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Abstract

BOOTSTRAP VOTING EXPERTS (BVE) is an ex-
tension to the VOTING EXPERTS algorithm for un-
supervised chunking of sequences. BVE generates
a series of segmentations, each of which incorpo-
rates knowledge gained from the previous segmen-
tation. We show that this method of bootstrapping
improves the performance of VOTING EXPERTS in
a variety of unsupervised word segmentation sce-
narios, and generally improves both precision and
recall of the algorithm. We also show that Min-
imum Description Length (MDL) can be used to
choose nearly optimal parameters for VOTING EX-
PERTS in an unsupervised manner.

1 Introduction

Word segmentation can be considered as a uniquely linguistic
phenomenon, or it can be regarded as an instance of a much
more general cognitive ability: chunking. Intuitively, chunk-
ing is simply the process of identifying sequences of things
that “go together.” The key to chunking then, is to specify
precisely what it means for a sequence of things to go to-
gether.

In designing the VOTING EXPERTS algorithm, Cohen and
Adams [2001] provided a formal answer to this question:
Chunks are sequences that have low internal entropy, and
high boundary entropy, meaning that items within a chunk
can predict one another, but not items outside the chunk.
This answer, and hence VOTING EXPERTS, can be applied
to a wide variety of sequential domains, including word seg-
mentation but also including such diverse areas as robot ac-
tions and visual character recognition [Miller and Stoytchev,
2008].

This paper improves VOTING EXPERTS in two ways. The
first is a bootstrapping method that improves segmentation
performance by iteratively reusing high-precision segmenta-
tions. We show that VOTING EXPERTS can generate high-
precision segmentations, and that the information gained
from these segmentations can productively be incorporated
into future segmentations. The second is an application of
the Minimum Description Length (MDL) technique for pa-
rameter setting, to eliminate the few parameters that VOTING
EXPERTS has. We also revisit experiments by Cohen et al.

[2006] comparing VOTING EXPERTS and another algorithm,
MBDP-1, and provide a clearer picture of the relative perfor-
mance of the two algorithms.

2 Voting Experts

The VOTING EXPERTS algorithm can be described quite sim-
ply. The algorithm’s name refers to the two “experts” that
vote on possible boundary locations: One expert votes to
place boundaries after sequences that have low internal en-
tropy, given by HI(seq) = −log(p(seq)), the other places
votes after sequences that have high boundary entropy, given
by HB(seq) = −∑

c∈S p(c|seq)log(p(c|seq)), where S is
the set of successors to seq. All sequences are evaluated lo-
cally, within a sliding window, allowing the algorithm to be
very efficient.

The statistics required to calculate HI and HB are stored
efficiently using an n-gram trie, which is constructed in a sin-
gle pass over the corpus. The trie depth is 1 greater than the
size of the sliding window. Importantly, all statistics in the
trie are normalized so as to be expressed in standard devia-
tion units. This allows statistics from sequences of different
lengths to be compared to one another.

The sliding window is then passed over the corpus, and
each expert votes once per window for the boundary loca-
tion that best matches that expert’s criteria. After voting
is complete, the algorithm yields an array of vote counts,
each element of which is the number of times some ex-
pert voted to segment at that location. The result of vot-
ing on the string thisisacat could be represented in
the following way, where the number in between each let-
ter is the number of votes that location received, as in
t0h0i1s3i1s4a4c1a0t.

With the final vote totals in place, the final segmentation
consists of locations that meet two requirements: First, the
number of votes must be locally maximal (this is called the
zero crossing rule). Second, the number of votes must exceed
a chosen threshold. Thus, VOTING EXPERTS has three pa-
rameters: the window size, the vote threshold, and whether
to enforce the zero crossing rule. We will return to these pa-
rameters in Section 7. For further details of the VOTING EX-
PERTS algorithm see [Cohen et al., 2006], and also [Miller
and Stoytchev, 2008].
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3 Related Work

Since its introduction in 2001 by Cohen and Adams, VOTING
EXPERTS has been extended more than once by the addition
of a third expert, the natural method of extending VOTING
EXPERTS. The first of these was the Markov Expert [Cheng
and Mitzenmacher, 2005], which uses a model of the quality
of a cut point to refine the results of the other two experts.
The third expert added by HVE-3E [Miller and Stoytchev,
2008] works as a two pass system: the first pass is a standard
run of VOTING EXPERTS, and on the second pass this third
expert votes for locations following frequent chunks from the
first pass.

Much of the other work in unsupervised segmentation ex-
ists specifically within the context of word segmentation.
Tanaka-Ishii and Jin [2006] developed a method based on
boundary entropy alone, analogous to VOTING EXPERTS
without the internal entropy expert. A separate line of work
is based on bootstrapping, the principle of using previously
discovered words to segment future utterances, and begins
with Brent’s MBDP-1 [1999], a Bayesian, dynamic pro-
gramming algorithm discussed in further detail in Section 6.1.
Venkataraman [2001] refined MBDP-1 by simplifying some
of its mathematical assumptions. Several more recent algo-
rithms have been developed that use probabilistic language
modeling frameworks similar to Brent’s, including Goldwa-
ter et al.’s HDP [2008] and Fleck’s WORDENDS [2008].

4 Bootstrap Voting Experts

BOOTSTRAP VOTING EXPERTS proceeds by segmenting the
corpus repeatedly, with each new segmentation incorporat-
ing knowledge gained from previous segmentations. As with
many bootstrapping methods, three essential components are
required: some initial seed knowledge, a way to represent
knowledge, and a way to leverage that knowledge to improve
future performance. For BOOTSTRAP VOTING EXPERTS,
the seed knowledge consists of a high-precision segmentation
generated by VOTING EXPERTS, as described in Section 4.1.
Knowledge gained from prior segmentations is represented in
a data structure we call the knowledge trie, described in Sec-
tion 4.2. During voting, this knowledge trie provides statistics
for the Knowledge Expert, a third expert added to VOTING
EXPERTS, which is presented in Section 4.3. Details of the
main bootstrapping loop itself are given in Section 4.4.

Figure 1 below illustrates how precision and recall typi-
cally change during bootstrapping. The final result is typ-
ically a segmentation with a higher F-measure, recall, and
precision than VOTING EXPERTS.

4.1 Initial Seed Segmentation

Generating some initial high-precision cut points is easy with
VOTING EXPERTS, because higher threshold values trade-
off recall for precision. A single high-threshold execution
of VOTING EXPERTS would suffice, and as a rule of thumb a
threshold value equal to the window size produces precision
above 90%. However, higher precision can be obtained with
a slightly more sophisticated method: First, a high-precision
execution of VOTING EXPERTS generates a set of “forward”
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Figure 1: A characteristic run of BOOTSTRAP VOTING EX-
PERTS, showing recall increasing faster than precision de-
creases, with each iteration. Results are from a CHILDES
corpus, discussed in the following section.

cut points F . Reversing the corpus, and segmenting the re-
versed text with VOTING EXPERTS, generates a different set
of “backward” cut points, B. This is because the trie con-
structed on the reversed corpus will contain different statistics
than the standard corpus. By taking the intersection F ∩ B,
the result is a set of high-precision cut points where the for-
ward and backward segmentations agree.

4.2 The Knowledge Trie

A knowledge trie is simply a trie that explicitly stores
word boundaries. The BOOTSTRAP VOTING EXPERTS
knowledge trie is built in the standard manner, except that
word boundaries are treated as a character in the alpha-
bet. A portion of the knowledge trie for the sequence
#the#cat#sat#on#the#mat# (# represents the bound-
ary character) is shown below in Figure 2. While this example
includes the full set of correct boundaries, the knowledge trie
in BOOTSTRAP VOTING EXPERTS can only store boundaries
that were discovered by an earlier iteration of the algorithm,
as no supervision is provided. This trie can serve as a prefix
trie and a suffix trie simultaneously: the frequency of a se-
quence such as at in word-initial position is given by #at,
and its word-final frequency is given by at#. The only statis-
tic the knowledge trie must support for BOOTSTRAP VOT-
ING EXPERTS is the internal entropy of each sequence, which
is computed and normalized exactly as in the main VOTING
EXPERTS trie.
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Figure 2: A portion of the knowledge trie built from
#the#cat#sat#on#the#mat#. Numbers within each
node are frequency counts.
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4.3 The Knowledge Expert

To incorporate the information stored in the knowledge trie
into the segmentation process, a third expert is added to VOT-
ING EXPERTS. This new expert is called the Knowledge Ex-
pert, and votes for locations that are the most likely to be
word boundaries given the boundary information stored in the
knowledge trie. For each window under consideration, it con-
siders potential boundary locations within the window explic-
itly as word boundaries. For a given split, say it|was, the
sequence before the split is considered as the end of a word
(as in it#), and the sequence after the split is considered as
the beginning of a word (as in #was). The internal entropy
of the “before” segment, HI(before#) and of the “after” seg-
ment, HI(#after), are stored in the knowledge trie. Thus,
each calculation is simply a look-up into the knowledge trie.
The Knowledge Expert votes for the location where the sum
of these two internal entropies is minimal, as shown in Equa-
tion (1).

argmin
before,after

(
HI(before#) + HI(#after)

)
(1)

4.4 Iteration

For the first bootstrapping iteration, the knowledge trie for the
Knowledge Expert is built from the initial seed segmentation.
Each subsequent iteration i uses the segmentation generated
by iteration i − 1 to populate its knowledge trie, meaning
that knowledge gained by previous iterations is conserved.
This knowledge is also augmented, since the vote threshold
is lowered by 1 with each iteration, effectively backing off
from the initial high precision segmentations by increasing
recall. Iteration continues in this manner until a minimum
threshold value is reached. This minimum threshold must be
specified as an additional parameter to BOOTSTRAP VOTING
EXPERTS.

5 Results

We now present results detailing the performance of BOOT-
STRAP VOTING EXPERTS on several corpora, as well as com-
parisons with VOTING EXPERTS, and other algorithms where
possible. The primary metric for evaluating segmentation
quality is the boundary F-measure:

F =
2× Precision× Recall

Precision + Recall
(2)

where precision is the percentage of the induced boundaries
that are correct, and recall is the percentage of the correct
boundaries that were induced. When comparing BOOTSTRAP
VOTING EXPERTS against other algorithms, we will denote
the boundary-based precision, recall, and F-score as BP, BR,
and BF, respectively, because we will also provide the word-
based precision, recall, and F-score (WP, WR, and WF, re-
spectively).

Cohen et al. [2006] already demonstrated that VOTING
EXPERTS performance is superior to a common compression-
based algorithm, SEQUITUR [Nevill-Manning and Witten,
1997], as well as random and ALL-LOCATIONS baselines.
We report results for the ALL-LOCATIONS method, which

simply segments the corpus by cutting at every possible lo-
cation, as a baseline only because it provides a quick refer-
ence for the complexity of the domain. All results reported
for VOTING EXPERTS and BOOTSTRAP VOTING EXPERTS
(as well as the ALL-LOCATIONS baseline) were obtained
through direct execution of those algorithms; results from
other algorithms are taken from published figures, except for
the HVE-3E results, which were obtained by executing the
source code generously provided by Miller and Stoytchev.

5.1 Orthographic English

Every paper about VOTING EXPERTS has included an eval-
uation of performance on some portion of George Orwell’s
1984. We continue this tradition here, by presenting results
on the first 50,000 characters of 1984, shown in Figure 3.

Algorithm BP BR BF WP WR WF
VE

BVE

HVE-3E

Markov Exp.

All Locations

0.817 0.731 0.772 0.505 0.452 0.477

0.832 0.792 0.812 0.556 0.529 0.542
0.800 0.769 0.784 - - -

0.809 0.787 0.798 - - -

0.185 1.000 0.313 0.008 0.041 0.013

Figure 3: Results obtained for Orwell’s 1984, as well as re-
sults from selected other algorithms. Dashes indicate a score
that was not reported in published results. The highest perfor-
mance figure in each column (other than ALL-LOCATIONS)
is highlighted in bold.

5.2 Phonetic CHILDES

CHILDES [MacWhinney and Snow, 1985] is a set of tran-
scribed conversations between caretakers (typically mothers)
and young children. Here we examine the performance of
BOOTSTRAP VOTING EXPERTS on a corpus used by several
word segmentation researchers, called BR87. For the pur-
poses of this paper, BR87 represents not only the mother’s
utterances from the portion of CHILDES compiled by Bern-
stein Ratner [1987], but also a particular phonemic encoding
of those utterances owing to Brent [1999]. The BR87 corpus
has been used not only by Brent, but also by other researchers
inspired by Brent’s work, including Goldwater et al. [2008],
and Fleck [2008], allowing for direct comparison with these
other published results (shown below in Figure 4).

5.3 Orthographic Chinese

Chinese is traditionally written without spaces between
words, though today most written Chinese includes some
punctuation. Because of this, Chinese presents an excellent
real-world challenge for unsupervised segmentation. The re-
sults shown in Figure 5 were obtained using the first 100,000
words of the Chinese Gigaword corpus [Huang, 2007].

6 The Incremental Paradigm

All versions of VOTING EXPERTS are trained on a single text
with all sentence and word boundaries removed. However,
other researchers often train their algorithms by presenting
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Algorithm BP BR BF WP WR WF

VE

BVE

MBDP-1i

HDPi

WordEndsi

All Locations

0.867 0.854 0.860 0.652 0.642 0.647

0.928 0.905 0.916 0.791 0.794 0.793
0.803 0.843 0.823 0.670 0.694 0.682

0.903 0.808 0.852 0.752 0.696 0.723

0.946 0.737 0.829 - - 0.707

0.258 1.000 0.411 0.013 0.051 0.021

Figure 4: Results obtained for the BR87 corpus, as well as
published results from selected other algorithms. Algorithms
marked with i operate within the incremental paradigm, dis-
cussed in Section 6.

Algorithm BP BR BF WP WR WF
VE

BVE

All Locations

0.890 0.836 0.862 0.670 0.630 0.649

0.871 0.900 0.885 0.695 0.717 0.706
0.575 1.000 0.730 0.139 0.381 0.204

Figure 5: Results obtained for the Chinese Gigaword corpus.

sentences from the text incrementally, a condition we will
refer to as the incremental paradigm. Algorithms operating
in the incremental paradigm are provided two “free” word
boundaries per sentence (the ones at the beginning and the
end of the sentence), which essentially makes the segmenta-
tion problem semi-supervised.

6.1 MBDP-1 Revisited

In their 2006 paper [Cohen et al., 2006], Cohen et al. present
a comparison of VOTING EXPERTS with MBDP-1, a boot-
strapping word segmentation algorithm due to Brent [1999].
On the basis of this comparison, they conclude that MBDP-
1 is able to outperform VOTING EXPERTS for large corpora.
However, the results for MBDP-1 presented by Cohen et al.
were taken from Brent et al.’s study of the impact of super-
vised training on the performance of MBDP-1 [Brent and
Tao, 2001], while VOTING EXPERTS was operating in a fully
unsupervised environment. With a sufficiently large amount
of supervised training, MBDP-1 was able to achieve close to
perfect performance. Thus, the performance measures used
were not comparable because the two algorithms were work-
ing under very different conditions.

To provide a fairer test, we developed incremental versions
of both VOTING EXPERTS and BOOTSTRAP VOTING EX-
PERTS, and compared them to MBDP-1. The same require-
ments were present for all algorithms: No hand-segmented
text was given, and each sentence must be segmented before
the following sentence can be analyzed. Thus, the informa-
tion available for the segmentation of the current sentence is
the set of previous utterances and their proposed segmenta-
tions. The adaptation of both versions of VOTING EXPERTS
to the incremental paradigm was straightforward: Each sen-
tence was segmented using whatever prior knowledge was
available, and then the sentence (and its segmentation, for
BOOTSTRAP VOTING EXPERTS) could be analyzed to con-
struct tries and compute statistics. All algorithms segmented

the same corpus, the full text of Orwell’s 1984. The results of
this comparison are shown below in Figure 6.
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Figure 6: Results of comparison in the incremental paradigm.
Each point represents the performance (boundary-based F-
score) of that algorithm on the previous 500 sentences.

Both versions of VOTING EXPERTS start out with rela-
tively high performance and stabilize after only 2,500 sen-
tences, while MBDP-1 slowly builds performance and needs
about 4,000 sentences to approach its performance plateau.
After this point, VOTING EXPERTS and MBDP-1 are in close
competition, with BOOTSTRAP VOTING EXPERTS leading
both of them. This result is very different from Cohen et al’s
comparison, where MBDP-1 pulls away from VOTING EX-
PERTS [Cohen et al., 2006].

7 Parameter Setting

In describing VOTING EXPERTS, we noted that the algorithm
requires specification of a window size, a vote threshold, and
whether to apply the zero crossing rule. Each of these choices
can affect the performance of the algorithm in potentially se-
rious ways. Here we consider the effects of these parameters,
and propose a way to set them automatically, using a method
called Minimum Description Length, or MDL.

Cohen et al. [2006] investigated the effect of the window
size parameter in English and found that larger window sizes
reduced the proportion of “lost” words, words for which nei-
ther boundary was recovered. Unfortunately, no general rela-
tionship between window size and performance holds across
languages. For example, in Chinese, where words are typ-
ically much shorter than in English, performance peaks at
a window size of 3. The effect of the threshold parameter
is more straightforward: increasing the threshold produces
higher precision and lower recall, so the threshold provides a
powerful way to tune the performance of VOTING EXPERTS.
In BOOTSTRAP VOTING EXPERTS, this parameter is manip-
ulated for exactly this reason, to slowly back-off from very
high precision while increasing recall. An illustration of the
impact of the threshold parameter on VOTING EXPERTS, for
a given window size, is shown in Figure 7.

Recall that the zero crossing rule simply requires that a
given cut point have a locally maximal number of votes,
meaning that it must have a greater number of votes than both
neighboring cut positions. This constraint often has the pos-
itive effect of preventing over-segmentation. However, the
zero crossing rule also prevents any single-character words
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Figure 7: Effects of the threshold parameter on overall per-
formance. Results are from the BR87 corpus with a window
size of 4.

from being found. For English, this sacrifice may be accept-
able, but for languages like Chinese, where many words con-
sist of a single character, the zero crossing rule will place a
low ceiling on performance. Thus, we can consider the pres-
ence of the zero crossing rule to be a boolean parameter to
VOTING EXPERTS.

Minimum Description Length (MDL) provides an unsu-
pervised way to set these parameters indirectly by selecting
among the segmentations each combination of parameters
would generate. The Description Length for a given hypoth-
esis and data set refers to the number of bits needed to rep-
resent both the hypothesis and the data given that hypothesis.
The Minimum Description Length, then, simply refers to the
principle of selecting the hypothesis that minimizes descrip-
tion length. In this context, the data is a corpus (sequence of
symbols), and the hypotheses are proposed segmentations of
that corpus, each corresponding to a different combination of
parameter settings. Thus, we choose the vector of parameter
settings that generates the hypothesized segmentation which
has the minimum description length.

The method for computing MDL employed here is based
on that of Argamon et al. [2004]. The intuition driving this
formulation is that any segmentation, by specifying bound-
aries, also implicitly specifies a lexicon of words. The corpus
can then be encoded as a list of words in this lexicon. The
basic description length formula is shown below in Equation
(3), where L is the lexicon and Data is the corpus. The CODE
function represents the minimal number of bits required to
encode its argument. Thus, CODE(Data|L) is the minimum
number of bits required to encode the corpus using the in-
ferred lexicon.

CODE(Data|L) + CODE(L) (3)

The formula for the information cost of the lexicon is:

CODE(L) = b
∑

w∈L
length(w) (4)

where b is the number of bits required to encode a single char-
acter in the language’s alphabet, and length(w) is the length
of word w in characters.

The corpus is treated as a list of N words, of the form
Data = w3w1w5w2w2w3 . . . , where each wj represents an
instance of the jth word of the lexicon L. The information
cost of the corpus given the lexicon, CODE(Data|L), is:

−
∑|L|

j=1
C(wj)(log(C(wj))− log(N)) (5)

where C(wj) represents the number of instances of word wj

the corpus contains. See Argamon et al. [2004] for a detailed
derivation of these equations.

With the MDL calculation now fully specified, we can esti-
mate the best vector of parameter values for the window size,
threshold, and zero crossing rule, p = 〈w, θ, z〉, by solving:

argmin
p

(
CODE(Data|Lp) + CODE(Lp)

)
(6)

where Lp is the lexicon implicitly generated by VOTING EX-
PERTS with the parameters set to p.

7.1 MDL Results

To evaluate the ability of MDL to select effective parame-
ters for VOTING EXPERTS, we generating a set of candidate
segmentations by testing a wide range of parameter settings,
and compared the boundary F-measure of the segmentation
chosen by MDL to the highest boundary F-measure among
the candidates. For the parameter settings, we considered ev-
ery window size between 2 and 9 (inclusive), every threshold
value between 0 and the current window size (inclusive), and
both with and without the zero crossing rule. This yields a to-
tal of 104 unique parameter vectors. We tested VOTING EX-
PERTS with each of these parameter vectors on several testing
corpora, generating 104 segmentations for each corpus. The
segmentation with the minimal description length is called
the MDL segmentation. Each of the segmentations has an
associated F-measure, and we will refer to the one with the
highest F-measure as the best segmentation. By comparing
the F-measure of the MDL-selected segmentation with that
of the best segmentation, we can determine what percentage
of the best performance can be recovered by using MDL to
choose between the segmentations. The results of this com-
parison are shown below in Figure 8.

Corpus Mean BF MDL BF Best BF Percent of 
Best

Orwell

Twain

Chinese GW

Nietzsche

Caesar

BR87

Bloom73

Gray

0.6555 0.7807 0.7816 99.88%

0.6710 0.7845 0.8161 96.13%

0.5112 0.8646 0.8688 99.52%

0.6683 0.7940 0.7940 100.00%

0.6262 0.7721 0.7776 99.29%

0.6881 0.7969 0.8734 91.24%

0.6970 0.8527 0.8722 97.76%

0.7728 0.9075 0.9277 97.82%

Figure 8: Quality of the MDL-selected segmentation.

All of the corpora introduced in Section 5 (Orwell’s 1984,
Chinese Gigaword, BR87) were included in the this eval-
uation. Three additional literary texts were added, Mark
Twain’s The Adventures of Huckleberry Finn, Friedrich Ni-
etzsche’s Also Sprach Zarathustra in the original German,
Julius Caesar’s Comentarii de Bello Gallico in the origi-
nal Latin, as well as an additional corpus from CHILDES,
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Bloom73 [Bloom, 1973], and a collection of stories for young
children by William S. Gray. For one of these corpora, Also
Sprach Zarathustra, MDL chose the best possible segmenta-
tion. Overall, MDL was always able to recover more than
90% of the quality of the best segmentation.

8 Discussion

The results presented in Section 5 show that BOOTSTRAP
VOTING EXPERTS improves performance over VOTING EX-
PERTS in several word segmentation tasks. The results for Or-
well’s 1984 indicate that BOOTSTRAP VOTING EXPERTS can
outperform other algorithms in the VOTING EXPERTS fam-
ily. Performance on BR87 is particularly significant because
a number of recent algorithms have been evaluated against
this very same corpus, and BOOTSTRAP VOTING EXPERTS
outperforms all of them, by a substantial margin. The results
for the Chinese Gigaword corpus, while yielding the small-
est gain from bootstrapping, are interesting given the current
interest in Chinese word segmentation. Comparison with re-
sults other algorithms have obtained for Chinese corpora is
difficult because few have been evaluated using the same met-
ric (boundary F-measure or word F-measure). Tanaka-Ishii
and Jin [2006] have done so, and achieved scores of over
0.8, but their evaluation used a phonemic encoding, which
presents a very different segmentation problem (one that is
actually more similar to English).

Though not designed with the incremental paradigm in
mind, the results of Section 6 show that BOOTSTRAP VOT-
ING EXPERTS can be used effectively within it, besting at
least one prominent segmentation algorithm designed for it.
With a large enough corpus, both VOTING EXPERTS algo-
rithms converge to a level of performance that is similar to
their respective performance in the usual batch scenario. Con-
trary to prior published results, we suggest that performance
of VOTING EXPERTS and MBDP-1 will generally be com-
petitive in this paradigm (though whenVOTING EXPERTS op-
erates in batch mode, it will generally be the higher per-
former). It is important to note that BOOTSTRAP VOTING
EXPERTS is not without drawbacks, the two most obvious be-
ing the requirement of an additional parameter, and the extra
computational expenses incurred by segmenting the corpus
multiple times and maintaining an additional trie.

As an unsupervised algorithm, the sensitivity of VOTING
EXPERTS to parameter settings results in a dilemma: Either
fix a set of universal parameters and tolerate compromised
performance on many tasks, or hand-set parameters for each
domain. Not content with these choices, we examined a third
possibility: Estimate the parameters in an unsupervised man-
ner. The method of parameter estimation investigated here, a
form of MDL, provides a good first step, and generally results
in segmentation quality that is close to the best possible for
VOTING EXPERTS.
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