
Local Query Mining in a Probabilistic Prolog

Angelika Kimmig and Luc De Raedt
Department of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium
{angelika.kimmig,luc.deraedt}@cs.kuleuven.be

Abstract
Local pattern mining is concerned with finding the
set of patterns that satisfy a constraint in a database.
We study local pattern mining in the context of
ProbLog, a probabilistic Prolog system, and intro-
duce an approach for finding correlated patterns in
the form of queries in such a Prolog system. The
approach combines principles of inductive logic
programming, data mining and statistical relational
learning. Experiments on a challenging biological
network mining task provide evidence for the inter-
estingness of the approach.

1 Introduction
The traditional local pattern mining task is that of identify-
ing those elements in a language of patterns that satisfy the
constraints imposed by a selection predicate w.r.t. a given
database [Mannila and Toivonen, 1997]. Numerous works
have been devoted to local pattern mining since the introduc-
tion of item-set mining, cf. [Agrawal et al., 1996]. They can
be distinguished alongst three main dimensions. The first is
concerned with the type of pattern considered, that is whether
one mines for item-sets, episodes and strings, graphs or rela-
tional patterns. The second is concerned with the nature of the
selection predicate applied [Ng et al., 1998], such as whether
one employs frequency, confidence, significance, lift, closed-
ness, freeness, and so forth. Finally, the third distinguishes
two types of desired answer sets: all patterns covered by
the selection predicate in the case of frequent pattern min-
ing [Agrawal et al., 1996], or the best k patterns in the case
of correlated pattern mining [Morishita and Sese, 2000].

In many domains, probabilistic data arises quite naturally,
especially in scientific data or in areas such as robotics, and
transferring local pattern mining techniques to probabilistic
databases allows to take the uncertainty attached to such data
into account. The main difference in this setting is the na-
ture of the membership relation determining when a query
matches a tuple: it changes from deterministic to probabilis-
tic. So, rather than having a 0-1 criterion, there is now a prob-
ability of a tuple belonging to a relation.

This paper investigates the mining of local relational pat-
terns in probabilistic databases. To apply and evaluate our
work we employ a large biological database [Sevon et al.,

2006; Kimmig et al., 2007; De Raedt et al., 2007]. This
database contains probabilistic information about known or
predicted relationships for various types of objects, such as
genes, proteins, and molecular functions.

Throughout the paper we employ ProbLog [De Raedt et
al., 2007] to represent the database. ProbLog is a recently
introduced extension of Prolog and Datalog, and the underly-
ing distribution semantics is identical to that of many pro-
posals in the database and artificial intelligence literature,
cf. [Dalvi and Suciu, 2004; Fuhr, 2000; Sato and Kameya,
2001]. Even though we employ ProbLog in the present pa-
per, the techniques and principles are directly transferable
to other probabilistic formalisms allowing to calculate prob-
abilities for queries. ProbLog makes two key assumptions:
1) tuples in the database are assigned a probability value, and
2) these probabilities are mutually independent. As ProbLog
is a direct extension of Prolog, our formulation and imple-
mentation of local pattern mining builds upon existing work
in multi-relational data mining and inductive logic program-
ming, where local pattern mining is known under the names
of query mining [Dehaspe et al., 1998] and query flocks [Tsur
et al., 1998]. Queries in a (probabilistic) relational database
form a very general type of pattern that can emulate many
other pattern domains, such as item-sets, sequences, trees
and, as in our motivating application, graphs. Using ProbLog,
we define probabilistic query mining in a general way and
then focus on correlated pattern mining, where the goal is to
find the top k queries. We develop a branch-and-bound al-
gorithm to solve this task. The key difference with standard
local pattern mining is the use of a probabilistic membership
function. To this aim, we consider two measures: a kind of
likelihood criterion based on a set of positive and negative
examples, as well as an adaptation of the frequency measure
along the lines of [Chui et al., 2007], who use this only in
the context of frequent item-set mining. Our work general-
izes that of [Chui et al., 2007] in two ways: we use relational
databases, and we consider correlated pattern mining.

This paper is organised as follows: We discuss query min-
ing in Section 2, review the basics of ProbLog in Section 3
and introduce probabilistic query mining in Section 4. Sec-
tion 5 describes our implementation used in the experiments
presented in Section 6. Finally, in Section 7 we conclude and
touch upon related work.

1095



2 Query Mining
Query mining upgrades traditional local pattern mining to the
representations of multi-relational databases [Dehaspe et al.,
1998]. We use Datalog to represent databases and queries,
abbreviating vectors of variables as �X . We assume a desig-
nated relation ID containing the set of tuples or examples to
be characterized using queries, and restrict the language L of
patterns to the set of conjunctive queries r( �X) defined as

r( �X) : −ID( �X), l1, ..., ln (1)

where the li are positive atoms. Additional syntactic or se-
mantic restrictions, called bias, can be imposed on the form
of queries by explicitly specifying the language L, cf. [Tsur et
al., 1998; De Raedt and Ramon, 2004; Dehaspe et al., 1998].

Query Mining aims at finding all queries satisfying a selec-
tion predicate φ. It can be formulated as follows, cf. [Dehaspe
et al., 1998; De Raedt and Ramon, 2004]:
Given a language L containing queries of the form (1), a

database D including the designated relation ID, and
a selection predicate φ

Find all queries q ∈ L such that φ(q,D) = true.
The most prominent selection predicate is minimum fre-
quency, an anti-monotonic predicate, requiring a minimum
number of tuples covered. Anti-monotonicity is based on
a generality relation between patterns. We employ OI-
subsumption [Esposito et al., 2000], as the corresponding
notion of subgraph isomorphism is favorable within the in-
tended application in network mining. More formally, a con-
junctive query q1 represented as a set of literals OI-subsumes
a conjunctive query q2, notation q1 � q2, if and only if
there exists a substitution θ = {V1/t1, · · · , Vn/tn} such that
q1θ ⊆ q2 and the ti are different constants not occurring in q1.
Example 2.1 For queries Q1 to Q3 below, query Q1 OI-
subsumes Q2, but neither Q1 nor Q2 OI-subsumes Q3: for
Q1, Y and Z cannot both be mapped to c; for Q2, Y cannot
be mapped to c as Q2 already uses c.

(Q1) q(X) : −ID(X), edge(X,Y ), edge(Y,Z).
(Q2) q(X) : −ID(X), edge(X,Y ), edge(Y, c).
(Q3) q(X) : −ID(X), edge(X, c), edge(c, c).

Correlated Pattern Mining [Morishita and Sese, 2000] uses
both positive and negative examples, specified as two desig-
nated relations ID+ and ID− of the same arity, to find the
top k patterns, that is, the k patterns scoring best w.r.t. a func-
tion ψ. The function ψ employed is convex, e.g. measuring
a statistical significance criterion such as χ2, cf. [Morishita
and Sese, 2000], and measures the degree to which the pat-
tern is statistically significant or unexpected. Thus correlated
pattern mining corresponds to setting

φ(q,D) = q ∈ argk max
q∈L

ψ(q,D)

Example 2.2 Consider the database in Figure 1 (ignoring
probability labels) with ID+ = {a, c} and ID− = {d, e}. A
simple correlation function is ψ(q,D) = COUNT(q+(∗)) −
COUNT(q−(∗)), where COUNT(q(∗)) is the number of dif-
ferent provable ground instances of q and qx denotes query

a

c0.8

b

0.7

d

0.9

e0.8

0.5

0.6

0.8::edge(a,c).
0.7::edge(a,b).
0.6::edge(b,c).
0.9::edge(c,d).
0.8::edge(c,e).
0.5::edge(e,d).

Figure 1: Example: probabilistic database.

q restricted to IDx. We obtain ψ(Q4,D) = 2 − 0 = 2 and
ψ(Q5,D) = 1 − 1 = 0 for queries

(Q4) q(X) : −ID(X), edge(X,Y ), edge(Y,Z).
(Q5) q(X) : −ID(X), edge(X, d).

Multi-relational query miners such as [Dehaspe et al.,
1998; De Raedt and Ramon, 2004] often follow a level-
wise approach for frequent query mining [Mannila and Toivo-
nen, 1997], where at each level new candidate queries are
generated from the frequent queries found on the previous
level. In contrast to Apriori, instead of a “joining” operation,
they employ a refinement operator ρ to compute more spe-
cific queries, and also manage a set of infrequent queries to
take into account the specific language requirements imposed
by L. To search for all solutions, it is essential that the re-
finement operator is optimal w.r.t. L, i.e. ensures that there is
exactly one path from the most general query to every query
in the search space. This can be achieved by restricting the
refinement operator to generate queries in a canonical form,
cf. [De Raedt and Ramon, 2004].

Morishita and Sese [2000] adapt Apriori for finding the
top k patterns w.r.t. a boundable function ψ, i.e. for the case
where there exists a function u (different from a global max-
imum) such that ∀g, s ∈ L : g � s → ψ(s) ≤ u(g).
Example 2.3 The function ψ(q,D) = COUNT(q+(∗)) −
COUNT(q−(∗)) introduced in Example 2.2 is upper-
boundable using u(q,D) = COUNT(q+(∗)). For any
g � s, ψ(s) ≤ COUNT(s+(∗)) ≤ COUNT(g+(∗)), as
COUNT(s−(∗)) ≥ 0 and COUNT is anti-monotonic.
Again, at each level candidate queries are obtained from those
queries generated at the previous level that qualify for re-
finement, which now means they either belong to the current
k best queries, or are still promising as their upper-bound is
higher than the value of the current k-th best query.
Example 2.4 Assume we mine for the 3 best correlated
queries in Example 2.2. Table 1 shows counts on ID+ and
ID− and ψ-values obtained during the first level of mining.
The highest score achieved is 1. Queries 1, 3, 4, 6, 8, 9 are
the current best queries and will thus be refined on the next
level. Queries 5 and 7 have lower scores, but upper bound
c+ = 1, implying that their refinements may still belong to
the best queries and have to be considered on the next level
as well. The remining queries are pruned, as they all have
an upper bound c+ = 0 < 1, i.e. all their refinements are
already known to score lower than the current best queries.

The framework for query mining as outlined above can di-
rectly be adapted towards probabilistic databases. The key
changes involved are 1) that the database D is probabilistic,

1096



query c+ c− ψ
1 ID(X),edge(X,Y) 2 1 1
2 ID(X),edge(X,a) 0 0 0
3 ID(X),edge(X,b) 1 0 1
4 ID(X),edge(X,c) 1 0 1
5 ID(X),edge(X,d) 1 1 0
6 ID(X),edge(X,e) 1 0 1
7 ID(X),edge(Y,X) 1 2 - 1
8 ID(X),edge(a,X) 1 0 1
9 ID(X),edge(b,X) 1 0 1

10 ID(X),edge(c,X) 0 2 -2
11 ID(X),edge(d,X) 0 0 0
12 ID(X),edge(e,X) 0 1 -1

Table 1: Counts on ID+ and ID− and ψ-values obtained
during the first level of mining in Example 2.4. The current
minimal score for best queries is 1, i.e. only queries with ψ ≥
1 or c+ ≥ 1 will be refined on the next level.

and 2) that the selection predicate φ or the correlation mea-
sure ψ is based on the probabilities of queries. Throughout
this paper we shall employ a recently developed extension
of Prolog, called ProbLog [De Raedt et al., 2007], as it is a
very simple logic that has already been applied to challenging
tasks in biological network mining.

3 ProbLog: A Probabilistic Prolog
A ProbLog program T consists of a set of labeled facts pi :: ci

together with a set of definite clauses encoding background
knowledge (BK). Each ground instance of such a fact ci is true
with probability pi, where all probabilities are assumed mutu-
ally independent. The program thus naturally defines a prob-
ability distribution P (L|T ) =

∏
ci∈L pi

∏
ci∈LT \L(1 − pi)

over logic programs L ⊆ LT = {c1, · · · , cn}. It can be
used to specify two types of query probabilities:

Ps(q|T ) =
∑

L⊆LT

P (q|L) · P (L|T ) (2)

Px(q|T ) = max
e∈E(q)

P (e|T ) = max
e∈E(q)

∏

ci∈e

pi (3)

where P (q|L) = 1 if there exists a θ such that L∪BK |= qθ,
P (q|L) = 0 otherwise, and E(q) = {L ⊆ LT |P (q|L) =
1 ∧ ∀M ⊂ L : P (q|M) = 0} is the set of all explanations or
proofs for query q in the logic program LT ∪BK [Kimmig et
al., 2007]. The success probability Ps(q|T ) thus corresponds
to the probability that q is provable in a randomly sampled
logic program, the explanation probability Px(q|T ) to that of
sampling all clauses needed in the most likely proof.
Example 3.1 We extend our example (Figure 1) with back-
ground knowledge defining a path:

path(X, Y) : − edge(X, Y).
path(X, Y) : − edge(X, Z), path(Z, Y).

Now, the success probability of query path(a,c) is ob-
tained as the sum over all subgraphs having a path from a
to c, i.e. where either edge(a,c) is true or edge(a,c)
is false while both edge(a,b) and edge(b,c) are true:
Ps(path(a, c)) = 0.8+(1−0.8)·0.7·0.6 = 0.884. The expla-
nation probability is Px(path(a, c)) = 0.8, as the query has

possible explanations edge(a,c) with probability 0.8 and
edge(a,b),edge(b,c)with probability 0.7·0.6 = 0.42.
Evaluating Ps is computationally hard due to the disjoint-sum
problem, cf. [De Raedt et al., 2007], who also propose an
approximation algorithm that repeatedly computes bounds on
Ps until their difference becomes sufficiently small. Px can
easily be calculated using a best-first search.

4 Probabilistic Query Mining
To mine for probabilistic queries, we will adapt the local pat-
tern mining algorithms sketched in Section 2 by changing the
selection predicate φ or correlation measure ψ to work with
probabilistic databases. The key idea is to employ a prob-
abilistic membership function. In non-probabilistic frequent
query mining, every tuple in the relation ID either satisfies
the query or not. So, for a conjunctive query q and a 0-1
membership function M(t|q,D), we can explicitly write the
counting function underlying frequency as a sum:

freq(q,D) =
∑

t∈ID

M(t|q,D)

On a more general level, this type of function can be seen as
aggregate of the membership function M(t|q,D).

To apply the algorithms sketched in Section 2 with a prob-
abilistic database D, it suffices to replace the deterministic
membership function M(t|q,D) with a probabilistic variant.
Possible choices for such a probabilistic membership func-
tion P (t|q,D) include the success probability Ps(q(t)|D)
or the explanation probability Px(q(t)|D) as introduced for
ProbLog in Equations (2) and (3). Note that using such query
probabilities as probabilistic membership function is anti-
monotonic, that is, if q1 � q2 then P (t|q1,D) ≥ P (t|q2,D).
Again, a natural choice of selection predicate φ is the com-
bination of a minimum threshold with an aggregated proba-
bilistic membership function:

agg(q,D) = AGGt∈ID P (t|q,D). (4)

Here, AGG denotes an aggregate function such as
∑

, min,
max or

∏
, which is to be taken over all tuples t in the re-

lation ID. Choosing
∑

with a deterministic membership
relation corresponds to the traditional frequency function,
whereas

∏
computes a kind of likelihood of the data. Note

that whenever the membership function P is anti-monotone,
selection predicates of the form agg(q,D) > c (with agg ∈
{∑, min, max,

∏}) are anti-monotonic with regard to OI-
subsumption, which is crucial to enable pruning.

When working with both positive and negative examples,
the main focus lies on finding queries with a high aggregated
score on the positives and a low aggregated score on the neg-
atives. Note that using unclassified instances ID corresponds
to the special case where ID+ = ID and ID− = ∅. In the
following, we will therefore consider instances of the selec-
tion function (4) for the case of classified examples ID+ and
ID− only. Choosing sum as aggregation function results in
a probabilistic frequency pf (5) also employed by [Chui et
al., 2007] in the context of item-set mining, whereas prod-
uct defines a kind of likelihood LL (6). Notice that using the
product in combination with a non-zero threshold implies that

1097



all positive examples must be covered with non-zero proba-
bility. We therefore introduce a softened version LLn (7) of
the likelihood, where n < |ID+| examples have to be cov-
ered with non-zero probability. This is achieved by restricting
the set of tuples in the product to the n highest scoring tuples
in ID+, thus integrating a deterministic (anti-monotonic) se-
lection predicate into the probabilistic one. More formally,
the three functions used are defined as follows:

pf(q,D) =
∑

t∈ID+

P (t|q,D) −
∑

t∈ID−
P (t|q,D) (5)

LL(q,D) =
∏

t∈ID+

P (t|q,D) ·
∏

t∈ID−
(1 − P (t|q,D)) (6)

LLn(q,D) =
∏

t∈ID+
n

P (t|q,D) ·
∏

t∈ID−
(1 − P (t|q,D)) (7)

Here, ID+
n contains the n highest scoring tuples in ID+. In

correlated query mining, we obtain an upper bound on each of
these functions by omitting the scores of negative examples,
i.e. the aggregation over ID−.
Example 4.1 Consider the database of Example 2.2, now
with probabilities. Using Px as probabilistic membership
function, the query q(X) : −ID(X), edge(X, Y ) gets prob-
abilistic frequency pf(q,D) = Px(a|q,D) + Px(c|q,D) −
(Px(d|q,D) + Px(e|q,D)) = 0.8 + 0.9 − (0 + 0.5) = 1.2
(with upper bound 0.8 + 0.9 = 1.7), likelihood LL(q,D) =
0.8 · 0.9 · (1 − 0) · (1 − 0.5) = 0.36 (with upper bound
0.8 · 0.9 = 0.72), and softened likelihood LL1(q,D) =
0.9 · (1 − 0) · (1 − 0.5) = 0.9 (with upper bound 0.9).

5 Implementation
Our implementation of correlated query mining is built upon
and extends the public version of ProbLog as well as the pub-
lic domain implementation of the (non-probabilistic) frequent
query mining system c-armr of [De Raedt and Ramon, 2004].

As in c-armr, the language bias can be defined using type
and mode restrictions as well as background knowledge. This
reduces the number of queries generated by taking advantage
of general knowledge about the domain of interest. As each
query is evaluated on all training examples in turn, we prune
query evaluation as soon as the current upper bound of its
aggregated score falls below the threshold, where we include
maximum estimates for positive examples not processed yet.

For correlated query mining we further modified c-armr.
First, to deal with positive and negative examples, we keep
track of queries that are infrequent, but cannot be pruned as
their upper bound is still promising. Second, we modified
the search strategy to dynamically adapt the threshold to the
score of the kth best query whenever the set of k best queries
found so far changes, thereby allowing for more pruning.

6 Experiments
To evaluate our work, we report on experiments in the con-
text of the probabilistic biological database of [Sevon et al.,
2006] containing a large number of biological entities (such
as genes, proteins, tissues) as well as probabilistic informa-
tion on various kinds of relationships. It has been used be-
fore in the context of ProbLog, cf. [De Raedt et al., 2007;

nodes edges all genes AD genes
G0 936641 5967842 181026 142
G1 658 3544 37 17
G2 3364 17666 185 130

Table 2: Graph characteristics: numbers of nodes, edges,
gene nodes, and genes annotated with AD.

Kimmig et al., 2007]. Even though the database is very large,
at any point in time, a biologist will typically focus on a par-
ticular phenomenon for which only a limited number of nodes
is known to be relevant. As a test-case to be studied, we there-
fore use the 142 genes known to be related to Alzheimer dis-
ease contained in our database. We set up experiments to an-
swer the following questions about correlated query mining:
Q1 How do Ps and Px differ in performance?
Q2 Can the top queries discriminate unseen positive and neg-

ative examples?
Q3 Does the correlated query miner prune effectively?
Q4 Can the correlated query miner use the full network?
To answer these questions, we used three graphs: the full net-
work G0 of roughly 6 million edges as well as two connected
subgraphs around the phenotype representing Alzheimer dis-
ease. To obtain the nodes of interest, we searched Entrez
for human genes with the relevant annotation (AD). Weights
were assigned to edges as described in [Sevon et al., 2006].
We used a fixed number of genes to extract the subgraphs
by taking all acyclic paths with maximum length of 5, with a
probability of at least 0.01, between the phenotype and any of
these genes. We excluded articles since they would dominate
the subgraphs. Table 2 gives a summary of the properties of
all three graphs, including information on the number of gene
nodes and their annotation status w.r.t. AD. Graph G1 was ob-
tained using 17 randomly chosen Alzheimer disease genes.
G2 was extracted starting with all 142 annotated Alzheimer
disease genes, but as we only use the connected component
around the phenotype, some of them do not occur in G2. Each
graph is represented using one probabilistic relation describ-
ing edges in terms of two nodes and a label (e.g.contains),
and a deterministic relation assigning a label (e.g.’Gene’)
to each node. The language bias employed allows to add lit-
erals of the form edge(X,Y,e), edge(X,Y) (as a short-
cut of edge(X,Y,_)) and node(X,n) where X and Y are
variables of type node name, X already appears in the query
(thereby ensuring linkage), and e and n are constants de-
noting an edge and a node label appearing in the graph re-
spectively. Note that in contrast to the running example used
for illustration, we do not allow node names as constants in
the query language here, as this would entail prohibitively
many possible refinements for each query. The bias further
states that labels are mutually exclusive, that edge(X,Y,e)
implies edge(X,Y), and how to invert labels when using
edges backwards. This ensures that edges in queries map to
database entries independently of direction. We use a query
reordering function greedily moving literals containing con-
stants to the left where possible.

Training examples are gene nodes annotated (positive)
resp. not annotated with AD (negative) randomly picked from

1098



LL LLn pf
Ps .72/.45/.33 .27/.02/.00 .13/.03/.00
Px 1/1/.45 1/1/1 1/1/1

Table 3: Fraction of cases where mining for k = 1/5/20 best
queries successfully terminated within 30 minutes.

LLs LLs
n pfs LLx LLx

n pfx

precision 0.76 0.95 0.92 0.77 0.93 0.93
recall 0.94 0.79 0.81 1.00 0.85 0.86
F-measure 0.84 0.85 0.86 0.87 0.88 0.88

Table 4: Using query obtained with k = 1 to reason by anal-
ogy: Overall precision, recall and F-measure, averaged over
cases with mining time at most 30 minutes.

G1. We create ten sequences of size ten, i.e. containing ten
examples of each class. For each such sequence, we use the
first i examples of each class to obtain datasets of varying
size, leading to a total of 100 datasets. To avoid one trivial re-
finement step, q(X):-id(X),node(X,’Gene’) is used
as most general query.

As probabilistic membership function P (t|q,D) we em-
ploy either the explanation probability Px or the lower bound
of the exact probability Ps obtained by the approximation al-
gorithm with interval width δ = 0.1 and a timelimit of 60 sec
for the evaluation of each individual bound. As aggregation
functions to obtain probabilistic selection predicates, we use
the likelihood LL (6), the probabilistic frequency pf (5) and
the softened likelihood LLn (7) with n = �m/2� for m ex-
amples of each class, indicating the probability function used
by superscripts where needed. All experiments are performed
on 2.4 GHz 4GB machines running Linux.

To answer questions Q1 and Q2, we mine on G1 for
k = 1, 5, 20 with a timelimit of 30 minutes per run, using
the 60 datasets with at least 5 examples of each class. Table 3
illustrates the performance in terms of the fraction of success-
ful runs. In the case of Px, the timelimit is only reached for
k = 20 with LL, i.e. when a higher number of queries cov-
ering all positive examples is desired, whereas Ps crosses the
limit frequently in all settings. These results clearly suggest
that Px is more favorable in terms of runtimes. To compare
the two choices of probabilistic membership function P in
terms of their results, we use the highest scored query (omit-
ting id(X); note that scores are independent of k) to retrieve
covered examples from the larger graph G2, and rank those
using the corresponding P . In case of equally likely queries,
we choose the most specific one. Note that due to the form
of the most general query employed in mining, this will re-
turn nodes of type gene only. Training examples are excluded
from the rankings. The fraction of annotated genes and thus
positive examples among the possible answers is 0.76.

We calculate overall precision (percentage of ranked genes
that are positive), recall (percentage of positive genes in-
cluded in the ranking), and F-measure (2 · prec · rec/(prec+
rec)) for all rankings. Table 4 gives the averages over all
successful cases. Using LL results in high recall and low
precision (close to the fraction of positives among unseen
genes), as queries covering all positive training examples are

LLs LLs
n pfs LLx LLx

n pfx

(a) 1/.99/.95 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1
(b) 0.18 0.67 0.33 0.93 0.83 0.86

Table 5: Using query obtained with k = 1 to reason by anal-
ogy: (a) Precision among the first n = 1/10/20 ranked exam-
ples, (b) fraction of positives ranked before the first negative,
averaged over cases with mining time at most 30 minutes.

k 1 5 10 20 50
(a) 225 626 983 1814 4057
(b) 1.25 6.44 32.46 98.37 1523.26

Table 6: Mining on G2: (a) average number of queries tested
for datasets of size 10, (b) average runtimes (sec).

very general and therefore often cover all negative examples
as well. Reducing the number of positives included in the
score, i.e. using LLn, and using probabilistic frequency both
increase precision at the expense of lower recall. This ten-
dency is confirmed by the F-measure, which balances pre-
cision and recall. Combining resource requirements and re-
sults, the answer to question Q1 is thus that using the expla-
nation probability is more favorable.

To study the predictive performance of best queries in more
detail, we examine the top regions of the rankings used above.
Table 5 shows the precision among the top ranked exam-
ples. All queries return several positive examples first, only
in few cases, negatives occur within the first twenty posi-
tions. Furthermore, especially for the case of Px, the queries
mined return a large fraction of all positive examples before
the first negative one. Together, these results show that the
best queries are indeed able to distinguish unseen positive and
negative examples, thus answering Q2 affirmatively.

Comparing the different aggregation functions in terms of
both runtime and results confirms that both LLn and pf
clearly outperform LL. As probabilistic frequency has the
advantage of not requiring an extra parameter, we restrict our-
selves to probabilistic frequency using Px in the following.

To compare the number of queries examined for various k
and thus answer Q3, we mine on the larger graph G2 with
17666 edges, again with pfx as selection predicate. Table 6
shows the number of queries tested and runtimes for vari-
ous values of k, averaged over all datasets of size ten. The
query language LG2 already contains roughly 50K elements
of length at most 3. The size of the search space explored
nicely scales with k, focussing on very small fractions of the
entire search space, thereby answering Q3 affirmatively.

Finally, as both the tasks of query mining and probabilis-
tic reasoning in relational databases are computationally hard
and are combined here, we also tested the algorithm with pfx

on the entire network G0 with around 6M edges, using the
ten largest datasets and a time limit of one hour. For k = 1,
runtimes vary from 626 to 1578 seconds, with an average of
865. For k = 2, the seven runs finishing within the time
limit take between 1701 and 3145 seconds, with an average of
2610. Runtimes for higher k exceed the limit. These results
indicate that although probabilistic relational query mining is
computationally challenging, it is in principle possible to run

1099



the algorithm on large scale networks for small values of k.
Thus the answer to Q4 is positive as well, although improv-
ing the efficiency of the probabilistic reasoning engine would
help to further increase scalability.

7 Conclusions and Related Work
We have extended the frequent pattern mining paradigm
towards a probabilistic Prolog and introduced a correlated
query mining algorithm. We have also introduced various
scoring functions aggregating probabilities. The resulting
general techniques have been evaluated on challenging bi-
ological network mining tasks, where queries emulate sub-
graphs. The results have clearly shown that correlated query
mining using Px is most effective in terms of both function
and efficiency. The discovered correlated queries can be used
to retrieve similar instances with high accuracy. Furthermore,
the correlated query miner using Px scales well and is able to
run on a very large biological network. Nevertheless, further
work on improving the efficiency of this approach (and the
underlying probabilistic Prolog) would be useful.

The probabilistic correlated query mining system intro-
duced here extends existing multi-relational data mining sys-
tems such as Warmr [Dehaspe and Toivonen, 1999] and
c-armr [De Raedt and Ramon, 2004] to deal with proba-
bilistic data. This is useful when mining large network
data. As far as we are aware, approaches to mining prob-
abilistic data addressed only item-sets [Chui et al., 2007;
Zhang et al., 2008]. The notion of expected support used
to find frequent item-sets in [Chui et al., 2007] corresponds
to the probabilistic frequency of Equation (5). The focus
of [Zhang et al., 2008] lies on mining single items that are
likely to be frequent in a random possible world. However,
both approaches consider neither relational data nor corre-
lated pattern mining. As a consequence, their algorithms are
tailored to a specific type of queries, whereas relational query
mining as considered here has to deal with a much broader
class of possible queries that are more complex to evaluate.

Probabilistic explanation based learning (PEBL) [Kimmig
et al., 2007] is a related approach in that it also results in
a set of patterns. However, it is also significantly different:
patterns are obtained by generalizing the logical structure of
proofs of the examples w.r.t. a domain theory defining a target
predicate. PEBL thus searches a highly constrained space of
possible patterns, and hence, it is more efficient to use, but
also more restricted.

Acknowledgments
A. Kimmig is supported by the Research Foundation-
Flanders (FWO-Vlaanderen). This work is partially sup-
ported by the GOA project 2008/08 Probabilistic Logic
Learning and the European Commission FP7 project BISON.

References
[Agrawal et al., 1996] R. Agrawal, H. Mannila, R. Srikant,

H. Toivonen, and A. Inkeri Verkamo. Fast discovery of as-
sociation rules. In Advances in Knowledge Discovery and
Data Mining, pages 307–328. AAAI/MIT Press, 1996.

[Chui et al., 2007] C. Kit Chui, B. Kao, and E. Hung. Mining
frequent itemsets from uncertain data. In PAKDD, pages
47–58, 2007.

[Dalvi and Suciu, 2004] N. N. Dalvi and D. Suciu. Efficient
query evaluation on probabilistic databases. In VLDB,
pages 864–875, 2004.

[De Raedt and Ramon, 2004] L. De Raedt and J. Ramon.
Condensed representations for inductive logic program-
ming. In KR, pages 438–446, 2004.

[De Raedt et al., 2007] L. De Raedt, A. Kimmig, and
H. Toivonen. ProbLog: A probabilistic Prolog and its ap-
plication in link discovery. In IJCAI, pages 2462–2467,
2007.

[Dehaspe and Toivonen, 1999] L. Dehaspe and H. Toivonen.
Discovery of frequent datalog patterns. Data Min. Knowl.
Discov., 3(1):7–36, 1999.

[Dehaspe et al., 1998] L. Dehaspe, H. Toivonen, and R. D.
King. Finding frequent substructures in chemical com-
pounds. In KDD, pages 30–36, 1998.

[Esposito et al., 2000] F. Esposito, N. Fanizzi, S. Ferilli, and
G. Semeraro. Ideal theory refinement under object identity.
In ICML, pages 263–270, 2000.

[Fuhr, 2000] N. Fuhr. Probabilistic Datalog: Implement-
ing logical information retrieval for advanced applications.
JASIS, 51(2):95–110, 2000.

[Kimmig et al., 2007] A. Kimmig, L. De Raedt, and
H. Toivonen. Probabilistic explanation based learning. In
ECML, pages 176–187, 2007.

[Mannila and Toivonen, 1997] H. Mannila and H. Toivonen.
Levelwise search and borders of theories in knowledge dis-
covery. Data Min. Knowl. Discov., 1(3):241–258, 1997.

[Morishita and Sese, 2000] S. Morishita and J. Sese.
Traversing itemset lattice with statistical metric pruning.
In PODS, pages 226–236, 2000.

[Ng et al., 1998] R. T. Ng, L. V. S. Lakshmanan, J. Han, and
A. Pang. Exploratory mining and pruning optimizations of
constrained association rules. In SIGMOD, pages 13–24,
1998.

[Sato and Kameya, 2001] T. Sato and Y. Kameya. Parameter
learning of logic programs for symbolic-statistical model-
ing. J. Artif. Intell. Res. (JAIR), 15:391–454, 2001.

[Sevon et al., 2006] P. Sevon, L. Eronen, P. Hintsanen,
K. Kulovesi, and H. Toivonen. Link discovery in graphs
derived from biological databases. In DILS, pages 35–49,
2006.

[Tsur et al., 1998] S. Tsur, J. D. Ullman, S. Abiteboul,
C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal.
Query flocks: A generalization of association-rule mining.
In SIGMOD, pages 1–12, 1998.

[Zhang et al., 2008] Q. Zhang, F. Li, and K. Yi. Finding fre-
quent items in probabilistic data. In SIGMOD, pages 819–
832, 2008.

1100


