Efficient Inference for Expressive Comparative Preference Languages

Nic Wilson
Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
n.wilson@4c.ucc.ie

Abstract

A fundamental task for reasoning with preferences
is the following: given input preference informa-
tion from a user, and outcomes « and /3, should we
infer that the user will prefer o to §? For CP-nets
and related comparative preference formalisms, in-
ferring a preference of « over 3 using the standard
definition of derived preference appears to be ex-
tremely hard, and has been proved to be PSPACE-
complete in general for CP-nets. Such inference is
also rather conservative, only making the assump-
tion of transitivity. This paper defines a less con-
servative approach to inference which can be ap-
plied for very general forms of input. It is shown to
be efficient for expressive comparative preference
languages, allowing comparisons between arbitrary
partial tuples (including complete assignments),
and with the preferences being ceteris paribus or
not.

1 INTRODUCTION

Recent years have seen a considerable literature develop in
the Artificial Intelligence community on formalisms for rea-
soning with comparative preferences in combinatorial prob-
lems, involving statements which compactly express the rel-
ative preference of outcomes (complete assignments to a set
of variables). For example, consider a CP-net [Boutilier et
al., 1999; 2004] statement ¢ of the form u : x > x’ where
x and z’ are assignments to a single variable X, and u is an
assignment to some set of other variables U. This compactly
represents the typically exponentially large set ¢* of all pairs
(a, B) of outcomes such that (i) o and [both extend u, (ii)
a(X) =z, B(X) = 2’ and (iii) « and S agree on all other
variables. Each pair («,) € ¢* represents a preference for
« over (3.

CP-nets and related formalisms [Boutilier et al., 2004,
Brafman et al., 2006; Wilson, 2004a] allow only very re-
stricted forms of comparative preference statements. We can
consider much more general statements , with associated
relation ¢* giving the preferences between alternatives that
are directly implied by ¢. Each pair («, 3) in ¢* represents a
preference (e.g., of a single user) for outcome o over outcome
(. Many comparative preference statements may be elicited,

961

to form a set I'. This set I thus directly represents preferences
I = Uger ¢ A key problem is the following:

Given that the user has told us T is it reasonable to infer
that the user prefers outcome « to outcome [3?

We take a semantic approach to inference, related to that
taken in [Boutilier et al., 2004; Brafman and Dimopoulos,
2004; Wilson, 2004b; 2006]. Let us assume that the user’s
preference relation' = is a weak order, also known as a foral
pre-order, i.e., a relation on outcomes which is transitive and
complete, so that (i) « »> 3 and 3 = ~ implies a > ~, and
(>ii) for all outcomes « and S, either @ = (G or 8 = «. A weak
order satisfies a comparative preference statement ¢ if and
only if it extends ¢*. We write I' = ¢ (and also I'* = ¢*) if
and only if every weak order satisfying every statement in I'
also satisfies ¢. It can be shown that this holds if and only if
™ is a subset of the transitive closure of I'*.

Unfortunately, even for quite restrictive languages, it ap-
pears to be extremely hard in general to test if I' entails, in
this sense, a preference of « over 3, i.e., if I'* E {(a, 5)}.
In particular, for CP-nets such dominance testing has been
shown to be PSPACE-complete [Goldsmith et al., 2005]. In
addition, this kind of inference is conservative, and tends to
lead to weak preferences with a great deal of incomparability.
It is very often desirable to be able to fill out the user’s direct
preferences in a plausible way by some kind of extrapolation,
generating a fuller relation. This can be done by basing the
inference relation on a smaller set of weak orders.

Note, however, that the aim is not to generate a single util-
ity function (or weak order) compatible with the inputs (cf.
the approaches in [Boutilier et al., 2001; Domshlak et al.,
2003; McGeachie and Doyle, 2004; Brafman and Domshlak,
2008]). This would need to involve many arbitrary choices,
since the output preferences are so much stronger than the in-
puts, and therefore the utility function would be extremely un-
likely to be compatible with the user’s unknown preferences.

Our approach involves defining entailment using only
weak orders which are of a kind of generalised lexicographic

"Equivalently we might assume that the user’s preference is rep-
resented by a utility function which assigns a real value to each out-
come, with U(a) > U(f) indicating that the user prefers « to (3.
The focus on weak orders, as in [Brafman and Dimopoulos, 2004;
Wilson, 2006], rather than on total orders, means that the approach
also applies to situations where the preferences can imply cycles of
outcomes.

form. It extends and generalises the upper approximation de-
scribed in [Wilson, 20061, especially, in allowing very much
more general comparative preference input statements. In
fact, the approach applies to completely arbitrary input pref-
erence relations, and the inference algorithm is polynomial
for many natural kinds of preference statements, such as com-
parisons between arbitrary partial tuples (including complete
assignments), and with the preferences being ceteris paribus
or not. No acyclicity conditions are required regarding the
input statements, and consistency (i.e., acyclicity of the pref-
erence relation) is not assumed.

Section 2 describes some different forms of comparative
preference statements, and an operation on them which is im-
portant for our computational approach. Section 3 describes
a special kind of weak order on outcomes, those generated by
what we call a cp-tree. In the semantics, restricting to this
kind of weak order leads to a stronger form of inference, as
defined in Section 4. Section 5 describes our computational
technique for determining entailment, which is polynomial
for a wide range of comparative preference statements. Sec-
tion 6 sketches the proof of correctness of the technique in
Section 5. Section 7 discusses application to a broader range
of comparative preference statements.

Terminology. Let V' be a set of n variables. For each
X € V let X be the set of possible values of X; we assume
X has at least two elements. For subset of variables A C V'
let A = [y 4 X be the set of possible assignments to set of
variables A. The assignment to the empty set of variables is
written T. An outcome is an element of V, i.e., an assign-
ment to all the variables. If @ € A is an assignment to A,
and b € B, where AN B = (), then we may write ab as the
assignment to A U B which combines a and b. For partial tu-
plesa € Aand u € U, we may write a |= u, or say a extends
u, if A O U and a(U) = u, i.e., a projected to U gives u.
More generally, we say that a is compatible with u if there
exists outcome @ € V extending both a and w, i.e., such that
a(A) = aand a(U) = u. This is if and only if u and a agree
on common variables, i.e., u(ANU) = a(ANU). Otherwise,
we say that a and u are incompatible.

Let = be some transitive relation on a set Z. We say that
z1 and 25 are =-equivalent if both z1 = 2z and 25 = 21.

2 COMPARATIVE PREFERENCE
STATEMENTS

In this paper we will focus especially on comparative prefer-
ence statements ¢ of the form p > ¢ || T, where P,) and T
are subsets of V, and p € P is an assignment to P, and ¢ € Q)
is an assignment to @. Informally, the statement p > ¢ || T
represents the following: p is preferred to ¢ if T is held con-
stant. Formally, the semantics of this statement is given by
the relation ¢* which is defined to be the set of pairs («, 3)
of outcomes such that « extends p, and 3 extends ¢, and «
and § agree on T: a(T') = B(T).

If p and ¢ do not agree on common variables in 7', i.e., if
p(PNQNT)#q(PNQNT),then ¢ is vacuous: p* = (.
Given that p and ¢ do agree on common variables in T', we
can assume, without loss of generality, that P N'T = () and

962

QNT = (), since, for example, we can add any variable X in
(PNT)—Q to Q, extending g by ¢(X) = p(X), and remove
X from T', without changing ™.

We are particularly interested in such statements ¢ when
P = (). The statement can then be written as us > us’
|| T, where U, S and T are disjoint sets of variables, and
u € U, and s and s’ are assignments to S which differ on
each variable: s(Z) # §'(Z) forall Z € S.

Ceteris paribus preferences are represented by statements
with T =V — (U U S); a feature vector rule in [McGeachie
and Doyle, 2004] can be represented by such a statement. On
the other hand, statements with T = () represent a stronger
kind of preference, which can be used, for example, for repre-
senting lexicographic and similar orders. A CP-theory [Wil-
son, 2004b; 2004a] statement w : x > z' [W] is exactly
equivalent to statement us > us’ || T when we set S = {X },
z=s2 =sadT =V - (UU{X}UW). CP-nets
[Boutilier et al., 1999; 2004] and TCP-nets [Brafman and
Domshlak, 2002; Brafman et al., 2006] can be expressed in
terms of CP-theories [Wilson, 2004a]. In particular, CP-net
statement u : © > 2’ is equivalent to a CP-theory statement
when W = QandsoT =V — (U U {X}). A preference of
outcome « over outcome [can be expressed by a statement
us > us’ || @ by setting u = a(U) = B(U), where U is the
variables on which a and (agree, and s = «(V — U) and
s = pB(V —U). A more general statement p > ¢ || T" can
also be used to represent statements of the form “« is the best
outcome extending tuple u”.

Selection-projections. The computational technique de-
scribed in this paper is efficient essentially if and only if one
can efficiently compute a particular compound operation on
the input comparative preference statements: the projection
of a selection. Fortunately, this operation is efficient for a
broad class of natural comparative preference statements. Let
a be an assignment to set of variables A, and let Y be a set
of variables disjoint with A. For relation R on the set of out-
comes, define the a-selection R, of R to consist of all pairs
(ar, B) in R such that both « and /3 extend a. We define, for
Y C V, the projection R'Y of R to be the set of all pairs
(y,¥') € Y x Y such that there exists tuples z and 2’ with
(yz,y'2') € R. We write RY for (R,)'Y, the projection to
Y of the a-selection of R. We call this compound operation a
selection-projection. Let y,1' € Y be assignments to Y. We
have (y,y’) € RY if and only if there exist assignments z, 2’
toV — (AUY) such that (ayz,ay’z’) € R.

The following property, which is important for the effi-
ciency of our approach, follows easily from the definitions.

Proposition 1 (Decomposition) For i in some index set I, let
R; be some relation on outcomes, and let R = Uie ; . Let
a be an assignment to set of variables A, and let Y be a set
of variables disjoint with A. Then RY = J;c;(R:)y .

For comparative preference statement ¢ and set of com-
parative preference statements I' we abbreviate (p*)Y to @Y
and abbreviate (I'*)Y to I'Y. We thus have 'Y = Uger ¢a -
We are interested in sets Y whose associated product set Y is
not large (so, small sets of variables whose domains are fairly

small). Then the relations I‘Z are of manageable size, even
though I'* may very well be exponentially large.

Proposition 2 Let P, Q) and T be subsets of V, and letp € P
be an assignment to P, and q € Q) be an assignment to Q. Let
¢ be a comparative preference statement of the form p > q
|| T, as defined above, where p € P, q € Q and (PUQ)NT =
(). Let a be an assignment to a set of variables A, and let Y
be a set of variables disjoint from A. ¢Y is empty unless a
is compatible with both p and q. If a is compatible with both
p and q then Y consists of all pairs (y,y') such that (i) y
andy' agreeonY NT, ie, y Y NT) =y (Y NT); (ii) y is
compatible with p; and (iii) y' is compatible with q.

Each of these conditions can be checked in time at worst
linear in n, the number of variables, and so the relation goaY
can be computed in time linear in n, given that the size of Y
is bounded by a constant. Proposition 2 therefore shows that
computing selection-projection can be achieved efficiently
for statements of the form p > ¢ || T', and hence, by Proposi-
tion 1, for sets I" of such statements.

For compatible p and ¢ a variation of the above definition
of ¢* will often be natural, which insists in addition that, for
(o, B) € ¢*, a does not extend ¢, and § does not extend p
(cf. [McGeachie and Doyle, 2004]). It can be shown that ¢
can be computed efficiently in this case also.

3 cp-TREES AND THEIR WEAK ORDERS

In this section we define a special kind of weak order, one
generated by what we call a cp-tree. They are generalisations
of the pre-ordered search trees of [Wilson, 2006]. cp-trees
represent a rather natural and simple model of a user’s prefer-
ences. In such a model, the user orders outcomes as follows:
they first choose a small set of variables Y and an ordering
> on the assignments to Y. Outcomes are primarily ordered
by considering their projections to Y, comparing them using
>. If the outcomes do not differ on Y then a disjoint set of
variables Y is considered next, along with an ordering >’ on
Y’, and so on. cp-trees therefore represent a form of lexico-
graphic order, but where the importance ordering on variables
can depend on more important variables, as can the value or-
derings.

A cp-tree is a rooted directed tree, which we picture being
drawn with the root at the top, and children below parents.
Associated with each node 7 in the tree is a set of variables
Y., which is instantiated with a different assignment in each
of the node’s children (if it has any), and also a weak order
>, of the values of Y.

More formally, define a cp-node r (usually abbreviated to
just “node”) to be a tuple (A, a,, Y, >,), where A, C Visa
set of variables, a,. € A, is an assignment to those variables,
Y. C V — A, is a non-empty set of other variables; >, is a
weak order on the set Y;. of values of Y. which is not equal to
the trivial full relation on Y'; so there exists some y,y’ € ¥
with y 2. /.

A cp-tree is defined to be a directed tree, where edges are
directed away from a root node, root, so that all nodes apart
from the root node have a unique parent node. The ancestors
of a node r are the nodes on the path from root to the parent

963

node of r. Each node is identified with a unique cp-node 7.
Let — 7’ be an edge in the cp-tree from a node r to one
of its children 7/. Associated with this edge is an assignment
y to variables Y,.. This is different from the assignment 7/’
associated with any other edges from node r. A,» = A,.UY,,
and a,- is a, extended with the assignment Y,. = y. We also
have A,oot = (. Therefore A, is the union of sets Y, over
all ancestors 7"’ of ; and a,. consists of all assignments made
on the path from the root to r. The root node has a;o0t = T,
the assignment to the empty set of variables.

We also assume that the weak orders >, satisfy the fol-
lowing condition, (to ensure that the associated ordering on
outcomes is transitive): if there exists a child of node r asso-
ciated with instantiation Y, = y, then y is not >,-equivalent
to any other value of Y, so that y >, v’ >, y only if y/ = .
In particular, >, totally orders the assignments (of Y,.) asso-
ciated with the children of r. The only difference between a
cp-tree and a pre-ordered search tree as defined in [Wilson,
2006] is that, in the latter, Y, is just a single variable, rather
than a non-empty set of variables.

The weak order =, associated with a cp-tree o

For outcome «, define the path to « to be the path from
the root which includes all nodes r such that « extends a,..
To generate this, for each node r, starting from the root, we
choose the child associated with the instantiation Y, = a(Y})
(there is at most one such child); the path finishes when there
exists no such child.

Node r is said to decide outcomes « and (3 if it is the deep-
est node (i.e., furthest from the root) which is both on the path
to « and on the path to 3. Hence « and 3 both extend the tu-
ple a, (but they may differ on variable Y,.). We compare «
and 3 by using >,., where 7 is the unique node which decides
« and .

Definition 1 Let o be a cp-tree. The associated relation =,
on outcomes is defined as follows: For outcomes o, € V.
outcomes, we define o =, [3 to hold if and only if a(Y;) >,
B(Y}.), where r is the node which decides o and 3.

We therefore have that « and [are »=,-equivalent if and
only if a(Y;) and B(Y,) are >,-equivalent; also: a >, [
holds if and only if «(Y;.) >, 3(Y;). This ordering is simi-
lar to a lexicographic ordering in that two outcomes are com-
pared on the first variable on which they differ. The definition
implies immediately that =, is complete; it is easily shown
to be transitive, and is hence a weak order.

We say that cp-tree o satisfies relation R if and only if
=, satisfies R i.e., =, extends R, that is, (o,3) € R =
«a =, (. Similarly, for comparative preference statement ¢
and set of comparative statements I', we say that o satisfies
@ (respectively, I') if and only if o satisfies ¢* (respectively,
).

Example. I am planning a holiday, and I have to decide
where, when, and for how long I want to go, represented by
variables X; (Paris or London), X5 (Spring or Summer) and
X3 (one week or two weeks), respectively. Let V' be the set
of variables { X7, X2, X3} with domains X; = {z;,«}}, for
i = 1,2,3, where z; represents Paris, x5 represents Spring,

xg represents going for one week, etc. Define a cp-tree o
with two nodes, root = (), T,{X1}, [z1 > x}]) and its only
child node r = ({X1}, 21, {X3}, [x3 > a%]). Let 1 be the
comparative preference statement x1x2 > x4 || {X3}, which
represents that I'd rather go to Paris in the Springtime than
London any time. The associated set of pairs of outcomes
o7 consists of (zyxexs,zixa,x3), (Tix22h, Tjxa,2h),
(x12923, 242, x3), and (v1xeah,)b, 5).

Each of these is in =, which implies that =, extends 7,
and so cp-tree o satisfies ¢;. Similarly, o satisfies o and 3,
where o = zhrs > zoxh || { X1}, and p3 = zjzh > zjx3
| §. Node r decides outcomes z1 2225 and z1 2223, and we
have x12x023 >, T1xaxh, and SO T1x2Ts >, T1X2Xh, 1.,
12905 ¥, x1xex3. This implies that o fails to satisfy the
statement ¢ equalling x1 2225 > z12223, since =, does not
extend ¥* = {(z1222%, v12223)}.

A cp-tree ordering is a special kind of weak order in which
there is a most important set Y’ of variables, and outcomes
are compared first on these. Only if the outcomes agree on
Y are further variables considered. If someone had the same
preferences as cp-tree o in the Example, then they would
regard that X (destination) is the (uniquely) most impor-
tant variable, with 21 (Paris) being better than z} (London).
Given z1, X3 (length of stay) is the next most important vari-
able, with x3 being better than x%5. cp-tree orderings thus
represent quite a simple way of ordering outcomes, but one
which seems fairly psychologically plausible (people often
focus first on a small set of variables).

4 DEDUCTION BASED ON cp-TREES

We fix a family) of small subsets of V. For example,)
might be defined to be all singleton subsets of V' (i.e., sets
with cardinality of one), or, alternatively, all subsets of cardi-
nality at most two, and so on.

Definition 2 ()-cp-tree) Let) be a set of non-empty subsets
of V such that if Y € Y and non-empty Y’ is a subset of Y
then Y' €). A Y-cp-tree is defined to be a cp-tree o such
that for any node r of o, we have Y, €).

YV-entailment =y. We can now consider deduction of com-
parative preferences based on Y-cp-trees. Let R be a relation
on outcomes, and let ¢ be a comparative preference state-
ment. R =y 1) holds if and only if every }-cp-tree satisfy-
ing R also satisfies ¥*. Let I" be a set of comparative pref-
erence statements. I' =y 1) holds if and only if I'* |=y ¥*.
In the example, using YV = {{X;},{X2}, {X3}}, we have
{1, 2,03} [~y 1 because there exists a Y-cp-tree satisfy-
ing {©1, @2, p3} but not .

An especially important case is when ¢* is just equal to
a singleton set {(«, 8)} for some outcomes « and /3. Such
an inference from I' is an inferred preference for o over (3.
For input relation R on outcomes we define the inferred pref-
erence relation Ry to consist of all pairs («,) such that
R Ey {(a,p)}. Tt is clear that Ry contains R. It is also
transitive, since it is the intersection of a set of transitive rela-
tions (the set of =, over all ¢ satisfying R). It hence contains
the transitive closure of R. Therefore, for the special cases

964

of CP-theories and CP-nets, Ry contains the standard pref-
erence relation: it is an upper approximation [Wilson, 2006].
In particular, we associate preference relation I'j, with set I'
of comparative preference statements (in some language). If
we let) be the set of singleton subsets of V, and consider
only comparative preference statements of the form ux > ux’
|| T where x and ' are different values of a variable X (see
Section 2) then F§, is the same as the preference relation >
defined in [Wilson, 2006].

We will consider somewhat more general preference state-
ments ¢, of the following form: all outcomes extending p are
preferred to all outcomes extending p’, where p and p’ are
given assignments to set of variables P C V. We can write
this, using the notation developed in Section 2, as a statement
us > us' || 0.

S COMPUTATION OF Y-ENTAILMENT

This section describes an algorithm for V-entailment, which
is polynomial for a wide range of comparative preference re-
lations; in particular, statements of the form p > ¢ || T as
described in Section 2, or any other comparative statements
for which computing selection-projections is polynomial.

The approach very substantially generalises that in [Wil-
son, 2006]. A completely arbitrary input relation R is al-
lowed (which simplifies some of the results). We also allow a
much richer language of output queries 1, and a richer class
of models, by allowing elements of) to be non-singleton
sets; these two things complicate some proofs; however, the
proof follows the same structure as that in [Wilson, 2006].

Throughout this section, we consider a fixed family) of
sets of variables, which parameterises the inference relation,
and a fixed input relation R on outcomes. We also consider
a fixed comparative preference statement 1) of the form us >
us’ || 0, as defined in Section 4. U and S are disjoint sets
of variables, and v € U, and s and s’ are assignments to S
which differ on each variable in S.

Definition 3 (Pickable and Decisive) Given setY C V and
assignment a to some subset A of V —Y, we define 1Y to
be the transitive closure of RY . Suppose that u is compatible
with a € A. Set of variables Y is said to be 1)-pickable given
aifY N A = () and either

(i) Y C U and u(Y) is not 1Y -equivalent to any other
assignment inY ; or

(ii) Y € U and there exists y,y' € Y withy 7Y y' and y is
compatible with us, and iy’ is compatible with us’.

In case (ii) we say that Y is 1-decisive given a.

Algorithm for determining)-entailment

The following algorithm assumes a given input relation R
on outcomes and comparative preference statement 1 of the
form us > wus’ || 0. It determines if R Y-entails v or not,
ie., if R =y ¥*, where family of subsets) is as defined in
Section 4, parameterises the deduction relation.

procedure Does R Y-entail ¢?
forj:=1,....,n

let a; be u restricted to Y; U --- U Y;_; (in particular,
ay =T),

if there exists a set in) which is ¢-decisive given a;
then return false and stop;
if there exists a set in) which is 1-pickable given a;
then let Y; be any such set;
else return true and stop;
next j;
return true.
The theorem states the correctness of the algorithm. Sec-
tion 6 shows how this is proved.

Theorem 1 Let R be a relation on outcomes, and let 1) be
a comparative preference statement of the form us > us'
|| . The above procedure is correct, i.e., it returns true if

R =y ¢* and it returns false if R [~y *.

Application to Deduction for Comparative Preference
Statements

The algorithm applies to arbitrary input relations R. Relation
R will very often be exponentially large, and so will need to
represented compactly, in particular as a set I' of compara-
tive preference statements (in some language), where I rep-
resents relation R = T'* on outcomes. We infer ¢ of the
form us > ws’ || @ from T if and only if T'* }=y ¢*. Ap-
plying the approach described above requires us to compute
selection-projections of the form I'Y', which we can compute
as U, ep w5 using Proposition 1.

Example continued. We can write 1) as us > us’, where
U = {X1,Xs}, and v = 2129, and s = 25 and ¢’
x3. We wish to determine if we can infer 1, representing
a preference for Paris-Spring-TwoWeeks over Paris-Spring-
OneWeek. {X;} is ¢-pickable because {X;} is a subset
of U (case (1)), and u(X), i.e., 21, is not equivalent to x}
(since none of the three statements in I" give a preference of
a} over x1). {X3} is then ¢-decisive given z; since:- X3 is
not in U so we’re in case (ii); Fg)ff does not contain the pair
(x4, z3), since none of the statements in I give a preference
for z}, over x5 in a context compatible with 1. (3 gives a
preference for x5 over x3 but only when z} holds, which is
incompatible with x1, and so (<p3)f13 is empty.) So the algo-
rithm returns false. This implies (see Section 6) that there
exists a cp-tree (e.g., o defined in Section 3) which satisfies
T" but does not satisfy 1. Hence I" does not)-entail).

On the other hand, consider the statement ¢’ = zjx22% >
xjxox3. None of the variables are ’-pickable. For exam-
ple, X is not ¢)’-pickable because (apl))T(l contains (z1,x}).
Hence the algorithm returns true, and so I' V-entails 1)’

Complexity. Let £ be the set of comparative preferences
which can be written in the form p > ¢ || T (see Section
2). This includes all CP-net statements and CP-theory state-
ments, along with more complex comparisons between tu-
ples. Assume that I' C £. Computing 'Y’ can then be per-
formed efficiently, using Propositions 1 and 2. Assume that
the domain sizes are bounded above by a constant, and that
the elements of) have cardinality at most k, and so |)| is less
than n*. The algorithm is then O(mn**+1), where m = [T,
(using the fact that, for a statement p > ¢ || T in I, checking

965

the compatibility of a with p and ¢ can be performed incre-
mentally).

6 PROVING THE THEOREM

The main aim of this section is to sketch how to prove The-
orem 1, which states the correctness of the algorithm for -
entailment in Section 5. (A longer version of the paper in-
cluding proofs can be downloaded from the author’s web-
site.) We are addressing the problem of whether relation R
Y-entails 1, where comparative preference statement v is of
the form us > wus’ || 0. By definition, this fails to hold if
and only if there exists a J-cp-tree which satisfies R but not
1. Proposition 3 shows that such cp-trees map to particu-
lar sequences of sets in), which we call decisive sequences.
Y-entailment of ¢ from R can therefore be determined by
checking for the existence of a decisive sequence. A deci-
sive sequence is a sequence of pickable Y €) ending with
a decisive Y. The pickable Y correspond to nodes in a cp-
tree satisfying R, and a decisive Y corresponds to a node in
cp-tree which satisfies R but not 1. Determining if a Y is
pickable or decisive can be done using a selection-projection
of R, so is efficient if and only if this selection-projection can
be done efficiently.

A monotonicity property, expressed by Proposition 4,
states, roughly speaking, that a set Y which is pickable re-
mains pickable if other sets are chosen first. This means
that the search for decisive sequences can be performed in
a backtrack-free manner, leading to the simple and efficient
algorithm below whose correctness is stated by the theorem.
The algorithm iteratively checks to see if there exists a deci-
sive set Y, and if so, it returns “false”, meaning R does not
Y-entail 1, since a decisive sequence has been constructed.
If not, it checks if there is a pickable set Y. If there is no
such set Y then it returns “true”, as there is then no decisive
sequence.

We wish to determine if relation R)Y-entails v, where
comparative preference statement 1) is of the form us > us’
|| . We map cp-trees, which satisfy R but not 4, to a se-
quence of sets Y €), which we call a decisive sequence,
generated from the cp-nodes on the path from the root to a
node which falsifies ¢ (i.e., the node’s ordering is incompati-
ble with).

A (Y-)decisive sequence (w.r.t. 1)) is defined to be a se-
quence Y7, ..., Y} of disjoint sets in Y satisfying the follow-
ing conditions:

— forj=1,...,k=1,Y; CU,and Y} € U;

— forj =1,...,k, Y, is1-pickable given a; where a; is u
restricted to Y7 U - - - U Y} _1; in particular, Y}, is decisive
given ag.

The following result shows that entailment is equivalent to
the absence of a decisive sequence. A cp-tree which is in
the form of a chain is generated from a decisive sequence,
where a set Y in the sequence generates a node r with Y, =
Y. Conversely, the decisive sequence is generated from a
particular path in the cp-tree.

Proposition 3 There exists a)-decisive sequence w.r.t.) if
and only if it is not the case that R =y 1, i.e., if and only if

there exists (o,) € ¢¥* and a Y-cp-tree o satisfying R with
8 =5 Q.

Theorem 1 follows easily using Proposition 3 and the fol-
lowing monotonicity result.

Proposition 4 Let 1) be a comparative preference statement
of the form us > us’ || O, where u € U. Suppose that A C
B C U, and that a € A and b € B and that u extends b
which extends a. LetY C V be such that ANY = 0 and that
Y ¢ B.

IfY € Y is vy-pickable given a then Y — B is 1-pickable
given b. If Y € Y is v-decisive given a then Y — B is -
decisive given b.

7 SUMMARY AND DISCUSSION

We have defined a form of inference for comparative prefer-
ences, which we call YV-entailment, where) is a set of small
non-empty sets of variables which parameterises the infer-
ence. For example,) might the the set of singleton subsets;
or alternatively, the set of all non-empty subsets with at most
two elements. We have given a sound and complete algorithm
for determining if set of comparative preference statements I"
Y-entails ¢ where 1 is a comparative preference statement of
a special form; in particular, ¥ can represent a preference for
an outcome « over an outcome 3. As described in [Wilson,
2006], we can use J-entailment in a constrained optimisation
algorithm. Being able to deduce a more general comparative
preference statement 1, can be used to allow pruning at a par-
tial node in the search tree.

The algorithm for Y-entailment is efficient for a broad
range of input comparative preference statements, including
those in CP-nets, CP-theories, but also allowing comparisons
between partial tuples. In particular, it allows as inputs ex-
pressing a preference for one outcome over another, which is
important for many applications.

In fact, the approach will be fairly efficient for many more
kinds of inputs. In terms of complexity, the key issue is the
efficiency of the selection-projection operation, i.e., how hard
it is to test, for ¢ € T, if a pair (y,y') is in) (fora € A
andY €), with Y N A = (). If this is polynomial then
the algorithm is polynomial (since the decomposibility prop-
erty expressed by Proposition 1, means that the complexity
increases only linearly with the number of input comparative
preference statements |I'|). More generally, the problem of
determining if a pair (y,y’) isin ¢ is in NP as long as it is
polynomial to test if a given pair of outcomes satisfies .

Consider a statement ¢ of the form F' > G || T, where F’
and G are propositional formulae (cf. [McGeachie and Doyle,
2004; Lang, 2004]). Determining if a pair (y,’) is in ¢ is
“only” NP-complete. Moreover, if comparative preference
statement ¢ is elicited from a user, then one would expect
that usually ' and G will only involve a small number of
propositional variables, in which case, we’ll need to solve just
a small instance of a NP-complete problem, and so may well
be fairly easy.

Acknowledgements

This material is based upon works supported by the Science
Foundation Ireland under Grant No. 00/PI.1/C075, Grant

966

No. 08/PI/T11912 and the SFI SRC project ITOBO.

References

[Boutilier et al., 1999] C. Boutilier, R. Brafman, H. Hoos,
and D. Poole. Reasoning with conditional ceteris paribus
preference statements. In Proceedings of UAI-99, pages
71-80, 1999.

[Boutilier et al., 2001] C. Boutilier, F. Bacchus, and R. Braf-
man. UCP-networks: A directed graphical representation
of conditional utilities. In Proceedings of UAI’01, 2001.

[Boutilier ef al., 2004] C. Boutilier, R. 1. Brafman,
C. Domshlak, H. Hoos, and D. Poole. CP-nets: A
tool for reasoning with conditional ceteris paribus
preference statements. Journal of Artificial Intelligence
Research, 21:135-191, 2004.

[Brafman and Dimopoulos, 2004] R. I. Brafman and Y. Di-
mopoulos. Extended semantics and optimization algo-
rithms for CP-networks. Computational Intelligence,
20(2):218-245, 2004.

[Brafman and Domshlak, 2002] R. Brafman and C. Domsh-
lak. Introducing variable importance trade-offs into CP-
nets. In Proceedings of UAI-02, pages 69-76, 2002.

[Brafman and Domshlak, 2008] R. Brafman and C. Domsh-
lak. Graphically structured value-function compilation.
Artificial Intelligence, 172:325349, 2008.

[Brafman et al., 2006] R. Brafman, C. Domshlak, and
E. Shimony. On graphical modeling of preference and
importance. Journal of Artificial Intelligence Research,
25:389-424, 2006.

[Domshlak et al., 2003] C. Domshlak, F. Rossi, K. Venable,
and T. Walsh. Reasoning about soft constraints and condi-
tional preferences: complexity results and approximation
techniques. In Proc. IJCAIO3, 2003.

[Goldsmith et al., 2005] J. Goldsmith, J. Lang,
M. Truszczynski, and N. Wilson. The computational
complexity of dominance and consistency in CP-nets. In
Proceedings of IJCAI-05, pages 144 —149, 2005.

[Lang, 2004] J. Lang. Logical preference representation and
combinatorial vote. Ann. Mathematics and Artificial Intel-
ligence, 42(1):37-71, 2004.

[McGeachie and Doyle, 2004] M. McGeachie and J. Doyle.
Utility functions for ceteris paribus preferences. Compu-
tational Intelligence, 20(2):158-217, 2004.

[Wilson, 2004a] N. Wilson. Consistency and constrained op-
timisation for conditional preferences. In Proceedings of
ECAI-04, pages 888-892, 2004.

[Wilson, 2004b] N. Wilson. Extending CP-nets with
stronger conditional preference statements. In Proceed-
ings of AAAI-04, pages 735-741, 2004.

[Wilson, 2006] N. Wilson. An efficient upper approximation
for conditional preference. In Proceedings of ECAI-06,
pages 472—-476, 2006.

