Realising Deterministic Behavior from Multiple Non-Deterministic Behaviors

Thomas Stroder
Department of Computer Science
Aachen University of Technology

Ahorn Str. 55
D-52056, Aachen, Germany

thomas.stroeder@rwth—aachen.de

Abstract

This paper considers the problem of composing or
scheduling several (non-deterministic) behaviors so
as to conform to a specified target behavior as well
as satisfying constraints imposed by the environ-
ment in which the behaviors are to be performed.
This problem has already been considered by sev-
eral works in the literature and applied to areas
such as web service composition, the composition
of robot behaviors and co-ordination of distributed
devices. We develop a sound and complete algo-
rithm for determining such a composition which
has a number of significant advantages over pre-
vious proposals: a) our algorithm is different from
previous proposals which resort to dynamic logic
or simulation relations, b) we realized an imple-
mentation in Java as opposed to other approaches
for which there are no known implementations, c)
our algorithm determines all possible schedulers at
once, and d) we can use our framework to define a
notion of approximation when the target behavior
cannot be realized.

Building and developing re-usable modules is one of the
cornerstones of computer science. Furthermore, building on
previously established infrastructure has allowed us to con-
struct elaborate and sophisticated structures from skyscrapers
and aeroplanes through to the world-wide web. Developing
the components that go into these structures is only part of
the problem however. Once we have them in place, we need
to develop methods for piecing them together so as to achieve
the desired outcome.

In this paper we consider the problem of composing behav-
iors. This problem has already attracted some attention in the
recent literature [Berardi ez al., 2008; Calvanese et al., 2008;
de Giacomo and Sardina, 2007; Sardina and de Giacomo,
2007; Sardina et al., 2008; Sardina and de Giacomo, 2008;
Berardi et al., 2006b; 2006a] with several proposals being put
forward. More precisely, we consider the problem of compos-
ing or scheduling several (non-deterministic) behaviors so as
to conform to a specified (deterministic) target behavior as
well as satisfying constraints imposed by the environment in
which the behaviors are to be performed. These behaviors are

Maurice Pagnucco
National ICT Australia and ARC Centre
of Excellence in Autonomous Systems

School of Computer Science and Engineering

936

The University of New South Wales
Sydney, NSW, 2052, Australia

morri@cse.unsw.edu.au

abstractions that can represent a variety of mechanisms such
as programs, robot actions, capabilities of software agents
or physical devices, etc. As such, solutions to this problem
have a wide field of applicability from composing web ser-
vices [Berardi et al., 2008] through to co-ordinating multiple
robots or software agents [de Giacomo and Sardina, 2007,
Sardina and de Giacomo, 2007; Sardina et al., 2008; Sardina
and de Giacomo, 2008]. The closest work to this paper is that
of Sardina et al. [2008] which proposes a regression based
technique to solving this problem where we present a progres-
sion based technique here and briefly consider the possibility
of approximating the target behaviour.

For example, consider an urban search and rescue setting
with three types of robots. Scout robots can search for victims
and report their location. Diagnosis robots can assess vic-
tims and determine whether their condition requires special
transportation. If not, this robot can guide victims to safety.
Rescue robots can carry immobile victims to safety. We will
elaborate this example using our framework in this paper.

This paper provides four main contributions that improve
on previous approaches to this problem: 1) we provide
a sound and complete algorithm for solving the behavior
composition problem which works in the way of a forward
search—this is in contrast to the proposal of Sardina et al.
[2008] which can be seen as a backward search; 2) we have
realized an implementation of our algorithm in Java which is
the first known implementation of a solution to this problem;
3) our algorithm determines all possible schedulers for the
target behavior (as can the proposals in [ Berardi et al., 2008;
Sardina et al., 2008]); and, 4) our approach allows the def-
inition of approximate solutions to the behavior composition
problem which can be used when the target behavior cannot
be realized by the available behaviors in the given environ-
ment.

1 Background
The basic components of our framework are:

Environment which provides an abstract notion of the ob-
servable effects of actions and preconditions for actions.

Behaviors are skills or capabilities and are essentially pro-
grams that entities can perform.



Target behavior is the desired behavior that we would like
to carry out.

Each of these components can be specified abstractly using
automata as we shall see below. We now look at these com-
ponents in more detail and introduce some other concepts that
we require. In doing so we use the formulation of de Giacomo
and Sardina [2007] and reproduce the important definitions
from their paper that we require here with one modification.
We allow multiple initial states where they do not. Otherwise
the definitions are largely as in their paper and interested read-
ers are pointed to this article for further details and intuitions
behind this formulation of the behavior composition problem.

We begin with a definition of the environment. Note that
incomplete knowledge about actions as well as failure of ac-
tions are dealt with by allowing the environment and the be-
haviours to be non-deterministic.

Definition 1.1 ([de Giacomo and Sardina, 2007])
An environment £ = (A, E, Ig, d¢) is characterized by the
components:

o A a finite set of shared actions

E a finite set of possible environment states

I¢ C E the set of initial states of the environment

d0s C E x A x E the transition relation among states:
d¢ (e, a, €") holds when action a performed in state e may
lead the environment to successor state €.

Example 1.1 Considering the urban  search  and
rescue example introduced earlier. In the follow-
ing example environment the set of actions A
{diagnose, report, return, search, special, transport}
where each of the individual actions has the obvious in-
terpretation given the description above. The set of states
E = {e1,ea,€e3,e4}, the initial state I¢ = {e1} and the
transitions 0g are given in the following automaton.

search, return, report search, return, report

* search, return, report, diagnose
Figure 1: Environment

Next we turn to behaviors of which there are two types:
available behaviors that specify the capabilities of entities
that are under our control when it comes to scheduling and
the target behavior that specifies the desired functionality.

Definition 1.2 ([de Giacomo and Sardina, 2007])
Behavior B = (S,13,G,05,F) over an environment £
consists of:

e S a finite set of behavior states

o I C S the set of initial states of the behavior

937

o ( a set of guards, which are Boolean functions g : E —
{true, false} for environment states E of £

0 C S x G x A x S transition relation, where A is the
set of actions of £; the G X A component is the label of
the transition

o F' C S set of final states in which the behavior may halt.

Note that available behaviors may also be non-deterministic
and so may not be fully under the scheduler’s control while
the target behavior is deterministic.

Example 1.2 Continuing our example, the automaton in Fig-
ure 2 specifies the target behavior that we wish to obtain.
S = {t17t27t37t4,t5,t6}, Iz = {tl}, F = {tl}, transitions
are represented by the arcs of the automaton.

search return

search

return

transport, e : diagnose

special

e3:
€4

Figure 2: Target behavior

The following definitions will assist in our development of
a scheduler that will compose the available behaviors accord-
ing to the environment so as to achieve the target behavior.
Runs describe transitions that can be realized by a behavior
in the environment.

Definition 1.3 ([de Giacomo and Sardina, 2007]) For be-
havior B (S,1Ip,G, 5, F) and environment £
(A, E, I¢,0¢), runs of B on £ are (possibly infinite) alternat-
ing sequences: (s°,e%)al(s',et)a?---, where s° € I and
e € Ig, and for every i (s', e")a" ™ (s"1, e is such that:

e there is a transition (%, a"1, e"t1) € 0g

e there is a transition (s',g" ™', a"1, s"t) € g, such
that g**t(e?) = true.
If the run is finite, i.e., (s°,e%)a’ - - - al(s!, el), then s' € F.

Traces are legal sequences of actions according to runs.

Definition 1.4 ([de Giacomo and Sardina, 2007]) A trace
is a sequence of pairs (g, a), where g € G isa guard ofB

and a € A an action, of the formt = (g*,a) - (¢%,a?) -~

such that there is a run (s°,e%)al(s!,e')a?- -, where
g'(et™1) = true for all i. If trace t = (g* al) (¢',a) is
finite, then there is a finite run (s°,e%)a’---a'(s!, el) with

st € F. We call  the length of t.

A system, then, consists of the available behaviors that we
can compose to realize the target behavior and the environ-
ment they must satisfy.

Definition 1.5 ([de Giacomo and Sardina, 2007]) System

S (By,...,Bn,E) is formed by an environment &
and n non-deterministic available behaviors B;. A
system configuration is a tuple (s1,...,8n,¢€) specifying
a snapshot of the system where behavior B; is in state s;




and environment £ in state e. The system has a specific
component, called the scheduler able to activate, stop, and
resume behaviors at each time point.

Example 1.3 The component behaviors are given by the au-
tomata in Figure 3. The environment and target behavior are
given in the previous examples.

report return

e, €3, : diagnose
. search \ i i - I

)
return
return, e3 : transport

Scout robot Diagnosis robot

e3 : transport, e4 : special

Rescue robot

Figure 3: Component behaviors

The behavior composition problem can now be specified.
We are provided with asystem S = (B4, ..., B,, ) and a de-
terministic target behavior By over £. Our task is to schedule
the available behaviors so that they realize the target behav-
ior. At each point in time the scheduler can activate one of
the available behaviors so that it can perform one action. In
doing so, the scheduler ensures that this action is executable
in the environment. We now formalize these notions.

Definition 1.6 ([de Giacomo and Sardina, 2007]) Let S =
(By,...,Bn,E) be a system, & (A, E,I¢,0¢) the
environment, B; = (S;,1Ip,,Gi,0;, F;) available behav-
iors and By = (So,{s3},Go,d0, Fy) the target behav-
ior. A system history is an alternating sequence of sys-

tem configurations and actions h = (s9,...,s2

»9Om
(51, sk, ety (st skt ety al (st L sl

) n’
where:

o sV € Ig, fori € {1,...,n}, ie., behaviors start in an
initial state

o &Y ¢ I¢, ie, the environment starts in an initial state

o at each step 0 < k < [, thereisani € {1,...,n}
where (sf,gf“,akﬂ,sf“) € 0; and for all j # i,
shtl = s?, i.e, at each step in the history only one of the
behaviors—B,—has made a (legal) transition

e ateach step 0 < k < I, we have (e, a**1, ek+1) € §¢,
i.e, the environment also makes a legal transition.

Definition 1.7 ([de Giacomo and Sardina, 2007]) A
scheduler is a function P : H x A — {1,...,n,u} that, for
history h € H (‘H is the set of all system histories as defined
above) and action a € A, returns the behavior (via its index)
scheduled to perform the action.

de Giacomo and Sardina [2007] allow the scheduler to also
return the value u to specify that no behavior can perform the
action after the history. We now formalize what constitutes a
solution to the behavior composition problem.

Definition 1.8 ([de Giacomo and Sardina, 2007]) Let t =
(g%, a') - (¢%,a%)--- be a trace of the target behavior. A
scheduler program P realizes the trace t iff for all | and all
system histories h € H. p (see below) such that g'*(e}) =

true in the last environment state eﬁl of h, we have that

938

P(h,a*) # u and H,lfpl is non-empty. The set of system
histories Hi_P is inductively defined:
0 _
® Ht,P = erelg,smelgl,,,,,snoelgn{(510, o3 5n0,€0)}
° Hﬁpl is the set of | + I-length system histories of the
form b - a1t (s sl @YY such that:

- h € H. 5, where (st,..., s,
configuration in h
a1

e!) is the last system

is an action where P(h,a't1) = i, with i # u,
i.e., the scheduler specifies action a't' at system
history h to be executed in behavior B;

(st,g,a*1, st) € 6; with g(e') = true, i.e., behav-
ior B; evolves from its current state sk to state s/
wrt the (current) environment state €'

(el a*l e*l) € 6, ie., the environment may
evolve from current state e' to '+

I+1 ’ +1 _ 1 . .
-5 = S; a.nd s; =85, forj # i, i.e., only
behavior B; is allowed to perform a step.

A scheduler program P realizes target behavior By if it
realizes all its traces.

2 The expansion algorithm

Our algorithm for computing a scheduler program continually
passes through several phases. States are expanded, possibly
instantiated by matching them with existing states and those
states violating the constraints imposed by the target behav-
ior are deleted. The idea is to start with a state representing
all possible initial configurations and expand states in a way
that every configuration reachable from a configuration in the
current state by performing an action according to a transition
in the target behavior is represented by one of the expanded
children of the current states. To avoid calculating an infinite
graph we use an instance relation to ‘close’ the graph back
to an already existing state. de Giacomo and Sardina [2007]
show that when a target behavior can be realized it can be
done so with a finite number of states therefore justifying our
ability to produce finite graphs (albeit with loops). We could
expand states that end up in a configuration where we are
not able to perform all actions possible in the target behavior.
These configurations (i.e., the states representing them) have
to be deleted from our graph. This is achieved by a mark-
ing algorithm. Since the marking algorithm can mark states
where there are instances of the marked states in the graph,
expansion and marking steps have to be performed alternately
until either no states with instances in the graph are marked
or the initial state is marked (i.e., so no scheduler exists). We
now formalize the notions we require for our algorithm.

States. A state for our expansion algorithm differs from those
of behaviors and the environment and must contain a number
of properties. First it represents a state in the target behavior.
Second the states and the relations between them represent
a set of system histories and thus a state contains a system
configuration that can be seen as a predecessor step in every
system history belonging to that certain state. Third we need
to know which behavior should execute which action in the
scheduler program. Therefore a state contains an action that is



to be performed in the predecessor configuration and a num-
ber representing the index of the behavior that is supposed
to perform the action. Finally a state contains a set of con-
figurations combined with a set of actions. This set contains
every reachable configuration from the predecessor configu-
ration (after executing the action in this state) combined with
every action that must be performable in the reached state of
the target behavior. Using this formalization we need a spe-
cial treatment for the first state when there is no predecessor
configuration and action. Thus we define a distinguished ac-
tion start and a distinguished state null to be added to the
set of actions A" = A U {start} and the sets of available
behavior states and environment states: S!, = S, U {null}
forall z € {1,...,n,E}. As technical properties we also
enumerate the states (to distinguish them even if their other
properties are identical) and give them a Boolean label for
the marker algorithm described below. Formally:

Definition 2.1 A state for our expansion algorithm wrt a
given system S = (B1,...,B,,&) and target behavior By
over € is an element s € Ng x {true, false} x States where
States = So x {0,...,n} x A" x ST x ... x S] x Sgx
2S1><...><Sn><Sg><2A_

Forastate s = (m, [, (s0,b,a, s1, ..., S, e, O)) the real state
information without technical properties like a state number
is just (s, b, a, 1, . . ., S, €, 0), where the O stands for obli-
gations. The intuition behind the notion of obligation is, that
every combination of a system configuration and an action
from a corresponding set in O can be seen as an obligation for
peforming the next step of a trace. Our algorithm develops a
finite graph SG = (V, E) with V' C N x {true, false} x
States representing one or more schedulers.

Successor Actions. We are interested in being able to per-
form all actions possible in a current state of the target be-
havior. Therefore, given a behavior B over an environment £
we define the set of successor actions for a state s € S in the
environment state e € E as SuccessorActions(s,e) := {a €
AlFs' € S:3g € G:05(s,g9,a,8) ANg(e)}.

Expansion Function. We define a function expand
No x {true,false} x States — 25! (o calculate the
children of a state. Intuitively, ezpand(s) calculates a
set consisting of one state for every obligation in s (as
mentioned above), where these states represent all possi-
ble outcomes (and new obligations) after performing the
respective action in the respective system configuration.
So given a state s (m,1, (so0,b,a,s1,...,8.,e,0)) wrt
a given system S = (Bi,...,B,,E) and target behavior
By over £ the expansion of s is defined as expand(s) =
{(s0, ', a,sh,...,80,,€,0)|(s),...,sh,¢,A") € O,d €
AL O ={(s5,...,85,¢e°, SuccessorActions(sj, e))|
de(e,a,e), 3¢¥ € Gy : 0B, (sg/,gb/, a'ysg) A i (e'),
s?=sVi £V} #0,3g9 € Go : 0p,(s0,9,4d,s5) N g(e')}.
Instance Relation. To obtain a finite graph representing
the scheduler program, we need an instance relation that
can be used to match states with existing ones and so add
edges in the graph to already existing states. Instances rep-
resent the same state in the target behavior. Given two
states s = (m*, 11, (s§, b, at,s1,... sk el,O)) and s? =
(m?2,1%,(s3,b%,a%, 53, ..

’On

,52.e%,0?%)) wrt a given system

939

S = (By,...,B,,&) and target behavior By over £ the re-
lation instance(s', s?) (s! is an instance of s?) holds iff
mt #E mE AL AP As) = sEAV(sE, ..., sh, et AL) €
O'3(st,...,s% el A%) € O? : A1 C A?. s! is then called
instance child and s? is called instance father. Intuitively,
this means that we have an instance if the set of obligations
for one state (s') is a subset of the other (s?). The initial part
of the condition (m* # m?2 Al* Al?) is only required for tech-
nical reasons so that states already marked false are ignored
as are identical states.
Complete Expansion Step Algorithm. Given a system S =
(B1,...,B,,&) and target behavior By over &, a finite graph
SG = (V, E) with V' C Ng x {true, false} x States and E C
V' xV and a set of states to expand 7ODO C V, the complete
expansion step algorithm is:

1: procedure: expansion step(SG, S, By, TODO)

2: while TODO # () do

33 NEW:=0

4:  fors € TODO do

5: if 3s' € V : instance(s, s") then

6: E := EU{(s,s")} with instance(s, s") ANVs" €
—(instance(s’,s"”) N Obligation(s') #

Obligation(s"))

7 else

8: C := expand(s)

9: forc € C'do

10: s' = (x, true, ¢) where z is fresh

11: V=vVu{s}

12: E:=FEU{(ss)}

13: NEW = NEW U {s'}

14: end for

15: end if

16:  end for

17:  TODO := NEW

18: end while

Line 5 of the algorithm checks whether the state s currently
under consideration for expansion has an instance. If so, line
6 adds an instance edge in a way that the instance father is not
an instance child of another instance father again. Otherwise
we obtain the children of the state to be expanded at line 8
and add each one to the graph SG (lines 11-13).

Legal and Illegal States. Given a system S
(By,...,B,,E) and target behavior By over £ and a finite
graph SG (V,E) with V. C Ng x {true, false} x
States and E C V x V we call a state s
(m,1,(s0,b,a,81,...,8n,e,0)) €V legal iff

o [ = true,

e if s is a final state of B3y then s1, ..., s, are final states

Oth NN ,Bn,
if s has a parent state, then the parent s is legal and either

— s is an instance of another state: 3(s,s’) € E :
instance(s, s'), or

— s can fulfill all its obligations by its children:
Yo = (s),...,s,,¢/,A) € O : Va' € A :
de = (m©1° (s, b%a%, 85, ...,85,e5,0%) €
ViE(s,c)NI°Ne =€ Ny =s§N.. N8, =
s¢ ANa' = af



The parent state of s is the only state s, with
E(sp,s) N\ —instance(sp,s) (only the root state has no
parent state). Consequently we call s illegal iff s is not
legal. Intuitively, an illegal state is either not achievable by
performing a trace or at some point while performing a trace
achieving this state, there is at least one trace with the same
beginning up to that point which cannot be performed by the
system anymore. We will be interested in a special set of
illegal states in the graph SG, namely those illegal states with
a true label and at least one child which is not an instance fa-
ther of that state (when this child is labeled with ¢rue). These
are exactly the states in which we cannot perform every
trace of the target behaviour anymore. So we define the set
Tllegal(SG) := {v = (m,l, (s0,b,a,$1,...,8n,¢,0)) € V|
visillegal ,l = true, ' = (m/,l', (s(,b',a’, 84, ..., s, ¢
0")) € V: E(v,v") A —~instance(v, (m/, true, (s, b, d,
Shy e, 8h,e, OO

Furthermore we will be interested in those illegal states
with a t¢rue label that have become illegal just be-
cause all states of which it is an instance have be-
come illegal or simply have not been expanded yet.
Thus we define the set Remainder(SG) := {v = (m,l,
(s0,b,a,81,...,8n,6,0)) € Vlvisillegal,l = true, Vv’
(m!, U, (sp,0,a',84,...,8,,¢,0") € V : E(vv) =
instance(v, (m’, true, (s(,b',a’, sy, ..., sh,¢,0)))}.
Marker Algorithm The marker algorithm simply marks all
illegal states from our special set after each expansion step so
that they can be subsequently deleted. Thus, given a system
S = (By,...,B,,E) and target behavior By over £ and a
finite graph SG = (V, E) with V' C Ng x {true, false} x
States and E C V x V we have:
: procedure: mark(SG, S, By)
while Illegal(SG) # () do

)

33 for s = (m,l, (s0,b,a,81,...,8.,6,0)) €
Illegal(SG) do

4: [ := false

5. end for

6: end while

This algorithm simply determines the illegal states and marks
each corresponding vertex in SG with the label false.

Complete Expansion Algorithm. For initializ-
ing our expansion algorithm we need to compute
all possible start configurations.  Thus, given a sys-
tem S (By,...,B,,E) and target behavior By
(S0, 83, Go, 95,, Fo) over € we define the root state s,por =
(0, true, (59,0, start, null, . .., null, null, Oropr)) ~ Where
Oroot {(s1,-- -, 8n, €, SuccessorActions(s3,e))|s1 €
Ip,,...,sn € Ip, ,e € Ic}. Now the complete expansion
algorithm is:
1: procedure: expansion algorithm(S, By)
SG = ({Sroot}u @)
TODO := {Sr00t}
while s,...; is labeled with true A TODO # () do
expansion_step(SG, S, By, TODO)
mark(SG, S, Bo)
TODO := Remainder(SG)
end while
if s,.00¢ is labeled with ¢true then

R AN A ol

940

10:  return SG
11: else
12:  return “computation failed”

13: end if

The core of the algorithm (lines 4-8) repeatedly applies the
expansion step and marker algorithms. Provided the node
corresponding to the initial state in the graph SG is not la-
beled false, there is at least one scheduler capable of realiz-
ing the target behavior.

Theorem 2.1 The algorithms presented above satisfy the fol-
lowing formal properties:

1. the expansion step algorithm and instance relations pre-
serve the possibility of realizing all traces of the target
behavior in all ways possible for the system

the marker algorithm marks as false exactly those states
achievable by performing a trace, where at some point
while performing this trace there is at least one trace
with the same beginning up to that point which cannot
be performed by the system any more

3. each of the three algorithms terminates.

Histories Represented by Calculated Graph. The intuitive
connection between the graph calculated by our algorithm
and the schedulers it represents lies in the system histories
that can be simulated by the graph. These histories corre-
spond directly to traces of the target behavior and thus we
can read schedulers realizing the target behavior from our
graph by looking at the system histories we can simulate
with it. The simulation of histories is done by performing
the respective action with the respective behavior in every
state we reach by following the edges of the graph (and
doing nothing on instance edges). Formally, the finite
graph SG = (V, E) calculated by the expansion algorithm
represents all system histories h with
h=(s0,...,8% €% al-(s},...,sL et)---

si7h sl ety gl (st ... sk et)  where we have
3(s9,...,8%,e% A) € Oroots s° = Sroor and there exist
st = (msl, true, (sgl,bsl,a ,3{1, . ..,sfll,eSl,Osl)), o,
s! l,sfl,...,sf:,esl,Osl))EV
such that (s%,...,s% e’ A)) € O, (s, ... st et l) =
(s3°,...,s% e ),at € A and ((s' 1, s) € EAal = a®
AVs' € V 1 =(E(st,s") A instance(st, s"))) V 3sinst € V
((5°7Y, Sinst) € EN (Sinst, s') € E A instance(Sinst, 8°) A
a' = ains) forall i € {1,...,1}. The set of all histories
represented by SG is denoted by H(SG).

Represented Schedulers. A finite graph SG = (V, E)
calculated by the expansion algorithm represents all func-
tions P : H x A — {1,...,n,u} with P(h,a) €
Nezt(h,a) if h € H(SG), where Nezt(h,a) = {b €
{1,...,n}Fsnext = (M, true, (so,b,a,81,...,8n,€,0)) €
V' : (reached(h,SG), snest) € E} if this set is not empty
and Nezt(h,a) := {1,...,n,u} otherwise for all h € H and
a€ A

Sl

S

1 1 l
(m?® , true, (s§ ,b° ,a

Example 2.1 Completing our example, the scheduler in Fig-
ure 4 gives the realization of the target behavior.



(By, search) (By, return)

ew
() (&)
e3 : (B, transport),

e3 : (Bs, transport),
(Bs, special)

®/

(Ba, return),
bo1 : (B, return)

(B1, report)

& : (Ba, diagnose)

Figure 4: Result

In general, more than one scheduler may be possible and
the expansion algorithm calculates a graph representing all
schedulers realizing the target behavior.

Theorem 2.2 Given a system S = (By,...,B,,&) and tar-
get behavior By over &, the expansion algorithm returns a
finite graph SG representing all schedulers which realize the
target behavior if there exists at least one such scheduler.
Otherwise it returns “computation failed”.

Approximations. The method presented here can easily be
used to calculate approximations by changing the marker step
in such a way that it doesn’t mark all states where the simu-
lation of the target behavior by the system is not possible in
every case (and so would become illegal). In this way we
can obtain results even in situations where there is no exact
solution because the available behaviors are incapable of re-
alizing the target behavior in the environment. Instead of not
marking all states necessary for an exact solution, we can also
extract information about which action must be performable
in a certain configuration to realize the target behaviour. This
information can be used to extend the available behaviours
efficiently such that they are capable of realizing a desired
target behaviour. Approximations can also be used to provide
faster solutions at the expense of incompleteness. To compare
the closeness of some approximations to an exact solution we
can calculate the expected number of system configurations
reached by simulating an arbitrary trace of the target behavior
with a certain maximum length in which we cannot perform
the next action of the trace. To do this we have to weight the
edges of the target behavior with probabilities for the respec-
tive actions. Due to space restrictions we do not expand on
this here but leave it to future work.

3 Conclusions

We have provided a sound and complete algorithm for solving
the behavior composition problem. While there are existing
algorithms in the literature, our algorithm provides a number
of fundamental advantages. Firstly, our algorithm works in
the way of a forward search (progression) in contrast to the
proposal of [Sardina er al., 2008] which is based on regres-
sion. Also, it does not require abstract implementations like
that of [de Giacomo and Sardina, 2007] in terms of proposi-
tional dynamic logic which itself is difficult to implement.!
Secondly, as a result of its simplicity, we implemented our

'In fact, this is where our research started. In attempting to im-
plement the algorithm of [de Giacomo and Sardina, 2007] we real-
ized that there are no suitable PDL provers that would make this a
straightforward task.

941

algorithm in Java and have tested it on a number of repre-
sentative problems. It is the only existing implementation of
an algorithm for the behavior composition problem that we
know of. While our algorithm is EXPTIME-complete like
other existing approaches, the method we have used allows
us to easily define the notion of an approximate solution and
provide a metric for determining how close an approximation
is to the target behavior. Approximations can be used when
the target behavior is not able to be realized by the available
behaviors in the given environment and also to determine how
far the solution falls short of the target. Furthermore, if we
wish to improve on the EXPTIME-complete worst-case time
complexity of our algorithm, we could adopt approximations
at the expense of incomplete solutions. Finally, our algorithm
computes all possible schedulers capable of realizing the tar-
get behavior (as do the proposals in [Berardi et al., 2008;
Sardina et al., 2008]).

In future work we will more fully develop the notion of ap-
proximation. One interesting avenue for research would be to
develop an anytime version of our algorithm so that approx-
imations can be developed and incrementally refined. This
should not require a large modification to our existing algo-
rithm.

References

[Berardi et al., 2006a] D. Berardi, D. Calvanese, G. De Gi-
acomo, and M. Mecella. Automatic web service compo-
sition: Service-tailored vs. client-tailored approaches. In
Proc. of AISC-06, 2006.

[Berardi et al., 2006b] D. Berardi, D. Calvanese, G. De Gi-
acomo, and M. Mecella. Composing web services with
nondeterministic behavior. In Proc. of ICWS-06, 2006.

[Berardi et al., 2008] D. Berardi, F. Cheikh, G. de Giacomo,
and F. Patrizi. Automatic service composition via simu-
lation. International Journal of Foundations of Computer
Science, 19(2):429-451,2008.

[Calvanese et al., 2008] D. Calvanese, G. De Giacomo,
M. Lenzerini, M. Mecella, and F. Patrizi. Automatic ser-
vice composition and synthesis: The Roman model. Bull.
of the IEEE Computer Society Technical Committee on
Data Engineering, 31(3):18-22, 2008.

[de Giacomo and Sardina, 2007] G. de Giacomo and S. Sar-
dina. Automatic synthesis of new behaviors from a library
of available behaviors. In Proc. of IJCAI-07, pages 1866—
1871, 2007.

[Sardina and de Giacomo, 2007] S. Sardina and G. de Gia-
como. Automatic synthesis of a global behavior from mul-
tiple distributed behaviors. In Proc. of AAAI-07, pages
1063-1069, 2007.

[Sardina and de Giacomo, 2008] S. Sardina and G. de Gi-
acomo. Realizing multiple autonomous agents through
scheduling of shared devices. In Proc. of ICAPS-08, pages
304-311, 2008.

[Sardina et al., 2008] S. Sardina, F. Patrizi, and G. de Gia-
como. Behavior composition in the presence of failure. In
Proc. of KR-08, pages 640-650, 2008.



