
Learning Optimal Subsets with Implicit User Preferences

Yunsong Guo and Carla Gomes

Department of Computer Science

Cornell University

{guoys, gomes}@cs.cornell.edu

Abstract

We study the problem of learning an optimal subset
from a larger ground set of items, where the opti-
mality criterion is defined by an unknown prefer-
ence function. We model the problem as a discrim-
inative structural learning problem and solve it us-
ing a Structural Support Vector Machine (SSVM)
that optimizes a “set accuracy” performance mea-
sure representing set similarities. Our approach de-
parts from previous approaches since we do not ex-
plicitly learn a pre-defined preference function. Ex-
perimental results on both a synthetic problem do-
main and a real-world face image subset selection
problem show that our method significantly outper-
forms previous learning approaches for such prob-
lems.

1 Introduction

Many interesting problems can be abstracted as finding an
optimal subset of items that maximizes the utility induced by
a preference function defined over individual items or sets
of items, given a larger ground set. Examples range from
real-world scenarios, such as recommending movies from a
list of titles or buying the weekly groceries from a supermar-
ket among aisles of alternatives, to the more general binary
knapsack and set covering problems. We note that selecting
a subset of items from a larger ground set based on a pref-
erence function is different from ranking the items and se-
lecting the top items to include in the subset, since choices
may interact with each other. For example, when select-
ing what to take on a backpacking trip, a bottle of water
can be most essential (thus ranked highest), but two bottles
of water may be less preferred than a bottle of water and
an apple. This example is also known as the portfolio ef-
fect. In addition, because items in the optimal subset are
normally equally preferred, learning a total ranking of items
may not be possible. The problems of preference represen-
tation have been studied in the literature [Brafman et al.,
2006a; desJardins and Wagstaff, 2005; Freund et al., 2003;
Domshlak and Joachims, 2005]. The problem of comput-
ing the optimal subset, assuming a completely known pref-
erence function, has also been studied [Binshtok et al., 2007;
Price and Messinger, 2005]. Recent work has also shown

how, given a pre-defined parameterized preference function,
the parameters can be automatically learned from historical
data. A heuristic greedy method is then used to select an item
subset from a larger ground set, trying to maximize the util-
ity associated with the pre-defined (with learned parameters)
preference function [desJardins et al., 2006].

In our work we assume that for each ground set of items, a
single most preferred optimal subset exists according to some
(unknown) preference function, and we want to build a model
that can predict the subset as close as possible to the optimal
one. Given the wide range of (unknown) preference func-
tions, it is difficult to define a priori the right parameterized
family of functions. In order to circumvent this intermedi-
ate step, we discriminatively learn to predict the optimal sub-
sets from historical datasets, using structural machine learn-
ing, without explicitly assuming a pre-defined parameterized
preference function over sets of items. As no explicit pref-
erence function is assumed during learning, our performance
evaluation is based on a set similarity measure. To the best of
our knowledge, our approach is the first one to formulate this
problem as the task of learning to predict an optimal subset
that maximizes a set similarity measure, without an explicit
preference representation. We solve the structural learning
for the optimal subset selection problem using Structural Sup-
port Vector Machines, for which we guarantee that learning is
performed in polynomial time and testing inference is exact,
even with an exponential number of candidate subsets. Our
experiments are conducted using both a synthetic dataset and
a real-world face image dataset. A total of 8 subset selection
tasks are used for the evaluation. Our method outperforms the
previous approach significantly in all tasks in terms of several
set similarity measures.

2 Optimal Subset Learning

2.1 Problem Formulation

Let X denote the space of possible ground sets, and S(x) the
space of subsets given a ground set x ∈ X . We assume all

possible subsets are legitimate so |S(x)| = 2|x|. In addition,
let S(X) =

⋃
x∈X S(x). An example instance is illustrated

in Figure 1,where the ground set consists of six face images
and the two optimal subsets correspond to two very different
kinds of preferences on the same ground set.

The learning problem can be formulated as follows: we

1052

S1:

S2:

Ground Set

Figure 1: Optimal Subset Example
The two subsets correspond to two user preferences: S1-all face
images that can be used as passport photos (looking straight and
no sunglasses); S2-if there are more angry faces than happy faces,
choose all angry faces, otherwise all happy faces that are with sun-
glasses or looking up.

are given n supervised training sets (xi,yi), where xi is the
ith ground set of items and yi is the optimal subset computed
from some implicit user preferences according to the ground
set xi with yi ⊆ xi; each item I ∈ xi is represented as a real
valued feature vector; the goal is to learn a function F: X →
S(X) which, given a new unseen ground set x, predicts the
subset ŷ of x that minimizes the expected value of a set sim-
ilarity loss Δ(y, ŷ), where y is the optimal subset computed
from x if we knew the underlying implicit user preferences.
As the distribution of instances in X is largely unknown, we
instead construct the function f : X → S(X) that minimizes
the empirical risk

RΔ(f) =
1

n

n∑
i=1

Δ(yi, f(xi)) (1)

where Δ : S(X) × S(X) → R is the loss function that pe-
nalizes predicting f(xi) as the optimal subset yi.

2.2 The Loss Function Δ
We define the loss function Δ(ŷ, yi) = 1 − σ(ŷ, yi)

with σ(y1, y2)=
|y1∩y2|

max(|y1|,|y2|)
, assuming max(|y1|, |y2|)>0.

σ(y1, y2) is our measure for set similarity which we refer to
as set accuracy. Note that σ(y1, y2) is the minimum of the
precision and recall scores given sets y1 and y2. Averaged
over multiple instances, set accuracy is upper bounded by
the average precision and recall scores. This similarity mea-
sure differs from two other often used set similarity measures,

namely the Jaccard Index defined as J(y1, y2) = |y1∩y2|
|y1∪y2|

, and

the Dice’s coefficient D(y1, y2) = 2×|y1∩y2|
|y1|+|y2|

, which can be

shown to be equal to the F1-score in our problem setting.

10 15 20 25 30
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Loss Function Comparison

Predicted Size
 =
 Optimal Size

100% Precision
 50% Recall

Lo
ss

Predicted Subset Size

Set Loss
F1 Loss
Jaccard Loss

Figure 2: Loss Function Comparison

The differences of the loss functions are illustrated in Fig-
ure 2, where the true optimal subset size is 20, and the size
of the overlap of the optimal and predicted subsets is a con-
stant 10. Both Jaccard and F1 loss increases as the predicted
size increases, while the set loss is indifferent until the size
of the predicted subset reaches that of the optimal subset. We
prefer set loss in our problem setting because it encourages
the model to aggressively select more items into the subset
to achieve a larger overlap between the predicted set and the
optimal one when the sizes of two sets do not differ signifi-
cantly. For example, consider the instance where the true op-
timal subset is {1,2,3} for a much larger ground set, and the
two predicted subsets are ŷ1 = {1} and ŷ2 = {1, 2, 4, 5, 6}.
Intuitively we prefer ŷ2 over ŷ1 as it contains more informa-
tion included in the optimal set. The Jaccard loss and F1-loss
will have the same penalty on both predicted subsets, while
set loss penalizes ŷ1 more. Nevertheless, we will also include
the Jaccard Index and the F1-score as performance evaluation
metrics in the experiment section.

2.3 Structural Learning Formulation

The optimal subset learning problem naturally falls into the
structured learning regime, as the input and output are sets
of objects that can interact with other objects in the ground
set. We propose to solve it using structural SVM for optimal
subset learning (SVMOS), formulated as follows:

OPTIMIZATION PROBLEM SVMOS

minw,ξ≥0
1

2
‖w‖2 +

C

n

n∑
i=1

ξi (2)

s.t. ∀1 ≤ i ≤ n, ∀ŷ ∈ S(xi) :

w�φ(xi, yi) ≥ w�φ(xi, ŷ) + Δ(ŷ, yi) − ξi (3)

φ(x, y) in (3) is the feature map jointly defined by a ground
set and a candidate subset. It is a well-known result in the
multiclass setting that for any feasible solution w and ξ,∑n

i=1 ξi is an upper bound on the training loss, independent
of the prediction function f . The same result holds for our
structural learning setting, as we can use simple arithmetic to

1053

show that
n∑

i=1

ξi ≥
n∑

i=1

Δ(f(xi; w), yi) (4)

After the weight vector w is optimized in the above
quadratic formulation, the linear discriminant score for pre-
dicting subset y as the optimal subset for ground set x is
T (x, y; w) = w�φ(x, y), and the function f we use to pre-
dict subsets for an arbitrary ground set is:

f(x; w) = arg max
y∈S(x)

T (x, y; w) (5)

2.4 Optimizing for SVMOS

There are an exponential number of constraints (
∑n

i=1 2|xi|)
in (3), which is the main difficulty in solving SVMOS op-
timally. We use Algorithm 1, a cutting plane algorithm pro-
posed in [Tsochantaridis et al., 2005] to solve SVMOS within
a tolerance ε from optimality. Algorithm 1 iteratively adds the
most violated constraint to the initially empty working set of
constraints to be optimized.

Theoretically, given R = maxi,y‖φ(xi, yi) − φ(xi, y)‖,

Δ = maxi,y Δ(yi, y) and a fixed ε, Algorithm 1 stops af-

ter adding at most max{ 2nΔ
ε

, 8CΔR
2

ε2 } constraints, with the
solution ε-close to optimality. The proof can be found in
[Tsochantaridis et al., 2005].

Algorithm 1 Cutting plane algorithm to solve SVMOS

1: Input: (x1, y1), . . . , (xn, yn), C, ε
2: Pi ← ∅ for all i = 1, . . . , n
3: Initialize w
4: repeat
5: for i = 1,. . .,n do
6: H(y) ≡ Δ(y, yi) + T (x, y; w) − T (x, yi; w)
7: compute ŷ = arg maxy∈S(xi) H(y)
8: compute ξi = max{0, maxy∈Pi

H(y)}
9: if H(ŷ) > ξi + ε then

10: Pi ← Pi ∪ {ŷ}
11: w ← optimize the dual of SVMOS over

P = ∪iPi

12: end if
13: end for
14: until no Pi has changed in the current iteration

Consequently, the polynomial runtime of Algorithm 1 is
ensured if the “most violated” constraint, among the expo-
nential number of constraints, i.e.,

arg max
by∈S(x)

T (x, ŷ; w) + Δ(ŷ, y) (6)

can be computed in polynomial time.
In our problem setting, each item I is represented as a real

valued vector υ(I) ∈ R
k. We define the feature map to be:

φ(x, y) =
∑
I∈y

υ(I) −
∑

I∈x−y

υ(I) (7)

If item I is selected in subset y, it contributes w�υ(I) to
T (x, y; w), otherwise its contribution is −w�υ(I). For a

given training set (x,y) and arbitrary ŷ ∈ S(X), we define
a = |y ∩ ŷ|, the size of overlap between subset y and ŷ; and

b = |y ∩ ŷ|, the size of overlap of complement of y and ŷ in
x; and n = |x|, the size of the ground set. We can show:

Δ(ŷ, y) = 1 −
a

max(|y|, n − |y| + a − b)
(8)

and solve (6) optimally in polynomial time O(|x|2) using Al-
gorithm 2 in [Joachims, 2005] as follows: since both a and
b can only take values in {0,. . .,n}, Δ(ŷ, y) can have at most
O(n2) different values. In addition, if a and b are fixed, we
can construct ŷ to maximize T (x, ŷ; w) in (6) easily: we rank
all items in x according to the score w�υ(I). Select a highest
scored items in y to include in ŷ, and do not select any of the
b lowest scored items in x − y in ŷ. For the rest n − a − b
items, choose to include the item in ŷ if and only if it is not in
y. By iterating through legitimate values of a and b, we can
find the most violated constraint in O(n2) time with efficient
implementation. During the testing phase, the optimal subset
that maximizes equation (5) is {I∈ x: w�υ(I) > 0}.

3 Preference Formalism

So far we have concentrated on the structural learning algo-
rithm, while being vague about the definition of preferences.
Naturally, a preference p : X → S(X) is a function that maps
any ground set in X to its optimal subset in S(X). With-
out loss of generality, we also assume that given a subset
y ∈ S(x), it is easy to test if y = p(x). In fact, we will
show that the decision version of computing the optimal sub-
set given the preference p and a ground set x is NP-complete
in the following.

Definition. SUBSET COMPUTATION PROBLEM (SCP)
Input: ground set x, preference p, an item I∈ x
Decision Question: Is I∈ p(x)?

Lemma. SCP is NP-complete.

Proof. This can be shown by reducing the binary knapsack
problem to SCP. The details are omitted due to space con-
straints.

Therefore, for the experiment dataset construction, we fur-
ther restrict that given preference p and ground set x, the op-
timal subset can be efficiently computed, for example in low
order polynomial time. This restriction on the preference is
for computational purposes of the experiment dataset, but it is
not a limitation of our learning algorithm. If an oracle exists
to produce the optimal subset given ground set x and unre-
stricted preference p, SVMOS is able to learn to predict the
optimal subset.

4 Related Work

[Domshlak and Joachims, 2005] learns a linear discriminant
ordinal utility function from a set of qualitative preference
statements by a non-parametric model similar to hard mar-
gin SVM ordinal regression. The obtained utility function
essentially specifies an item-wise preference partial ordering.
In addition to the fact that our model is based on structural
learning, their focus is not on learning an optimal subset.

1054

[Brafman et al., 2006a] proposed a general way to specify
preferences over sets of items. It first defines item properties
from the attribute values of an item. The set properties are
defined based on item properties and the set preferences are
specified over set property values using TCP-nets [Brafman
et al., 2006b] that yield a partial ordering. While the em-
phasis of [Brafman et al., 2006a] is the representation of set
preferences, in our study we emphasize not the exact repre-
sentation of set preferences, but the discriminative model in
order to learn the most preferred set of items to maximize a
set similarity measure, as we assume preferences are implicit
and can take various forms.

[Binshtok et al., 2007] extends the work of [Brafman et
al., 2006a]. They concentrate on the computational aspect
of the NP-hard optimal subset selection after the set prefer-
ences are given in the formalism of [Brafman et al., 2006a].
They showed that they can improve the heuristic search over
the property value method first pursued in [Brafman et al.,
2006a], by carefully designed pruning mechanisms that ef-
ficiently rid many sub-optimal property combinations. They
also proposed a new search over sets heuristic that deals with
more general preference models. Their work clearly dif-
fers from ours, as no learning is involved and the preference
model is pre-defined.

[Yue and Joachims, 2008] learns to predict a subset of
documents that is as diversified as possible using structured
SVM. The diversity measure is defined as a linear function
using a structured feature space that encodes the benefit of
covering individual words. In our paper we deal with a more
general problem by optimizing the set accuracy metric, as di-
versity can be defined as a particular preference.

[desJardins and Wagstaff, 2005] represents the preference
over sets of items by “depth” preferences and “diversity”
preferences. The objective value of a given preference and
a subset of items is a linear combination of its “depth” value
and “diversity” value. While “depth” can be decomposed into
a weighted sum of functions on item features, “diversity” is
measured with a combination of item features and subset fea-
tures. They also proposed several greedy methods to find
optimal subsets with known preferences, and compared the
objective value of subsets found by greedy and exhaustive
search methods which showed that the greedy methods can
find near optimal subsets much more efficiently than the ex-
haustive search. The preference representation is considered
more specific than [Brafman et al., 2006a] by [Binshtok et
al., 2007].

[desJardins et al., 2006] extends [desJardins and Wagstaff,
2005], in which a preference learning mechanism (denoted
DDpref) is introduced to learn the preference parameters
for the model proposed in [desJardins and Wagstaff, 2005].
DDpref learns depth preferences through kernel density es-
timation (KDE) [Parzen, 1962] and diversity preferences by
maximum a posteriori estimation. The experiments showed
how DDpref improves the objective value of learned prefer-
ences as training set size increases. To our knowledge DDpref
is the only existing method that learns user preferences from
sets of objects and can predict optimal subsets for new ground
sets of items. Therefore, we will compare our experimental
results with DDpref’s.

Table 1: Dataset Size of Each Preference Learning Task

Experiment n m card. k fea.

Face Images 200 100 100 variable 960
Toy Blocks 100 100 100 20 4

5 Experiment

5.1 Dataset Description

The main experiments are based on the CMU face image
dataset we obtained through [Asuncion and Newman, 2007].
This data set contains face images of 20 different people with
various poses (straight, left, right or up); expressions (neu-
tral, happy, sad or angry), and eyes (open or with sunglasses).
Each person has 28 to 32 quality face images. Each grey-
scale image contains 32*30 pixels and a pixel is represented
using its integer intensity in the range [0,255]. To construct
the experiment dataset for optimal subset learning, we sepa-
rate the 20 people into two disjoint groups of size 12 and 8
to construct the training and testing sets. In order to generate
one training example, we randomly sample 100 images of the
12 people, and compute the optimal subset using the prefer-
ences we will describe soon. The test set is generated in the
same manner on the other 8 peoples’ images. 200 training
sets and 100 test sets, each with one ground set and an op-
timal subset, are generated for every preference task 1-5. A
total of 2 ∗ 104 images (with repetitions) are used to construct
the training set for each task.

The synthetic dataset was first used in [desJardins et al.,
2006]. This dataset concerns learning optimal subsets of toy
blocks. Each toy block is described using 4 integer values to
represent its size, number of sides, color and bins. For task 6-
8, we obtained 100 training sets and 100 testing sets using the
block generator from [desJardins et al., 2006]. Each training
and test set contains 100 blocks as the ground set, and the size
of the optimal subsets are fixed at 20 due to the requirement
of DDpref. The scale of the blocks dataset exceeds that used
in [desJardins et al., 2006].

Table 1 gives the summary of the experiment dataset size
of a single preference learning task in terms of the number of
training sets (n), the number of test sets (m), the number of
items in each train/test set (card.), the size of optimal subsets
(k) and the number of features to describe an item in the set
(fea.).

The different underlying preferences to generate the
dataset following our preference formalism in section 3 are
listed below, with the first 5 preferences on the face images
dataset and the last 3 on the toy blocks dataset:

1. (Independent of ground set) Choose all images that are
open, straight, and happy or neutral.

2. (Dependent) If the ground set has more images with peo-
ple wearing sunglasses than open face, choose all left,
otherwise choose all right.

3. (Dependent) If the ground set has fewer happy faces
than sad ones, chose happy images; otherwise choose
sad faces.

1055

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70
Set Accuracy Evaluation

S
et

 A
cc

ur
ac

y
(%

)

Task

SVM
OS

SVM
CV

DDpref

Figure 3: Set Accuracy Comparison

4. (Dependent, reverse of task 2) If the ground set has more
left than right images, choose all open, otherwise choose
all sunglasses

5. (Complex Dependent) If open and happy images consist
of more than 30% of ground set, and sad and sunglass
images are fewer than open and happy, choose all sad,
otherwise all angry images.

6. (Blocks Child) Want to choose a variety of multi-
colored, medium-sized blocks with few sides for a child
to grasp.

7. (Blocks Mosaic) Want to create a mosaic with blocks of
various shapes, with emphasis on simple, small blocks.

8. (Blocks Tower) Want to build a uniform tower with
large, similar-sided blocks of the same color.

5.2 Set Accuracy Result

The results are summarized in Figure 3. All performance
measures are averaged over the 100 test sets for each task.
For the first five tasks on face images, SVMOS reports the
best set accuracy results by varying the C parameter from
10−6 to 104. We also included the results where the C param-
eter is chosen from 5-fold cross validation on the training set
(denoted by SVMCV). For DDpref, we report the best results
obtained from extensively tuning the α and K parameters,
where α is the tradeoff constant between diversity and depth
preferences and K is the required size of predicted subsets.
The difference in performance between SVMOS and DDpref
for all tasks except task 3 is significant at the 0.01 level with
a signed rank test. Difference in task 3 is significant at the 0.1
level. SVMOS outperforms DDpref in all five tasks, while
SVMCV outperforms DDpref other than task 3, in which the
cross validation happens to find a substantially suboptimal C
setting. For other tasks, the cross validation on the training
set often finds the best parameter.

For the three toy block tasks, we supplied DDpref with the
true optimal subset size K=20 as it is a constant for the gen-
eration of the dataset. Thus, DDpref will always predict a
subset with the same cardinality as the true optimal subset.
All performance differences are significant at the 0.01 level.

Table 3: More Evaluation Metrics on Blocks Dataset

Task SVMOS DDpref
Prec. Rec. F1 Jacc. Prec/Rec/F1 Jacc.

6 33.44 49.75 39.80 26.02 25.55 16.05
7 64.63 74.05 68.59 52.95 21.04 12.44
8 52.03 73.85 60.73 44.48 34.42 23.63

Again, both SVMOS and SVMCV predicted better subsets
than DDpref in terms of the set accuracy measure.

5.3 More Evaluation Metrics

Results on Precision, Recall, F1 Score and Jaccard Index

Other than the proposed set accuracy measure, we also eval-
uated the experiment performance of SVMOS and DDpref
using the other metrics discussed in section 2.2 to provide a
more complete view, namely the precision and recall accu-
racy, the F1-score and Jacaard Index. All performance mea-
sures are calculated using the optimal subset and the predicted
one from each test set, and are averaged over 100 test sets. Ta-
bles 2 and 3 present the results when the best set accuracy is
achieved for both SVMOS and DDpref.

We can conclude from Table 2 that SVMOS outperforms
DDpref in all four metrics. The only exception is task 3,
where DDpref achieves better recall and F1-score.

In Table 3 the precision, recall and F1 scores for DDpref
are exactly the same in each task, as DDpref always predicts
the subset with the same cardinality as the optimal subset for
a fixed K=20. SVMOS achieves higher scores for all metrics
in the three tasks.

We note that both DDpref and SVMOS also learn a prefer-
ence ranking order over items. In this paper, we focus on the
performance of predicting the optimal subset and therefore do
not compare the ranking performance, which can be defined
separately.

Scalability Comparison

We study the scalability behavior by comparing the training
time for both SVMOS and DDpref. Apart from the fact that
SVMOS is implemented in C++ and DDpref in Java, we ob-
served that SVMOS is orders of magnitude faster than DDpref
during training. Although the training time depends on the
particular parameter settings, in general SVMOS usually re-
quires less than 10 minutes to train while the training time
required by DDpref can be more than 10 hours on a machine
with a 3.8GHz Intel CPU and 8GB memory. Figure 4 shows
the detailed training time against different training set sizes
for task 5, where the parameters are set to provide the best set
accuracy. Both methods appeared to scale linearly in our ex-
periments. During the testing phase, SVMOS has a runtime
linear in the number of test cases, and DDpref uses a greedy
method to select the optimal subset from the learned prefer-
ences. Both SVMOS and DDpref are efficient in the testing
phase in terms of runtime.

6 Conclusion

In this paper we propose a new approach for the optimal sub-
set selection problem. We model the problem as a structural

1056

Table 2: Precision, Recall, F1-Score and Jaccard Index Performance on Face Dataset in Percentage

Task SVMOS DDpref
Prec. Rec. F1 Jacc. Prec. Rec. F1 Jacc.

1 35.98 51.39 40.59 27.69 11.50 19.77 14.54 8.45
2 45.91 70.88 54.12 38.95 30.40 48.99 37.52 23.26
3 23.75 35.17 27.07 16.67 20.40 42.47 27.56 16.18
4 69.95 51.19 58.43 42.12 49.00 48.49 48.74 31.79
5 28.54 60.92 37.79 24.23 24.33 52.24 33.20 20.38

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Training Time Comparison

T
ra

in
in

g
T

im
e

(s
ec

.)

Training Set Size

DDpref
SVM

OS

Figure 4: Scalability of SVMOS and DDpref

learning problem that maximizes set similarity between the
predicted subsets and the optimal ones. While previous work
requires an explicit preference representation, our discrimi-
native learning model SVMOS only assumes the existence
of implicit user preferences. Our model therefore does not
need the intermediate step of learning the parameters of a
pre-defined preference function. Experiment results on a va-
riety of the subset selection tasks have shown that SVMOS

provides high quality testing results compared with a recent
learning model.

Acknowledgments

We thank Thorsten Joachims for the discussions on struc-
tured learning methods. We also thank the reviewers for their
comments and suggestions. This research was supported by
AFOSR grant FA9950-08-1-0196, NSF grant 0713499, and
NSF grant 0832782.

References

[Asuncion and Newman, 2007] A. Asuncion and
D.J. Newman. UCI machine learning repository,
www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[Binshtok et al., 2007] Maxim Binshtok, Ronen I. Brafman,
Solomon E. Shimony, Ajay Martin, and Craig Boutilier.
Computing optimal subsets. In Conference of the Associa-
tion for the Advancement of Artificial Intelligence (AAAI),
2007.

[Brafman et al., 2006a] R. I. Brafman, C. Domshlak, S. E.
Shimony, and Y. Silver. Preferences over sets. In Confer-

ence of the Association for the Advancement of Artificial
Intelligence (AAAI), 2006.

[Brafman et al., 2006b] Ronen I. Brafman, Carmel Domsh-
lak, and Solomon E. Shimony. On graphical modeling of
preference and importance. Journal of AI Research, 25,
2006.

[desJardins and Wagstaff, 2005] Marie desJardins and
Kiri L. Wagstaff. Dd-pref: A language for expressing
preferences over sets. In Conference of the Association for
the Advancement of Artificial Intelligence (AAAI), 2005.

[desJardins et al., 2006] Marie desJardins, Eric Eaton, and
Kiri L. Wagstaff. Learning user preferences for sets of
objects. In Proceedings of the International Conference
on Machine Learning, pages 273–280, 2006.

[Domshlak and Joachims, 2005] C. Domshlak and
T. Joachims. Unstructuring user preferences: Effi-
cient non-parametric utility revelation. In Conference
on Uncertainty in Artificial Intelligence (UAI), pages
169–177, 2005.

[Freund et al., 2003] Yoav Freund, Raj Iyer, Robert E.
Schapire, and Yoram Singer. An efficient boosting al-
gorithm for combining preferences. Journal of Machine
Learning Research, 4:933–969, 2003.

[Joachims, 2005] T. Joachims. A support vector method for
multivariate performance measures. In International Con-
ference on Machine Learning (ICML), pages 377–384,
2005.

[Parzen, 1962] Emanuel Parzen. On estimation of a proba-
bility density function and mode. The Annals of Mathe-
matical Statistics, 33:1065–1076, 1962.

[Price and Messinger, 2005] Bob Price and P. R. Messinger.
Optimal recommendation sets: Covering uncertainty over
user preferences. In In Proceedings of the Twentieth Na-
tional Conference on Artificial Intelligence, pages 541–
548, 2005.

[Tsochantaridis et al., 2005] I. Tsochantaridis, T. Joachims,
T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. Journal of
Machine Learning Research (JMLR), 6:1453–1484, 2005.

[Yue and Joachims, 2008] Yisong Yue and Thorsten
Joachims. Predicting diverse subsets using structural
svms. In International Conference on Machine Learning
(ICML), 2008.

1057

