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Abstract

Recently graph based dimensionality reduction has
received a lot of interests in many fields of infor-
mation processing. Central to it is a graph structure
which models the geometrical and discriminant
structure of the data manifold. When label infor-
mation is available, it is usually incorporated into
the graph structure by modifying the weights be-
tween data points. In this paper, we propose a novel
dimensionality reduction algorithm, called Con-
strained Graph Embedding, which considers the la-
bel information as additional constraints. Specifi-
cally, we constrain the space of the solutions that
we explore only to contain embedding results that
are consistent with the labels. Experimental results
on two real life data sets illustrate the effectiveness
of our proposed method.

1 Introduction

In many real world applications like face recognition and text
categorization, the data is often of very high dimensional-
ity. Procedures that are analytically or computationally man-
ageable in low-dimensional spaces can become completely
impractical in a space of several hundreds or thousands di-
mensions [Duda et al., 2000]. Thus, various techniques have
been developed for reducing the dimensionality of the feature
space, in the hope of obtaining a manageable problem. Two
of the most popular techniques for this purpose are Principal
Component Analysis (PCA) and Linear Discriminant Analy-
sis (LDA) [Duda et al., 2000].

PCA is an unsupervised method. It aims to project the data
along the direction of maximal variance. LDA is supervised.
It searches for the project axes on which the data points of
different classes are far from each other while requiring data
points of the same class to be close to each other. Both of
them are spectral methods, that is, methods based on eigen-
value decomposition of either the covariance matrix for PCA
or the scatter matrices for LDA.

Recently, graph embedding has become a topic of sig-
nificant interest for dimensionality reduction [Brand, 2003;
Cai et al., 2007; Li et al., 2008; He et al., 2005b; Sugiyama,
2007]. Tt usually constructs a graph to encode the geometri-
cal information in the data. For some applications like Web
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search, the graph can be pre-defined by using hyperlinks. Us-
ing the notion of graph Laplacian [Chung, 1997], one can find
a lower-dimensional representation which respects the graph
structure. Many state-of-the-art dimensionality reduction al-
gorithms such as Isomap [Tenenbaum et al., 20001, Laplacian
Eigenmap [Belkin and Niyogi, 2001], Locally Linear Em-
bedding [Roweis and Saul, 2000], Neighborhood Preserving
Embedding (NPE, [He et al., 2005a]) and Locality Preserving
Projections [He er al., 2005b], as well as canonical algorithms
like PCA and LDA, can be interpreted in a general graph em-
bedding framework with different choices of the graph struc-
ture.

In some situations, there may be label information (or
within-class and between-class advice) available. The most
natural way to make use of such prior information is to in-
corporate it into the graph structure by modifying the weight
matrix. Specifically, if two points share the same label or
there is within-class advice for them, then the edge weight
is increased. If two points have different labels or there is
between-class advice for them, then the edge weight is de-
creased. The typical supervised graph embedding algorithms
include Local Discriminant Embedding (LDE, [Chen et al.,
2005]). Note that, NPE and LPP can also be performed in su-
pervised manner by incorporating the label information into
the graph structure. The major disadvantage of these ap-
proaches is that there is no theoretical guarantee that data
points from the same class are mapped into a lower dimen-
sional space in which they are actually sufficiently close to
each other.

In this paper, we propose a novel constrained dimension-
ality reduction algorithm, called Constrained Graph Embed-
ding (CGE), that considers the label information or within-
class/between-class advice as additional constraints. We con-
strain the space of the solutions that we explore only to con-
tain embedding results that are consistent with the labels (ad-
vice). This way, the data points belonging to the same class
are merged together in the embedding space in which better
classification or clustering performance can be obtained. A
key problem in graph embedding is the out-of-sample exten-
sion. We further propose that an explicit mapping function
can be learned which is defined everywhere.

The paper is structured as follows: in Section 2, we provide
a review of graph based dimensionality reduction. Our Con-
strained Graph Embedding (CGE) algorithm is introduced in



Section 3. In Section 4, we discuss how to perform out-of-
sample extension. The experimental results are presented in
Section 5. Finally, we provide some concluding remarks in
Section 6.

2 A Review of Graph based Dimensionality
Reduction

Suppose we have m data points {x;}7,. In the past decades,
many dimensionality reduction algorithms have been pro-
posed to find a lower-dimensional representation of x;. De-
spite the different motivations of these algorithms, they can
be nicely interpreted in a general graph embedding frame-
work [Brand, 2003; He et al., 2005b].

Given a graph G with m vertices, each vertex represents
a data point. Let W be a a symmetric m X m matrix with
W;; having the weight of the edge joining vertices ¢ and j.
The G and W can be defined to characterize certain statisti-
cal or geometrical properties of the data set. The purpose of
graph embedding is to represent each vertex of the graph as
a low dimensional vector that preserves similarities between
the vertex pairs, where similarity is measured by the edge
weight.

Lety = (y1, -+ ,%m)" be the map from the graph to the
real line. The optimal y is given by minimizing [Belkin and
Niyogi, 2001]:

Z (yi — v3)* Wi
ij=1

s.t. yTDy =1, (1)

where D is a diagonal matrix whose entries are column (or
row, since W is symmetric) sums of W, D;; = > i Wij.
The constraint y Dy = 1 removes an arbitrary scaling fac-
tor in the embedding. This objective function incurs a heavy
penalty if neighboring vertices ¢ and j are mapped far apart.
Therefore, minimizing it is an attempt to ensure that if ver-
tex 4 and j are connected with high weight then y; and y;
are close in the embedding space [Belkin and Niyogi, 2001;
Guattery and Miller, 2000]. With some simple algebraic for-
mulations, we have

Z(yz —y;)°Wi; =2y" Ly
2]
where L. = D — W is the graph Laplacian [Chung, 1997].
Finally, the minimization problem reduces to find
TLy
y" Dy

@)

y* = argminy’ Ly = arg min
yT Dy=1

The optimal y’s can be obtained by solving the minimum
eigenvalue problem:

Ly = ADy (3)

It would be interesting to note that graph embedding has a
close connection to differential geometry. Suppose the data
points are sampled from an underlying submanifold M which
is embedded in the ambient space. Let f : M — R be

a smooth one-dimensional map. Belkin and Niyogi showed
that the optiaml map preserving locality can be obtained by
solving the following optimization problem on the manifold:

min v f|2 @
||fL2(M)_1/M IV /]
By Stokes’ theorem, we have:
[owse= [ <errs .
M M

where £ is the Laplace-Beltrami operator, i.e. Lf =
—divV(f). Therefore, the optimal f to the objective func-
tion (4) has to be an eigenfunction of £. Belkin and Niyogi
have shown that the optimal solution y* gives a discrete ap-
proximation to the eigenfunction of £ [Belkin and Niyogi,
2001].

3 Constrained Graph Embedding

There is no theoretical guarantee for previous graph embed-
ding algorithms that two data points sharing the same label
are mapped into a low dimensional space in which they are
actually sufficiently close to each other. In this section, we in-
troduce our Constrained Graph Embedding algorithm which
makes use of the label information as additional constraints.
We begin with a formal definition of the problem of con-
strained graph embedding.

3.1 The Problem

The generic graph embedding problem is the following.
Given a graph G(V, W) where V- = {x1,--- ,X,, } is the set
of nodes and W is the weight matrix, find a Euclidean embed-
ding of the m nodes y,,--- ,y,, in R?, such that y, “repre-
sents” x;. Our method considers the particular situation that
there is label information, or within-class/between-class ad-
vice, available. Thus, it is necessary to constrain the space
of the solutions that we explore only to contain embedding
results that are consistent with this prior knowledge.

3.2 The Algorithm

Given m data points {x1,X2, - ,X;,} C R™ sampled from
the underlying submanifold M, one can build a nearest
neighbor graph G to model the local geometrical structure
of M. For each data point x;, we find its k£ nearest neigh-
bors and put an edge between x; and its neighbors. There are
many choices of the weight matrix W. A simple definition is
as follows:

1, ifx; is among the k nearest neighbors of x;,
Wij = or X; is among the k nearest neighbors of x;;
0, otherwise.

(6)
Lety = (y1, - ,Ym) be a one-dimensional map of x;’s.
Without loss of generality, suppose there is label information
available for the first p data points xq, - - - ,x;,,. Therestm —p
data points X, 1, - - - , X, are unlabeled. Suppose the labeled
data points are from c classes.
As we have described earlier, the label information can be
introduced into graph embedding as additional constraints.
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Let u; be a m-dimensional indicator vector for the ¢-th class.
That is, u; ; = 1 if and only if x; is labeled with the i-th
class; u; ; = 0 otherwise. Let e; be a m-dimensional vec-
tor whose i-th element is 1 and all other elements are 0. We
introduce the label constraint matrix U as follows:

(N

As an example, consider that x;, X2, X3 are labeled with the
first class, x4, X5 are labeled with the second class, and the
rest m — 5 points are unlabeled. Thus, the constraint matrix
U can be represented as follows:

U = (ul’... 7uc’ep+17... ,em)

SO OO ==
O OOO
[enlianlanlan R an]

Im75

where I,;,_5 is a (m —5) x (m — 5) identity matrix. Using the
label constraint matrix U, we can impose the label constraints
explicitly by introducing an auxiliary vector z:

®)

With the above constraint, it is clearly to see that if x; and x;
share the same label, then y; = y;. Thus, we have:

y=Uz

Z (yz — yj)QWij = yTLy = ZTUTLUZ
i,j=1
and
y' Dy =2"'UT DUz

Finally, the minimization problem reduces to finding:

max z'UTLUz

2’UTDUz =1, 9)
The optimal vector z that minimizes the objective function is
given by the minimum eigenvalue solution to the generalized
eigenvalue problem:

s.t.

UTLUz=\UTDUz (10)
It is easy to check that L is positive semi-definite and D
is positive definite. Since the column vectors of U are lin-
early independent, for any non-zero z, Uz is not a zero
vector. Therefore, UT LU is still positive semi-definite and
UT DU is positive definite. This implies that A\ > 0. Let
1, be d-dimensional vector of all ones. Note that U is a
m X (¢ +m — p) matrix and Ulyp,—p, = 1,,. It is easy
to check that L1,, = 0, thus UTLUlc+m_p = 0. This im-
plies that 1.,,—, is an eigenvector associated with the zero
eigenvalue. This eigenvector should be removed since it leads
to a constant embedding and all the maps collapse to a single
point. Once z is solved, the embedding result y can be ob-
tained by Eq. (8). When there is no label information avail-
able, U = I,,. In this case, our algorithm reduces to the
ordinary Laplacian Eigenmap.
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4 Out-of-Sample Extension

The approach described so far yields a map which is defined
only on the training points. For real applications such as face
recognition, we need to have an explicit mapping function
which is defined everywhere. In this section, we discuss how
to perform out-of-sample extension.

Consider a linear map f(x) = a’x. Let X = (X1, ,X;)
be a n x m data matrix. Thus, the optimal a should satisfy:

XTa=y

However, in reality, such a may not exist. A possible way is
to find a which can best fit the equation in the least squares
sense:

m
a=arg minz (a”x; — yi)2

a

(1D
i=1
The technique for solving the least square problem is already
matured [Golub and Loan, 1996] and there exist many effi-
cient iterative algorithms (e.g., LSQR [Paige and Saunders,
1982]) that can handle very large scale least square problems.
In the situation that the number of data points is smaller
than the number of features, the minimization problem (11) is
ill posed. There can be infinitely many solutions to the linear
equations system X a = y (the system is under-determined).
The most popular way to solve this problem is to impose a
Tikhonov regularizer:

(3 @™i—y)* +9lal?) (2

=1

a = arg min
a

The regularized least square is also called ridge regression
[Hastie et al., 2001]. The v > 0 is a parameter to control the
amounts of shrinkage [Hastie et al., 2001]. The regularized
least squares in (12) can be rewritten in the matrix form as
follows:

a=argmin ((X"a-y)" (X"a-y) +7a’a) (13)

Requiring the derivative of the right hand side with respect to
a vanish, we get:

a= (XXT+~I)"'Xy (14)

5 Experimental Results

In this section, we investigate the use of CGE on face recog-
nition. We compare our proposed algorithm with Eigen-
face (PCA, [Turk and Pentland, 1991]), Fisherface (LDA,
[Belhumeur er al., 1997]), Laplacianface (LPP, [He et al.,
2005b]), and Neighborhood Preserving Embedding (NPE,
[He er al., 2005a]). We begin with a brief discussion about
data preparation.

5.1 Data Preparation

Two face database were tested. The first one is the AT&T
database !, and the second one is the CMU PIE database [Sim
et al., 2003]. In all the experiments, preprocessing to locate
the faces were applied. Original images were normalized (in

"http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 1: The sample cropped face images from AT&T database. The original face images are taken under varying expressions

and facial details.
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Figure 2: Error rate vs. dimensionality reduction on AT&T database.

Table 1: Recognition error rate of different algorithms on the AT&T database (mean=+std-dev%)

| Method | 2 labels | 4 labels | 6 labels | 8 labels |
Baseline | 33.2+3.3 (1024) | 18.312.2 (1024) | 11.1£2.3 (1024) | 8.25+2.0 (1024)
PCA | 332+33(79) | 18342.2(159) | 11.1+2.3(238) | 8.2542.0 (316)
LDA 28.74+3.4 (28) 10.442.0 (39) 5.75+2.4 (39) 3.56+1.6 (39)
NPE 22.143.4 (39) 10.0£1.6 (39) 5.03+2.1 (37) 3.5042.0 (37)
LPP 22.043.0(39) | 9.6911.6(39) | 5.44+2.0(39) | 3.06£1.8(37)
CGE 19.14+2.9 (33) 7.63+2.2 (33) 4.28+1.8 (69) 2.62+1.6 (43)

scale and orientation) such that the two eyes were aligned at
the same position. Then, the facial areas were cropped into
the final image for matching. The size of each cropped image
in all the experiments is 32 x 32 pixels, with 256 gray levels
per pixel. Thus, each image can be represented by a 1024-
dimensional vector in image space. No further preprocessing
is done. The nearest neighbor classifier is applied for its sim-
plicity. In our algorithm, the parameter k& (number of nearest
neighbors) is empirically set to 3, and + is set to 0.1.

5.2 Face Recognition on AT&T Database

The AT&T face database consists of a total of 400 face im-
ages, of a total of 40 subjects (10 samples per subject). The
images were captured at different times and have different
variations including expressions (open or closed eyes, smil-
ing or non-smiling) and facial details (glasses or no glasses).
The images were taken with a tolerance for some tilting and
rotation of the face up to 20 degrees. Fig. 1 shows some of the
faces with varying expressions and facial details in the AT&T
database.

For each subject, I(= 2,4, 6,8) images are randomly se-
lected as labeled set and the rest are considered as unlabeled
set for testing. By applying CGE, LPP, PCA, LDA, and NPE,

we can learn a face subspace in which the recognition is then
performed. For each given [, we average the results over 20
random splits.

Fig. 2 shows the plots of error rate versus dimensionality
reduction for different algorithms. For the baseline method,
the recognition is simply performed in the original 1024-
dimensional image space without any dimensionality reduc-
tion. Note that, the upper bound of the dimensionality of
Fisherface is ¢ — 1 where c is the number of subjects [Duda
et al., 2000]. As can be seen, the performance of these algo-
rithms varies with the number of dimensions. We show the
best results obtained by them in Table 1.

Our algorithm outperforms all other five methods. PCA
performs the worst in all cases. It does not obtain any im-
provement over the baseline method. LPP and NPE signifi-
cantly outperform LDA when there are only 2 labeled sam-
ples per subject. As the number of labeled samples increases,
the performance difference between LDA, NPE, and LPP gets
smaller.

5.3 Face Recognition on CMU PIE Database

The CMU PIE face database [Sim et al., 2003] contains
68 subjects with 41,368 face images as a whole. The face
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Figure 4: Error rate vs. dimensionality reduction on CMU PIE database.

Table 2: Recognition error rate of different algorithms on the CMU PIE database (mean=+std-dev%)

| Method | 10 labels | 20 labels | 30 labels |

Baseline | 22.8+£1.2 (1024) | 9.60£0.76 (1024) | 5.12+0.62 (1024)
PCA 22.841.2(647) | 9.60£0.76 (572) | 5.12+0.62 (642)
LDA 5.234+0.41 (67) 4.8340.45 (67) 3.88+0.40 (67)
NPE 5.55+0.43 (160) | 4.9940.53 (189) | 3.331+0.40 (145)
LPP 5.434+0.41(189) | 4.70+0.47 (154) | 3.67+0.33 (149)
CGE 3.31+0.34 (189) | 2.20+0.28 (90) 2.024+0.33 (102)

images were captured by 13 synchronized cameras and 21 points:

flashes, under varying pose, illumination and expression. In
this experiment, we choose the frontal pose (C27) with vary-
ing lighting and illumination which leaves us 49 images per
subject. Fig. 3 shows the sample cropped face images from
the chosen database. For each subject, [ = (10, 20, 30) im-
ages are randomly selected as labeled samples and the rest are
considered as unlabeled samples for testing.

The experimental design is the same as that in the last sub-
section. For each given [, we average the results over 20 ran-
dom splits. Fig. 4 shows the plots of error rate versus dimen-
sionality reduction for the PCA, LDA, NPE, LPP, CGE, and
baseline methods. The best results obtained in the optimal
subspace for each method are shown in Table 2.

As can be seen, our CGE algorithm consistently outper-
forms the other five algorithms in all the cases. The error
rates obtained by LDA, NPE, and LPP are very close to each
other.

5.4 Discussion

Several experiments on two standard face database have been
systematically performed. We would like to highlight several

1. Itis clear that the use of dimensionality reduction is ben-
eficial in face recognition. There is a significant increase
in performance from using LDA, NPE, LPP, and CGE.
However, PCA fails to gain improvement over the base-
line. This is because that PCA does not encode the dis-
criminative information.

2. Our CGE algorithm significantly outperforms the canon-
ical subspace learning algorithms (e.g. PCA and LDA)
and the state-of-the-art subspace learning algorithms
(e.g. NPE and LPP). The reason lies in the fact that CGE
constrains the space of the solutions that we explore only
to contain embedding results that are consistent with the
labels. This way, discriminative information can be en-
coded in the learned subspace more accurately.

3. The NPE and LPP algorithms are only slightly better
than LDA. All of these three algorithms aim to discover
the intrinsic manifold structure. They encode the la-
bel information in the graph model by assigning higher
weights between data points sharing the same label.
However, it remains unclear how to select the optimal
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weight in a principled manner.

6 Conclusions

This paper introduces a novel dimensionality reduction algo-
rithm called Constrained Graph Embedding to enable more
effective discriminant analysis. CGE shares some simi-
lar properties to LPP, such as a locality preserving charac-
ter. However, unlike previous manifold learning algorithms
which simply incorporate prior knowledge into the graph
structure, our proposed algorithm makes full use of the prior
knowledge to constrain the solution space. Thus, the ob-
tained embedding results are consistent with the prior knowl-
edge such that data points sharing the same label are merged
together and simultaneously respect the geometrical struc-
ture. The experimental results on two standard databases have
shown that our algorithm can significantly improve the face
recognition accuracy.

The presented algorithm is linear. However, it can be eas-
ily extended to nonlinear embedding by using kernel tricks
[Scholkopf and Smola, 2002]. Moreover, in this work we use
a nearest neighbor graph. It would be interesting to explore
other ways to construct the graph for better describing the ge-
ometrical and discriminating structure in the data.
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