal neighborhood kernel
matrix and the pre-specified kernel matrix is a rank-one ma-

trix E = o=(Ya)(Ya)?. Unlike K that is determined by
13

the sample features and the pre-specified kernel «(.,.), F is
specified by the computed a and the labels of the samples.

In addition, denoting ¢(x;) = (¢(x;), 11}%;) for the training

samples and ¢(x) = (¢(x), 0) for the sample with unknown
label, we can write the learnt optimal neighborhood kernel as

R(x,2) = $(x)7 d(2).

3 Optimization by the Level Method

The problem in (7) is convex in ¢ so that a global optimum
can be found. In this section, we show how this problem
can be solved by the level method, which is a cutting plane
method from the bundle family [Nemirovski, 1994].

Given a convex function f (), the basic idea behind a cut-
ting plane method is that, f(«) can be lower-bounded by its
first-order Taylor approximation, i.e.,

fle) = f(&) + (e —)" (&), V&,
where f/(&) is the derivative of f(c) at point &. Assume we

have obtained a set of s in the set Q = {1, @2, ..., a;}.
We define the following model:

fila) = [nax - fley) + (e — a;)" f(oy),

which is a piecewise 11near convex function, and underesti-
mates the objective as f;(a) < f(a).

Given the computed a’s in Q = {ay, ..., a;}, in the i-th
step, the level method calculates a;4+1 by sequentially per-
forming the following three steps:

1) Compute the upper-bound f; = min;<;<; f(c;), and
the lower-bound f, = f;(u;), where

u; = arg min fi(a) ®)

can be solved by linear programming. Obviously, f, and
L respectively constitute the upper- and lower- bounds of
mingep f (), with the gap givenby A; = f; — f .
2) Calculate the level

li=Q0—=7)f,+7f;= [+7Ai, o)

whose value is between f, and S, with 0 < 7 <1 (usually

set to 0.5) controlling the tradeofT. Moreover, we can form
the level set G; = {a|a € P, fi(a) <1;}.
3) Project a; to the level set G; to get the new solution:

1
o1 =g, () = arg min o & — aill3, (10)

which can be solved by quadratic programming [Boyd and
Vandenberghe, 2004].

Algorithm 1 Level Method
Input: f(.),e, 7,00 € P
Output: o
1: Initialize o1 = g
2: fori=1to...do _
3: Compute the lower-bound f ;» the upper-bound fi»and
the gap A;
4 Calculate the level [;, and form the level set G;
5: Compute the new solution a; 1 = 7g, (a;)
6: if A; < ¢ then
7
8
9

o = arg minlstH_l f(aj), break
end if
: end for

The pseudo code for solving the convex quartic problem
by the level method is summarized in Algorithm 1. We have
the following convergence property for the level method:

Theorem 2 [Nemirovski, 1994, Chapter 8, pages 135-137]
Let L(f) < oo be the Lipschitz constant of the convex and
Lipschitz continuous function f (o) on the convex domain P,
ie, [f(a) = f(B)| < L(f)|lec = Bll2, @, B € P. Let D(P)
be the diameter of the bounded convex domain P, and ¢(7) =
m. Then the gaps A;’s converge to zero, and for

anye > 0,if N > (1) L2(f)D?(P)e 2,

Theorem 2 shows that the level method has a theoreti-
cal complexity estimate O(s~2), which is better than Kelly
bundle method’s O(¢~2). Moreover, as pointed out in [Ne-
mirovski, 1994], the level method has a good practical per-
formance, with an empirical O(nlog(1)) complexity.

we have Ay < e.

4 Constrained Gradient Descent with
Efficient Euclidean Projections

Although the level method has a good practical convergence
property, it needs to solve at each iteration the linear program-
ming problem (8) and the quadratic programming problem
(10), whose computational costs increase with an increasing
number of constraints during the iterations. In this section,
we propose a non-memory-based method, “constrained gra-
dient descent”, equipped with an efficient Euclidean projec-
tion onto the domain P, with the favorable property that the
Euclidean projection can be solved in linear time. Specifi-
cally, we introduce the gradient mapping for solving the con-
strained optimization problem in Section 4.1, cast the Eu-
clidean projection onto the domain P as a zero finding prob-
lem in Section 4.2, and present the constrained gradient de-
scent method for solving the problem (7) in Section 4.3.

4.1 Gradient Mapping

To deal with constrained optimization problems, we construct
the gradient mapping, which acts a similar role as the gradient
in unconstrained optimization. Let v > 0. We define

fyx(y) = f(x) +(f'(x),y —x) +

which is the tangent line of f(.) at x, regularized by the
squared distance between y and x. Minimizing f, «(y) in
the domain P is the problem of Euclidean projections onto
P:

2y =]

x—l "(x))|I?
(7f())H

=arg ;Ilellrgl f'y,x(y)'

1, .1
mp(x — —f'(x)) =argmin = ||y —
(= = () =argmin 5| "

We shall discuss the efficient computation of (11) in the next
subsection. We call

M%@zv@—wﬂx—%f&m (12)

the “gradient mapping” of f(.) on P. From (12), we have
1 1
mp(x — —f'(x)) =x = —p(7,x),
Y Y

which shows that, 7p(x — = f (x)) can be viewed as the re-

sult of the “gradient” step in the anti-direction of the gradient
mapping p(7y,x) with stepsize %

1146

We say that « is “appropriate” for x, if
1 1
flmp(x — gf’(X))) < frx(mp(x = gf’(X)))- (13)

It has been shown in [Nemirovski, 1994] that, is always
appropriate for any x € P, if v > Ly, the Lipschitz gradient
of f(.). Moreover, when ~ is appropriate for x, Vy € P, we
have [Nemirovski, 1994, chapter 11, page 174]:

f) 2 f(wp<x—§f’<x>>>+<p<~y,x>,y—x>+%Hp(v,x)n?,

(14)
which is key to the convergence rate proof.

4.2 Casting Euclidean Projection onto the Domain
P as a Zero Finding Problem
In this subsection, we discuss the efficient computation of the
Euclidean projection onto P = {x|0 < x < Ce,x’y = 0}:
.1
mp(v) = argmin o [x — v|*. (15)
Our methodology is to cast (15) as a zero finding problem.
Introducing the Lagrangian variables A, @ and v respec-
tively for the constraints xTy =0,0 <xand x < Ce, we
can write the Lagrangian of (15) as

1
L(x, A\, p,v) = §||x— v|?+ Ty — px 4+ v (x - Ce).

Let x* be the primal optimal point, and *, u* and v* be the
dual optimal points. We have the following results according
to the KKT conditions [Boyd and Vandenberghe, 2004]:

0<z;y<C, (16)
o} = (v = Nyi) + (uF =07, 17
i > 0,07 >0, (18)
wiat = 0,0 (]) =0, 19
Zylx: =0. (20)
From (16)-(19), we have
x} = max(min(v; — A*y;, C), 0). @n

An analysis is given as follows. When 0 < v; —A*y; < C, we
have p7 = v} = 0 (which leads to 7 = v; — A*y;), because
if ui # 0, we have z7 = 0 from (19), v} > 0 from (17)
and z7 = C from (19), leading to a contradiction; similar
contradiction can be constructed by assuming v} # 0. When
v; —A*y; > C, we have 2} = C, because if 7 < C, we have
vy > 0 from (17), and 27 = C from (19). Similarly, when

2

v; — A*y; <0, we have 7 = 0.

P =

Combining (20) and (21), we have
h(*) = Zyl max(min(v; — A*y;, C),0) = 0,

2

(22)

which shows that A* is the root of the function h(.). The

following theorem shows that A* exists and is unique.

Theorem 3 Let y; € {£1},i = 1,2,...,n and y has both
negative and positive elements. The auxiliary function h(.) is
a continuous and monotonically decreasing function, and it
has a unique root.

1147

Proof: It is easy to verify that, Vi, h;(A) = y; max(min(v; —
Ay;, C') is continuous and monotonically decreasing in the
whole domain (—oo, +00). Vi € {i|y; = 1}, hi(.) is strictly
decreasing in the interval [v; — C, v;]; and Vi € {i|y; = —1},
hi(.) is strictly decreasing in the interval [—v;, C' — v;]. De-
note A\y1 = minie{“yi:l} v; — C, Ao = mMaXje {4]y;=1} Vis
A21 = MiNGe (|, =—1} —Vi» A22 = MaX;e i)y, ——1} —Vi + C,
A = min(/\ll,/\gl), and \o = maX()\lg,)\gg). It is easy
to get that h(.) is strictly decreasing in the interval [A1, Ag).
Moreover, Vi € {i|ly; = 1}, we have that, if A < Aqq,
hl()\) = C; and if A\ >)\12, hi ()\12) = 0. Similarly,
Vi € {ily; = —1}, we have that, if A\ < A1, h;(\) = 0; and
if A > Aag2, hi(A2) = —C. Therefore, we have h(A\1) > 0
and h(A2) < 0. According to the Intermediate Value Theo-
rem, h(.) has a unique root lying in the interval [A1, A2]. O

To solve the zero finding problem (22), we can make use
of bisection, which produces a sequence of intervals of uncer-
tainty with strictly decreasing lengths (decreased by a factor
of two). For given v, y and C, A\; and \s in Theorem 3
are fixed, and the number of bisection iterations is at most
logz(%) under the machine precision 6. Therefore, we
have a linear complexity for solving the Euclidean projec-
tion problem (15) by bisection. However, the efficiency of
bisection is independent of the function h(.), and it cannot
be improved even when h(.) is “well-behaved”, since bisec-
tion only utilizes the signs of h(.) at the two boundary points,
but not their values. To improve the efficiency, we follow the
work of [Dekker, 1969] in using the interpolation methods
that have a better local convergence rate than bisection.

4.3 Constrained Gradient Descent

Constrained Gradient Descent operates in a similar way to the
classical gradient descent, and we present the pseudo code in
Algorithm 2. In Step 3, we perform a line search for find-
ing . that is appropriate for x, according to the Armijo-
Goldstein rule [Nemirovski, 1994]. In Step 4, we compute
the new approximate solution X1 = mp (X — ,Yik 1 (xx)) by
the zero finding method proposed in Section 4.2. In Step 5,
we terminate the algorithm, once the relative change in the
approximate solution xy, is not larger than the pre-specified
parameter tol. Making use of (14) and following the simi-
lar technique as the one given in [Nemirovski, 1994, Chapter
101, we can establish the following convergence rate for con-
strained gradient descent.

Theorem 4 Let Ly be the Lipschitz gradient of f(.), i.e.
Ilf/(x)— ') < Lsllx—yl|,Vx,y € P, and let Ry be the
Euclidean distance from the starting point Xq to the optimal
solution set of f(.). After N iterations, we have

Few) — min J(x) < 0(1) 22

xeP N (23)

S Experiments

We conduct experiments on the following UCI data sets':
Liver Disorder, Ionosphere, Pima Indians Diabetes, Hill Val-
ley, a2a, and ad4a. Table 1 summarizes the characteris-

"http://archive.ics.uci.edu/ml/

Algorithm 2 Constrained Gradient Descent
Input: f(.),xo € P, tol
Output: x

1: Initialize x; = Xq

2: fork=1to...do

3: Find v that is appropriate for xg, i.e., satisfying (13)
4: Compute Xg41 = mp(xx — =~ f'(xk))
50 if ||xp4+1 — x| < tol X max(||xx||, 1) then
6: X = X1, break
7: endif
8: end for
Table 1: Summary of benchmark data sets.
data set dimensionality = sample size
Liver Disorder 6 345
Ionosphere 34 351
Pima Indians Diabetes | 8 768
Hill Valley 100 1,212
a2a 123 2,265
ada 123 4,781

tics of the data sets. In this study, we generate the pre-
specified kernel by the radius basis kernel: k(x;,X;)
exp(—||x; — x;||3/0), and try three different values for o:
ok = ATRY L Y ki = x[3/n% k= 1,2,3. We
implement the level method, by using the general solver
MOSEK? for solving (8) and (10); and implement the con-
strained gradient descent with the efficient Euclidean projec-
tion proposed in Section 4.2. All experiments were carried
out on an Intel (R) Core (TM)2 Duo 3.00GHZ processor.

Convergence Evaluation We set C' = 1, p = 100, 0 = 09,
and explore the convergence of the proposed level method
(Algorithm 1) and constrained gradient descent (Algorithm 2)
for learning the optimal neighborhood kernel matrix on data
sets: Liver Disorder and ad4a. We use all the samples in
this task, and thus the learnt kernel matrices are of sizes
345 x 345 and 4781 x 4781, respectively. We report the re-
sults in Fig. 1, from which we can observe that: (1) both level
method and constrained gradient descent converge fast; and
(2) level method consumes fewer iterations than constrained
gradient descent, due to the usage of the whole “prehistory”
for generating the approximate solution.

Time Efficiency We report the computational time for solv-
ing (7) on the six data sets (including all the samples) in the
left figure of Fig. 2, from which we can observe that: (1)
level method works relatively well; and (2) constrained gra-
dient descent is quite efficient. It takes about 0.5 seconds to
learn a kernel matrix of size 1212 x 1212. Compared to the
level method, the constrained gradient descent is much more
efficient, since each of its iteration takes less time. To explore
the efficiency of the Euclidean projection method proposed in
Section 4.2, we compare it with the quadratic programming
provided in MOSEK, and report the results in the right figure

nttp://www.mosek.com/

1148

st Y

as0

E 350

((((((

00t

,,,,,

,,,,,,

((((((

1400
30 W S0 0 a0 0 S0 100 120 10 160
leration Step Heration Step

Figure 1: Convergence plots. Figures in the first column cor-
respond to the level method, and figures in the second column
correspond to the constrained gradient descent method.

xxxxxxxxxxx

Figure 2: Computational time. The left figure reports the
computational time for learning the kernel matrix on the six
data sets; and the right figure shows the total computational
time for solving 100 independent Euclidean projection prob-
lems by the method proposed in Section 4.2 and the quadratic
programming provided by MOSEK.

of Fig. 2, where the x-axis corresponds to n, the problem size,
and the y-axis denotes the total computational time for solv-
ing 100 independent problems. We can observe from the fig-
ure that, the proposed Euclidean projection method is about
100 times faster than the quadratic programming of MOSEK
for this task.

Classification Performance In exploring the classification
performance of the proposed method, we randomly choose
20% from each data set for training, and the remaining for
testing, and report the classification performance by averag-
ing over 20 runs. We choose the values of the parameters
C and p through cross-validation, and report the recognition
results in Table 2. We can observe from the table that the
learnt optimal neighborhood kernel can yield better classifi-
cation performance than the pre-specified kernel. In many
cases, the improvement is significant. This demonstrates the
effectiveness of the proposed optimal neighborhood kernel.

Sensitivity Study We perform the sensitivity study in terms
of p. Fig. 3 shows the classification performance of the learnt

Table 2: Comparison of the optimal neighborhood kernel (G)
and the pre-specified kernel (K) in terms of classification ac-
curacy (%).

g1 g9 g3
G K G K G K
Liver 68.5 60.8 | 694 628 69.8 67.0
Diabetes 741 66.6 | 752 70.6 | 76.0 73.6
Ionosphere | 93.0 91.5 | 92.1 87.8 | 89.7 85.8
Hill Valley | 63.4 60.1 | 63.6 58.8 | 63.0 57.0
ala 79.6 79.0 | 81.3 78.0 | 81.2 76.8
ada 81.5 80.6 | 83.2 78.7 | 833 78.1

S6 7 8 9 1020 30 206 0 06121824 3 4 5 6 7 8§ 9 1020
log(p)

8243 4
log(p)

Figure 3: Performance of the learnt optimal neighborhood
kernel under different values of p.

optimal neighborhood kernel under different p’s on two data
sets: Liver Disorder and Pima Indians Diabetes. We can ob-
serve from this figure that: (1) when p is quite small, the clas-
sification performance is in general not very good, since the
rank-one matrix £ = 5-(Ya)(Y)" dominates the learnt

kernel matrix G = K + F; (2) for a relatively wide range of
values for p, the learnt optimal neighborhood kernel achieves
better classification performance than the pre-specified ker-
nel; and (3) when p is large, the classification performance of
the optimal neighborhood kernel is almost identical to that of
the pre-specified kernel, since the effect of E' is diminished
with a large value of p.

6 Conclusion

In this paper, we propose to learn the optimal neighborhood
kernel matrix from the pre-specified positive semidefinite ker-
nel matrix for improved classification performance. The op-
timal neighborhood kernel matrix is shown to be the summa-
tion of the pre-specified kernel matrix and a rank-one matrix.
We formulate the problem of learning the optimal neighbor-
hood kernel as a convex quartic problem, and propose to solve
it by the level method and the constrained gradient descent.
To solve the constrained problem, we propose an efficient Eu-
clidean projection onto the domain P. Empirical results on a
collection of benchmark data sets demonstrate the efficiency
and effectiveness of the proposed algorithms.

We have focused on the learning from a single kernel ma-
trix in this paper, and we plan to extend the current work to
multiple kernel learning, where an optimal kernel matrix is
learnt from a given collection of kernel matrices. We plan to
accelerate the proposed constrained gradient descent by us-
ing the Nesterov’s method [Nemirovski, 1994], and apply the
proposed efficient Euclidean projection to solving other re-

1149

lated constrained optimization problems. We also plan to ex-
tend the proposed algorithm to the transductive setting.

Acknowledgments

This work was supported by NSF IIS-0612069, IIS-0812551,
CCF-0811790, NIH RO1-HG002516, NGA HM1582-08-1-
0016, NSF of China 60773061, and NSF of Jiangsu Province
BK2008381.

References

[Bach er al., 2004] F. Bach, G. Lanckriet, and M. Jordan. Multiple
kernel learning, conic duality, and the smo algorithm. In Twenty-
first International Conference on Machine Learning. ACM, 2004.

[Bousquet and Herrmann, 2002] O. Bousquet and D. Herrmann.
On the complexity of learning the kernel matrix. In Advances in
Neural Information Processing Systems, pages 399—406, 2002.

[Boyd and Vandenberghe, 2004] S. Boyd and L. Vandenberghe.
Convex Optimization. Cambridge University Press, 2004.

[Chapelle et al., 2002] O. Chapelle, V. Vapnik, O. Bousquet, and
S. Mukherjee. Choosing multiple parameters for support vector
machines. Machine Learning, 46:131-159, 2002.

[Dai and Fletcher, 2006] Y.-H. Dai and R. Fletcher. New algo-
rithms for singly linearly constrained quadratic programs sub-
ject to lower and upper bounds. Mathematical Programming,
106(3):403-421, 2006.

[Dekker, 1969] T.J. Dekker. Finding a zero by means of successive
linear interpolation. In B. Dejon and P. Henrici, editors, Con-
structive Aspects of the Fundamental Theorem of Algebra. Wiley
Interscience, London, 1969.

[Kulis et al., 2006] B. Kulis, M. Sustik, and 1. Dhillon. Learning
low-rank kernel matrices. In Twentythird International Confer-
ence on Machine Learning, 2006.

[Lanckriet et al., 2004al G. Lanckriet, T. Bie, N. Christianini,
M. Jordan, and W. Noble. A statistical framework for genomic
data fusion. Bioinformatics, 20(16):2626-2635, 2004.

[Lanckriet et al., 2004b] G. Lanckriet, N. Christianini, P. Bartlett,
L. Ghaoui, and M. Jordan. Learning the kernel matrix with semi-
definite programming. Journal of Machine Learning Research,
5:27-72, 2004.

[Luss and Aspremont, 2007] R. Luss and A. Aspremont. Support
vector machine classification with indefinite kernels. In Advances
in Neural Information Processing Systems, pages 953-960. MIT
Press, 2007.

[Nemirovski, 1994] A. Nemirovski. Efficient methods in convex
programming. Lecture Notes, 1994,

[Scholkopf and Smola, 2002] B. Scholkdpf and A. Smola. Learn-
ing with Kernels. MIT press, 2002.

[Sonnenburg et al., 2006] S. Sonnenburg, G. Ratsch, C. Schafer,
and B. Scholkopf. Large scale multiple kernel learning. Jour-
nal of Machine Learning Research, 7:1531-1565, 2006.

[Teo et al., 2007] C. Teo, Q. Le, A. Smola, and S. Vishwanathan.
A scalable modular convex solver for regularized risk minimiza-
tion. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2007.

[Weston et al., 2003] J. Weston, C. Leslie, D. Zhou, A. Elisseeff,
and W.S. Noble. Semi-supervised protein classification using

cluster kernels. In Advances in Neural Information Processing
Systems. MIT Press, 2003.

