
Declarative Programming of Search Problems with Built-in Arithmetic

Eugenia Ternovska and David G. Mitchell

School of Computing Science
Simon Fraser University
{ter,mitchell}@cs.sfu.ca

Abstract

We address the problem of providing a logical for-
malization of arithmetic in declarative modelling
languages for NP search problems. The challenge
is to simultaneously allow quantification over an in-
finite domain such as the natural numbers, provide
natural modelling facilities, and control expressive
power of the language. To address the problem,
we introduce an extension of the model expansion
(MX) based framework to finite structures embed-
ded in an infinite secondary structure, together with
“double-guarded” logics for representing MX spec-
ifications for these structures. The logics also con-
tain multi-set functions (aggregate operations). Our
main result is that these logics capture the complex-
ity class NP on “small-cost” arithmetical structures.

1 Introduction

Several lines of work in “constraint modelling languages” or
“declarative programming for search problems” aim to pro-
duce high-level declarative languages for representing com-
binatorial search problems, together with solvers for applying
these languages in practice. Underlying much of this work is
a common logical task of model expansion. Defined for an
arbitrary logic L, the task is:

Model Expansion for logic L (abbreviated L MX)
Given: 1. An L-formula φ

2. A structure A for a part σ of vocab(φ)
Find: an expansion B of A that satisfies φ.

We call the vocabulary of A the instance vocabulary, and
ε := vocab(φ)\σ the expansion vocabulary. In the combined
setting an instance consists of a structure together with a for-
mula. We focus here on the parameterized setting, where a
fixed formula for each problem constitutes of a problem spec-
ification. An instance is a finite structure, and each expansion
of this structure that satisfies the formula is a solution.

Ex. 1 The following formula φ of first order logic constitutes
an MX specification for Graph 3-colouring:

∀x [(R(x) ∨ B(x) ∨ G(x))
∧¬((R(x) ∧ B(x)) ∨ (R(x) ∧ G(x)) ∨ (B(x) ∧ G(x)))]

∧ ∀x∀y [E(x, y) ⊃ (¬(R(x) ∧ R(y))
∧¬(B(x) ∧ B(y)) ∧ ¬(G(x) ∧ G(y)))].

An instance is a structure for vocabulary σ = {E}, i.e., a
graph A = G = (V ; E). The task is to find an interpretation
for the symbols of the expansion vocabulary ε := {R,B,G}
such that the expansion of A with these is a model of φ:

A︷ ︸︸ ︷
(V ; EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are
exactly the proper 3-colourings of G.

Systems explicitly based on MX for FO (with extensions),
are reported in [Mitchell et al., 2006; Wittocx and Marien,
2008]. It is not hard to see that model expansion under-
lies many other languages for modelling combinatorial prob-
lems, including many not explicitly based on logic (see, e.g.,
[Mitchell and Ternovska, 2008]).

A benefit of formalization in logic is that descriptive com-
plexity theory, the study of the relationship between compu-
tational complexity and expressiveness of logics [Immerman,
1999], provides tools for analyzing and controlling the ex-
pressive power of modelling languages. For example, Fagin’s
theorem [Fagin, 1974], states that the classes of finite struc-
tures definable in ∃SO are exactly those in NP. It is equivalent
to say that parameterized FO MX captures NP, so FO MX
is a natural formal basis for languages to model NP search
problems. Capturing results such as Fagin’s theorem provide
valuable practical, as well as scientific, information. The fact
that FO MX can express every problem in NP assures suffi-
cient expressiveness for a user with an NP search problem.
That it can express no problem beyond NP provides assur-
ance of reasonable implementability, for example by poly-
time grounding (automated reduction to, e.g., SAT).

Remark 1 Since FO MX can specify exactly the problems
that ∃SO can, one might ask why we use a new term. Pri-
marily it is because we rarely use pure FO MX other than for
expository purposes. We employ a variety of logics related to
particular goals or particular practical modelling languages.
In this paper we restrict FO formulas to those in a certain
guarded form, but also extend these with inductive definitions.

Formalizing Arithmetic FO MX can express every prob-
lem in NP, but when numerical properties are involved num-
bers must be encoded with collections of abstract domain el-
ements, and arithmetic operations defined by relations over

942

these encodings. Having “built-in” arithmetic constructs is
more natural, and is essential to practical languages.

Arithmetic involves an infinite domain, so limiting the ex-
pressive power of a language with arithmetic requires bound-
ing the range of quantified variables and expansion predi-
cates. Imposing such bounds may alter the standard seman-
tics of arithmetic operators, and seems to make expressive-
ness analysis difficult. Adding built-in numbers can eas-
ily produce inadvertent increases in expressive power (see
[Mitchell and Ternovska, 2008]). Moreover, when we restrict
a language to NP in a direct way, it is not clear if all arith-
metic properties in NP can be expressed using the built-in
arithmetic. For example, a common method to is to represent
numbers with tuples of domain elements. However, this ap-
proach provides a much smaller fragment of arithmetic, and
a much weaker theorem, than we obtain here.

Almost all declarative languages for modelling combina-
torial problems have some form of bounded-domain arith-
metic. In many cases, this arithmetic has not been formalized.
To our knowledge, capturing of NP with built-in arithmetic
has not been shown in any area of declarative programming.
Arithmetic in has been formalized in related settings, such as
database query languages, but no work we are aware of ad-
dresses the concerns of this paper.

This report takes steps toward a logical foundation for
constraint modelling languages with built-in arithmetic, and
methods for controlling their expressive power. We believe
the way we do this formalizes much that is done in practice,
but without formalization, in some existing languages.
Ultimately, we want to produce practical, fully formalized,
languages in which modellers may use built-in arithmetic in
the most natural way possible. Further, we want to precisely
control the expressive power of these languages, in particular
to express exactly the NP search problems, with minimal
restrictions on syntax.

Contributions We develop a notion of embedded model ex-
pansion with an infinite background structure, in particular
for arithmetic structures which include the usual functions on
the natural numbers (or integers), as well as aggregates such
as those used in SQL and many constraint languages (Sec. 2);
We introduce a logic for producing embedded MX specifica-
tions, which is a variant of the k-guarded fragment of FO (or
FO(ID)), in which upper and lower guards control access to
the infinite background domain (Sec. 2); We show that, on
classes of “small-cost” structures, where numbers are not al-
lowed to be too large, this logic captures NP (Sec. 3); We
generalize this result to an extension of classical logic with
inductive definitions to allow poly-size “user-defined” guards
(Sec. 4).

2 Embedded MX with Arithmetic

Embedded finite model theory (see [Libkin, 2004]), the study
of finite structures whose domain is drawn from some infi-
nite structure, was introduced to study databases that contain
numbers and numerical constraints. Rather than think of a
database as a finite structure, we take it to be a set of finite
relations over an infinite domain.

Def. 1 A structure A is embedded in an infinite background
(or secondary) structure M = (U ; M̄) if it is a structure A =
(U ; R̄) with a finite set R̄ of finite relations and functions,
where M̄ ∩ R̄ = ∅. The set of elements of U that occur
in some relation or function of A is the active domain of A,
denoted adomA.

In database research, embedded structures are used with log-
ics for expressing queries. Here, we use them in logics for
MX specifications (which are second order queries). The vo-
cabularies for these logics consist of 1) σ, the vocabulary of
A, which is our instance structure; 2) ν, the vocabulary of
an infinite secondary structure M = (U ; M̄), such as the
arithmetical structure defined below; and 3) ε, an expansion
vocabulary. A formula φ over σ ∪ ν ∪ ε constitutes an MX
specification. The model expansion task remains the same:
expand an embedded σ-structure to satisfy φ.

To limit the expressive power of logics for MX with infinite
secondary structures, we must limit the range of quantified
variables and the range of expansion predicates. For this, we
use an adaptation of the guarded fragment GFk of FO [Gott-
lob et al., 2001]. In formulas of GFk, a conjunction of up to
k atoms acts as a guard for each quantified variable.

Def. 2 The k-guarded fragment GFk of FO is the smallest set
of formulas that: 1) contains all atomic formulas; 2) is closed
under Boolean operations; 3) contains ∃x̄(G1∧. . .∧Gm∧φ),
provided the Gi are atomic formulas, m ≤ k, φ ∈ GFk, and
each free variable of φ appears in some Gi.

Here, G1 ∧ . . .∧Gm is called the guard of x̄. Since GFk is
closed under negation, universal quantification can be treated
as an abbreviation in the usual way, so universal quantifiers
are guarded as in ∀x̄(G1 ∧ . . . ∧ Gm ⊃ φ).

To limit the range of domain elements that may occur in ex-
pansion predicates, we introduce GGFk, a restriction of GFk

where we require and axiom limiting the range of each ex-
pansion predicate.

Def. 3 The double-guarded fragment GGFk(ε) of FO, for a
given vocabulary ε, is the set of formulas of the form φ ∧ ψ,
with ε ⊂ vocab(φ ∧ ψ), where φ is a formula of GFk, and
ψ is a conjunction of guard axioms, one for each symbol of ε
occurring in ψ, of the form

∀x̄(E(x̄) ⊃ G1(x̄1) ∧ · · · ∧ Gm(x̄m)),

where m ≤ k, and the union of free variables in the Gi is
precisely x̄.

For expansion functions, the guard axiom is on the graph
of the function, i.e., ∀x̄∀y (f(x̄) = y ⊃ φ(x̄, y)), where φ is
a conjunction of atoms.

We call the guards of GFk, which restrict the range of
quantified variables, lower guards, and the guard axioms of
GGFk(ε) upper guards. Initially, we require all atoms pro-
viding upper and lower guards to be from the instance vo-
cabulary, so ranges of variables and expansion predicates are
explicitly limited to adomA. We later relax this restriction,
adding a mechanism for “user-defined” guard relations that
may contain elements not in adomA. For convenience only,

943

we assume that the instance vocabulary always contains the
predicate symbol adom. Then adom(x) can be used as a
guard (upper or lower).

Upper and lower guards provide a logical formalization of
the type systems of some existing constraint modelling lan-
guages [Mitchell and Ternovska, 2008]. Lower guards corre-
spond to declaring the types of variables, and upper guards to
declaring the types of arguments to expansion predicates.

Remark 2 FO MX corresponds to ∃SO, and similarly
GGFk(ε) MX corresponds to k-guarded ∃SO, where all vari-
ables, first order and second order, have guards.

For writing MX specifications for embedded structures, we
extend the logic GGFk(ε) with vocabulary for a fixed back-
ground structure M. We will talk about “GGFk(ε) MX spec-
ifications with background structure M”.

The background structure of interest here is the arithmeti-
cal structure which we now describe. (This structure is the
same as that used in [Grädel and Gurevich, 1998].) In ad-
dition to standard arithmetical operators, it has a collection
of multiset operations, including max, min, sum and prod-
uct. For any set R, fm(R) denotes the class of all finite
multisets over R. Any function f : U → U defines a mul-
tiset mult(f) = {{f(a) : a ∈ U}} over U , the do-
main of A. A multiset operation (or aggregate) is a function
Γ : fm(U) → U .

Def. 4 An Arithmetical structure is a structure N contain-
ing at least (N; 0, 1, χ, <,+, ·, min,max,

∑
,
∏

), with do-
main N, the natural numbers, and where min, max,

∑
, and∏

are multi-set operations and χ[φ](x̄) is the characteristic
function. Other functions, predicates, and multi-set opera-
tions may be included, provided every function and relation
of N is polytime computable.

Our logic for GGFk(ε) MX specifications with background
structure N is obtained by extending GGFk(ε) with terms
constructed from the vocabulary of N , which we now define.
As usual, φ(x̄) denotes that x̄ contains the free variables of φ.

Def. 5 (well-formed terms) Let τ be the vocabulary σ∪ν∪ε
and V a countable set of variables. The set of well-formed
terms is the closure of the sets of variables V and constants
of τ under the following operations:

1. If f is a τ -function of arity n, other than a multiset op-
eration or the characteristic function, and t̄ is a tuple of
terms of length n then f(t̄) is a term.

2. If Γ is a multiset operation of ν, f(x̄, ȳ) a term,
and φ(x̄, ȳ) a τ -formula in which x̄ is guarded, then
Γx̄(f(x̄, ȳ) : φ(x̄, ȳ)), is a term with free variables ȳ.

3. If φ(x̄) is a τ -formula such that ∃x̄φ(x̄) is a k-guarded
formula, then χ[φ] is a term with free variables x̄.

Multiset operations (case 2) act much like quantifiers, bind-
ing the variables x̄. Notice that the free variables ȳ in φ,
within a multiset operation term, need not be guarded within
φ. Their guards are in the formula where the term appears.

Semantics of multiset terms Let G(ȳ) be the multiset term
Γx̄(f(x̄, ȳ) : φ(x̄, ȳ)). The interpretation of G(ȳ) on τ -
structure D with valuation b̄ for ȳ is

GD(b̄) = Γ{{fD(ā, b̄) : D |= φ[ā, b̄]}}. (1)

As usual, A |= φ[ā] means that formula φ(x̄), is true in struc-
ture A when the free variables x̄ denote domain elements ā.

The index x̄ in the term Γx̄ is not needed in the semantic
definition (1) – think e.g. of Γ being summation (Σ). For
readability, we may omit φ when true and write Γx̄(f(x̄, ȳ));
omit free variables and write Γx̄(f : φ).

The interpretation of the characteristic function χ[φ](x̄) on
τ -structure D with valuation ā for x̄ is: χ[φ]D(ā) = 1 if D |=
φ[ā] and 0 otherwise. We may write Γx̄(f × χ[φ]) instead of
Γx̄(f : φ) when Γ is invariant under multiple occurrences of
0 in the multiset (i.e., Γ(S) = Γ(S ∪ {{0, . . . , 0}})), as is the
case for Σ and max on N .

Def. 6 An embedded GGFk(ε) MX specification with sec-
ondary structure N is a set of GGFk(ε) sentences over
σ ∪ ε ∪ ν, with terms as in Definition 5, and the secondary
ν-structure is the arithmetical structure of Definition 4.

In our presentation here, all elements of the active domain
are drawn from the arithmetical background structure. All
results of the paper generalize to the multi-sorted case, in-
cluding the case where some domains are not ordered.

Remark 3 One may imagine it would be easier to use a more
restricted arithmetic structure, say without multiset functions.
In fact, for our main result (Theorem 1), all the difficulty is
present as soon as we have numbers and addition. Moreover,
the multiset operations make proving the theorem easier.

We now give examples of embedded MX specifications
with secondary structure N , for search versions of two com-
mon optimization problems.

Ex. 2 KNAPSACK: Instance vocabulary {O,w, v, bv, bw},
where O is the set of objects; w is the weight function; v
is the value function; bw is the weight bound; and bv is the
value bound. Expansion vocabulary {O′}, where O′ is the
set of selected objects. Upper guard axiom: ∀x(O′(x) ⊃
O(x)). Axioms are Σx(w(x) : O(x) ∧ O′(x)) ≤ b and k ≤
Σx(v(x) : O(x) ∧ O′(x)), where t1 ≤ t2 is an abbreviation
for t1 < t2 ∨ t1 = t2. The lower guard for O(x) ∧ O′(x) is
O(x). �

Ex. 3 MACHINE SCHEDULING PROBLEM [Hooker,
2000]: We must assign jobs to machines to satisfy con-
straints on release and due dates and a cost bound. The in-
stance lists jobs, machines, possible start times, the release
date and due date for each job, the cost and duration for run-
ning each job on each machine, and the cost bound. The in-
stance vocabulary, σ, consists of: Job(j), the set of jobs to
be scheduled; Machine(m), the set of machines to perform
jobs; Time(t), all possible starting times; ReleaseDate(j),
a release date for each job; DueDate(j), a due date for
each job; Cost(j,m), cost of doing job j on machine m;

944

Duration(j,m), the duration of executing j on m; and
c, the cost bound. The active domain consists of all time
points, costs, due and release dates, durations, jobs and ma-
chines. The expansion vocabulary consists of two functions:
Assignment(j) maps jobs to machines and StartT ime(j)
maps jobs to start times.

Upper guard axioms:
∀j∀m (Assignment(j) = m ⊃ Machine(m) ∧ Job(j))
∀j∀t (StartT ime(j) = t ⊃ Time(t) ∧ Job(j))

Axioms:
Σj(Cost(j, Assignment(j)) : Job(j)) ≤ c
∀j(Job(j) ⊃ StartT ime(j) ≥ ReleaseDate(j))
∀j(Job(j) ⊃ StartT ime(j)+Duration(j)≤DueDate(j))
∀t (Time(t) ⊃ (∀m (Machine(m) ⊃
maxj(countj(ψ(j,m, t))) = 1)).

In the last axiom, which specifies that at most one job is
on a machine at a time, countj(ψ(j,m, t)) is an abbrevia-
tion for Σj(χ[ψ(j,m, t)]), and ψ defines the set of jobs being
executed on machine m at time t, that is, ψ(j,m, t) is:

Job(j) ∧ Assignment(j) = m ∧ Time(StartT ime(j))
∧ StartT ime(j) ≤ t
∧ t < StartT ime(j) + Duration(j, Assignment(j)),

It is easy to see that all axioms are in GGFk(ε). �

An optimization version would include the objective func-
tion: minimizing: Σj(Cost(j, Assignment(j)) : Job(j)).

SQL Examples The following SQL query returns the maxi-
mum value in column k among the tuples in table T that sat-
isfy the Boolean condition C: SELECT MAX(k) FROM T
WHERE C. It is represented by the multiset operation:
maxxk

{{xk : ∃x1 . . .∃xk−1∃xk+1 . . .∃xnT (x̄) ∧ C(x̄)}},
where x̄ := x1 . . . xn. The following query returns the num-
ber of rows in T that satisfy the Boolean condition C: SE-
LECT COUNT(*) FROM T WHERE C. Its representation is:
Σx̄(χ[T (x̄) ∧ C(x̄)]). We have expressed all other SQL ag-
gregates, but for brevity omit them here.

3 Capturing NP in the Presence of Arithmetic

Here, we present our main result. It can be applied to any
language which is a syntactic variant of our language, for
example a suitable fragment of ESSENCE. We consider the
decision problem associated with embedded MX, in the pa-
rameterized setting (data complexity), where the formula is
fixed and instances are finite structures.

The size of an embedded structure A is the size of its active
domain, i.e., |A| = |adomA|. We define the cost of A to be
cost(A) = �log(l)�, where l is the largest number in adomA.
A class K of embedded arithmetical structures has small cost
if there is some k ∈ N such that cost(A) < |A|k, for every
A ∈ K. This is a generalization of the notion of a metafinite
structure with small weights of [Grädel and Gurevich, 1998].
The cost of A is the size of the binary encoding of its largest
number, so small cost structures have encodings that are of
size polynomial in their domain size. Small cost structures
have no numbers larger than 2poly(|A|).

A class K of τ -structures is an embedded spectrum if there
is a first-order sentence φ of a vocabulary τ ′ := τ ∪ ε of logic
GGFk(ε) such that D ∈ K iff there exists an expansion D′ of
D with D′ |= φ.

Theorem 1 Let K be an isomorphism-closed class of small-
cost arithmetical embedded structures over vocabulary σ.
Then the following are equivalent: (1) K ∈ NP , (2) K is
an embedded spectrum.

The proof of Theorem 1 essentially reduces this statement
to Fagin’s theorem, by considering a class of related struc-
tures in which numbers are encoded by relations over (ab-
stract) domain elements. For this, we need enough domain
elements to encode the largest number, and this is where the
small-cost restriction comes from. We believe it is possible
to obtain a similar result under a weaker restriction.

4 User-Defined Guard Relations

So far, the numbers that may occur in a solution for an in-
stance are restricted to those that occur in the instance (that
is, adomA), because expansion predicates have upper guards
composed only of instance predicates. There are many prob-
lems where this is too restrictive, an obvious example being
integer factorization. (We can define many search problems
with “new” numbers in solutions, but these numbers must be
encoded with elements of the instance structure, rather than
appearing directly.) To relax this limitation, we introduce
“user-defined guard relations”. We now consider specifica-
tions consisting of two formulas, D and φ. Formula D is over
vocabulary σ ∪ δ, where δ is a set of predicate symbols not in
σ, and for each instance structure A, D defines an expansion
of A′ that includes the new user-defined guard relations. The
active domain of A′ will be the union of adomA and any ele-
ments of the defined guard relations. Formula φ of GGFk(ε),
over vocabulary σ ∪ δ ∪ ν ∪ ε, defines an embedded model
expansion task for each A′. That is, φ is such a specification
with a larger instance vocabulary σ ∪ δ.

Informally, D should be a device for defining sets of num-
bers beyond those in the instance, in the aid of letting φ be a
more natural axiomatization of the problem than it could be
without these extra guard relations. For D to fullfill this role,
the relations it defines should be unique (for each instance),
and easy to compute. Formally, we require D satisfy the fol-
lowing property.

Property 1 (Good D) We call D good if it defines a total
function fD from embedded σ-structures to embedded σ ∪ δ-
structures and is fD is polytime computable.

We may choose to use a syntax for D that is distinct from
that of φ. Whatever the syntactic form we choose for D, we
will require that it is in some logic with the property that, for
every allowed D, it is decidable (preferably in polytime) if D
is good (satisfies property 1). Thus, we can effectively decide
if a specification has appropriate user-defined guard relations.

945

Capturing NP with User-Defined Guards

Let us denote by DGGFk(ε, δ) a logic obtained by an exten-
sion of GGFk(ε) to allow specification of user-defined guards
as just described. A DGGFk(ε, δ) MX specification φ ∧ D
with background structure N is defined as in Definition 6,
except that it also includes the part D.

Lemma 1 Let φ∧D be a DGGFk(ε, δ) MX specification with
N , where D is good. Let K be a small cost class of embedded
σ-structures, and K′ be the class of σ∪ δ-structures obtained
from K by expanding each structure of K with the relations
defined by D. That is, K′ = {fD(A) : A ∈ K}. Then the
following are equivalent: (1) K is in NP (2) K′ is in NP, (3)
K is an embedded spectrum, (4) K′ is an embedded spectrum,

A Good D for N . Lemma 1 gives general conditions under
which we may capture NP with user defined guard relations.
In general, similar conditions will hold for many choices of
secondary structure, and for each there will be many choices
for the form of D that will satisfy those conditions. We now
present one choice for the form of D that satisfies the condi-
tions in the case of arithmetical structures. We wish to choose
this form so that easily checkable syntactic conditions are suf-
ficient to ensure a given D is good.

Our guard relations will be defined by induction, using the
syntax and semantics of FO(ID), the extension of FO with
inductive definitions (see [Denecker and Ternovska, 2008]).
Inductive definitions are specified with a rule-based syntax,
with arbitrary FO formulas in the bodies, under the 2-valued
well-founded semantics. We give an example, and refer to
[Denecker and Ternovska, 2008] for details of syntax and se-
mantics. The odd numbers on N : {∀x (Odd(x) ← x =
0 ∨ ∃y (Odd(y) ∧ x = y + 2))} The defined (intensional)
symbols are those in the head, and open (extensional) are the
rest. We assume that definitions contain no free variables, and
every variable that occurs in the head also appears in the body.
Each definition may simultaneously define several relations.

Def. 7 Say a formula ψ of FO(ID) is in form DEF if:
1. ψ is a conjunction of definitions of FO(ID) having a

well-founded partial pre-order on definitions such that
all open (extensional) symbols are either from σ (the in-
stance vocabulary) or defined by a definition which is
strictly smaller in the pre-order. (We may also combine
all definitions into one large stratifiable definition.)

2. Each definition is either: (a) Of the form {∀ x (G(x) ←
x ≤ size(φ))}, where size(φ) is Σx(χ[adom(x))), or
(b) either positive or stratifiable, and every rule is of the
form { ∀x̄ ȳ (G(x̄, ȳ) ← y1 = t1(x̄) ∧ . . . ∧ yk =
tk(x̄) ∧ φ(x̄) }, where k ≥ 0 and ∃ x̄ φ(x̄) is guarded,
and guards are either from the input structure, or are
defined earlier in the pre-order.

Lemma 2 It is polytime decidable if a formula is in the form
DEF. If D is in form DEF, it is good.

Theorem 2 DGGFk MX with background structures and D
in form DEF captures NP on small cost structures.

Ex. 4 Suppose we have a search problem on weighted di-
rected graphs, and are interested only in nodes within some
particular distance of a given node s. In our MX axiomatiza-
tion, we may need a guard P (x) which represents this set of
nodes. We have a sequence of definitions (Δ1, Δ2, Δ3):

Δ1 := {∀x (within bound(x) ← x ≤ size(adom))} ,

where adom is the active domain of the instance. The guard
defined in Δ1 restricts allowable distances.

Δ2 :=

⎧⎪⎨
⎪⎩

∀x (distance(x, 0) ← x = s),
∀x∀y∀d∀d1∀d2

(distance(y, d) ← within bound(d)∧
distance(x, d1) ∧ E(x, y, d2) ∧ d = d1 + d2)

⎫⎪⎬
⎪⎭ ,

which defines the distances to all nodes reachable from s pro-
vided they are within the distance bound.

Δ3 := {∀x(P (x) ← ∃d distance(x, d))} ,

which defines the set of all nodes within the pre-specified dis-
tance from the node s.

Adding Inductive Definitions to DGGFk

In [Mitchell and Ternovska, 2005; Mitchell et al., 2006], we
proposed to use FO(ID), rather than just FO, as the basic logic
for MX specificying NP search problems. Here, again, we
find FO(ID) convenient1. A generalization of GFk to the case
with inductive definitions is given in [Patterson et al., 2007].
The logics used in the present paper also may be extended
with inductive definitions, and the main results will still hold.

5 Related Work

In database theory, embedded model theory (see [Libkin,
2004]) and metafinite model theory [Grädel and Gurevich,
1998; Grädel, 2007], both extend finite model theory to
handle applications with infinite domains. Our development
closely follows that of [Grädel and Gurevich, 1998], although
we use the embedded setting and the guarded logic defined
above.

Embedded Model Theory We have taken the embedded
models approach in our work, so some results in the area may
be useful, but none so far addresses our immediate needs,
such as giving conditions for capturing a complexity class.
Much work in the area reduces questions about queries over
embedded finite models to questions about normal finite mod-
els. Many of these results are restricted to generic queries, but
declarative programming axiomatizations are rarely generic.
An important result is the natural-domain-active-domain col-
lapse for ∃SO for finite models embedded in an infinite struc-
ture M. This holds if SO quantification is over subsets of the
active domain only, but this is too restrictive for us, because
solutions to search problems often involves numbers not con-
tained in the instance.
Metafinite Structures [Grädel and Gurevich, 1998] are
sorted structures D = (A,R,W), where A is a finite pri-
mary structure, R is the secondary structure, and W is a set

1Formally we can do without inductive definitions, since FO MX
has the same power as ∃SO. However, expressing transitive closure
and many other useful concepts is impractically complex in ∃SO.

946

of “weight functions” from Ak to R. Typically, R is a fixed
infinite structure, such as the arithmetic structure N that we
also use.

Logics for Metafinite Structures are designed to allow ap-
plication of methods of finite model theory. These are two-
sorted logics, interpreted over combined two-sorted struc-
tures. In [Grädel and Gurevich, 1998], the logics contain,
in addition to the standard terms, weight terms which denote
functions from the primary to the secondary part. New weight
terms can be built by applying functions of the secondary
structure to applications of other weight terms.

To obtain capturing of NP, the authors of [Grädel and Gure-
vich, 1998] define a notion of metafinite spectrum, a coun-
terpart to the generalized spectra in Fagin’s sense, and re-
strict attention to metafinite spectra of structures with “small
weights” i.e., if w is a weight function, and w(ā) = s then
|s| = poly(|A|). Our “small cost” structures and embedded
spectra are generalizations of these concepts.

The work of Grädel and Gurevich to a large degree inspired
our work here. However, their requirement of “no quantifi-
cation over the secondary structure” was too restrictive for
our purposes. In [Grädel and Gurevich, 1998], access to the
secondary structures is through weight terms only. In natu-
ral MX specifications, quantification over elements of back-
ground structures is essential. Instead of weight terms of
[Grädel and Gurevich, 1998], we allow arbitrary mixed re-
lations, and introduced guarded quantification. Using lower
guards was not sufficient – on arithmetical structures, unre-
stricted metafinite spectra capture the r.e. sets [Grädel and
Gurevich, 1998], which would imply the same property for
our formalism. Thus, we needed upper guards as well. In
our proof of capturing NP, we needed to develop a way to
deal with numbers appearing as arguments of expansion pred-
icates, which was not needed in [Grädel and Gurevich, 1998].

Other Related Work The authors of [Cadoli and Mancini,
2006] expressed the view that ∃SO is a good mathematical
abstraction of practical constraint languages in which to carry
out a general study of techniques for reasoning about spec-
ifications. They explain that ∃SO is expressive enough to
axiomatize finite arithmetic (e.g. modulo domain size), i.e.,
guess tables for e.g. addition, and reject those not satisfying
axioms for addition. Our goal was to formalize built-in arith-
metic as in most constraint languages. The MX-based IDP
system [Wittocx and Marien, 2008] has a language with arith-
metic and aggregates, but we are not aware of a formalization
of the arithmetic or expressiveness analysis for the language.
LPARSE can express NEXP-complete problems. A version
of ASP with infinite domains is described in [Heymans et al.,
2006]. The authors study satisfiability problem, not model
expansion, and decidability and complexity results for that
problem are obtained for several variants of ASP (loosely
guarded programs and generalized programs similar to Data-
log LITE). We do not see a clear correspondence between the
guarded logics we use here and the loosely guarded fragment
used in [Heymans et al., 2006]. No work we are aware of
has presented a framework for search problems with built-in
arithmetic where the user is given an assurance of universality
for a given complexity class.

Acknowledgments

We are grateful to Brendan Guild, Toni Mancini and anony-
mous referees for discussions and comments.

References

[Cadoli and Mancini, 2006] M. Cadoli and T. Mancini. Au-
tomated reformulation of specifications by safe delay of
constraints. Artificial Int., 170(8–9):779–801, 2006.

[Denecker and Ternovska, 2008] M. Denecker and E. Ter-
novska. A logic of non-monotone inductive definitions.
ACM trans. on computational logic, 9(2):1–51, 2008.

[Fagin, 1974] R. Fagin. Generalized first-order spectra and
polynomial-time recognizable sets. Complexity of compu-
tation, SIAM-AMC proceedings, 7:43–73, 1974.

[Gottlob et al., 2001] G. Gottlob, N. Leone, and F. Scarcello.
Robbers, marshals, and guards: game theoretic and logical
characterizations of hypertree width. In ACM Symp. on
Principles of Database Systems (PODS ’01), 2001.

[Grädel and Gurevich, 1998] E. Grädel and Y. Gurevich.
Metafinite model theory. Information and Computation,
140(1):26–81, 1998.

[Grädel, 2007] E. Grädel. Finite Model Theory and Descrip-
tive Complexity, pages 125–230. Springer, 2007.

[Heymans et al., 2006] Stijn Heymans, Davy Van Nieuwen-
borgh, and Dirk Vermeir. Guarded open answer set pro-
gramming with generalized literals. In Proc., FoIKS, pages
179–200, 2006.

[Hooker, 2000] J. Hooker. Logic-based methods for opti-
mization: combining optimization and constraint satisfac-
tion, chapter 19, pages 389–422. Wiley and Sons, 2000.

[Immerman, 1999] N. Immerman. Descriptive complexity.
Springer, 1999.

[Libkin, 2004] L. Libkin. Elements of Finite Model Theory.
Springer, 2004.

[Mitchell and Ternovska, 2005] D. Mitchell and E. Ter-
novska. A framework for representing and solving NP
search problems. In Proc. AAAI’05, 2005.

[Mitchell and Ternovska, 2008] D. G. Mitchell and E. Ter-
novska. Expressiveness and abstraction in ESSENCE. Con-
straints, 13(2):343–384, 2008.

[Mitchell et al., 2006] D. Mitchell, E. Ternovska, F. Hach,
and R. Mohebali. Model expansion as a framework for
modelling and solving search problems. Technical Report
TR 2006-24, Simon Fraser University, School of Comput-
ing Science, 2006.

[Patterson et al., 2007] M. Patterson, Y. Liu, E. Ternovska,
and A. Gupta. Grounding for model expansion in k-
guarded formulas with inductive definitions. In Proc. IJ-
CAI’07), 2007.

[Wittocx and Marien, 2008] Johan Wittocx and Maarten
Marien. The IDP System. KUL, June 2008.
www.cs.kuleuven.be/˜dtai/krr/software/idpmanual.pdf.

947

