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Abstract

Dung’s abstract theory of argumentation has be-
come established as a general framework for var-
ious species of non-monotonic reasoning, and rea-
soning in the presence of conflict. A Dung frame-
work consists of arguments related by attacks, and
the extensions of a framework, and so the status
of arguments, are defined under different seman-
tics. Developments of Dung’s work have also de-
fined argument labellings as an alternative way of
characterising extensions, and dialectical argument
game proof theories for establishing the status of
individual arguments. Recently, Extended Argu-
mentation Frameworks extend Dung’s theory so
that arguments not only attack arguments, but at-
tacks themselves. In this way, the extended theory
provides an abstract framework for principled inte-
gration of meta-level argumentation about defeasi-
ble preferences applied to resolve conflicts between
object level arguments. In this paper we formalise
labellings and argument games for a selection of
Dung’s semantics defined for the extended frame-
works.

1

Argumentation theory has a wide range of application in Ar-
tificial Intelligence [Bench-Capon and Dunne, 20071, includ-
ing formalisation of non-monotonic reasoning, decision mak-
ing over action, and negotiation and persuasion dialogues.
Much of this work builds on Dung’s seminal theory of argu-
mentation [Dung, 1995]. A Dung argumentation framework
(DF) is a directed graph consisting of a set of arguments A
related by a binary conflict based attack relation R. The ex-
tensions, and so the justified status of their contained argu-
ments, are then defined under different semantics. Extensions
are defined based on the acceptability of arguments w.r.t sets
of arguments; argument x is acceptable w.r.t S C A if any
y that attacks x is itself attacked by some z € S. Thus, the
core admissible semantics defines an admissible extension as
a subset S of A, all of whose contained arguments are accept-
able w.r.t. S, and an extension under the preferred semantics
is a set inclusion maximal admissible extension.

Introduction
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The widespread influence of Dung’s work can be attributed
to its abstract nature. The underlying logic, and definition of
the logic’s constructed arguments A and relation R is left
unspecified, thus enabling instantiation of a framework by
various logical formalisms. A theory’s inferences are then
defined as the claims of the justified arguments constructed
from the theory (an argument essentially being a proof of a
candidate inference - the argument’s claim - in the under-
lying logic). Dung’s theory thus provides a general frame-
work for non-monotonic reasoning, and indeed, many logic
programming formalisms and non-monotonic logics (e.g. de-
fault, auto-epistemic, and defeasible logics) have been shown
to conform to Dung’s semantics (e.g., in [Dung, 1995]).

Dung’s extensional semantics may yield multiple exten-
sions, raising the problem of how to choose between conflict-
ing arguments in different extensions. The problem has been
addressed by applying preferences to determine the success
of attacks. For example, if x and y attack each other, then
each is contained in a distinct preferred extension. However,
given a preference for x over y, then y’s attack on x does not
succeed and we are left with = asymmetrically attacking v,
and so {z} is the unique preferred extension. Thus, Dung’s
framework has been augmented with a preference ordering on
arguments [Amgoud and Cayrol, 2002], and in value based
argumentation [Bench-Capon, 2003], y’s attack on x does not
succeed if the value promoted by x is ranked higher than y’s
value, according to some given value ordering. However, one
often needs to reason, and indeed argue about, as well as with,
defeasible and possibly conflicting preference information.
Hence, [Modgil, 2009] has recently extended Dung’s theory
to integrate ‘metalevel’ argumentation about preferences be-
tween arguments. The extended theory preserves the abstract
nature of Dung’s approach; no assumptions are made about
the structure of arguments expressing preferences, and appli-
cation of preferences is abstractly characterised, by defining
a new attack relation that originates from a preference argu-
ment, and that attacks an attack between the arguments that
are the subject of the preference claim. A new notion of ac-
ceptability is defined for the extended theory, and the exten-
sions of an Extended Argumentation Framework (EAF) are
then defined in the same way as for Dung frameworks.

The extensions of a DF can equivalently be defined in
terms of labellings assigned to arguments [Caminada, 2007,
Verheij, 2007], and this approach had led to development



of algorithms for computing the extensions of a DF [Cam-
inada, 2007]. The inherently dialectical nature of argumen-
tation has also led to formulation of argument game proof
theories, in which a proponent attempts to show that an ar-
gument is justified by countering attacking arguments moved
by an opponent (e.g., [Cayrol er al., 2003; Modgil and Cam-
inada, 2009]). This work has also underpinned algorithm
development [Vreeswijk, 20061, and development of general
frameworks for conflict resolution and persuasion dialogues
[Prakken, 2005].

This paper formalises labellings and argument games for
EAFs, and thus establishes foundations for development of al-
gorithms for EAFs. In Section 2 we review Dung’s argumen-
tation theory and the extended theory. Sections 3, 4 and 5 then
describe the three main contributions of this paper: 1) Section
3 defines the admissible, preferred and stable labellings of an
EAF, and states soundness and completeness results with the
acceptability based definitions. Our approach builds on the
work of [Caminada, 2007] by additionally assigning labels to
attacks; 2) Section 4 defines a dialectical framework for argu-
ment games for the extended theory. The framework gener-
alises existing frameworks for argument games (e.g. [Cayrol
et al., 2003]) to additionally allow players to move arguments
that attack attacks; 3) Section 5 defines a specific game for
deciding membership of admissible and preferred extensions
of an EAF. Finally, Section 6 concludes and discusses future
work.

2 Extended Argumentation Frameworks

A Dung argumentation framework (DF) [Dung, 1995] is a
tuple (A, R), where R C A x A is an attack relation on the
arguments in 4. An argument = € A is then said to be accept-
able w.r.t. some S C A iff Vy s.t. (y,x) € R implies 3z € S
s.t. (z,y) € R (i.e., z reinstates x). We now recall Dung’s
definition of extensions under the admissible, preferred and
stable semantics!, in which we refer to a set of arguments as
conflict free iff Vo, y € S, (x,y), (y,x) ¢ R:

Definition 1 Let (A, R) be a DF, and S a conflict free subset
of A. Then:
e S is an admissible extension iff every argument in S' is
acceptable w.r.t. S
e S is a preferred extension iff it is a set inclusion
maximal admissible extension
e S is a stable extension iff Vy ¢ S, 3z € S such that
(x,y) €R

An argument is sceptically preferred (stable) justified if it
belongs to all preferred (stable) extensions, and only credu-
lously preferred (stable) justified if it belongs to at least one,
but not all, preferred (stable) extensions.

We now recall the extended argumentation theory [Modgil,
2009]. By way of motivation, consider individuals P and O
exchanging arguments a, b. . . about the weather forecast:

P : “Today will be dry since the BBC forecast sunshine” = a
O : “Today will be wet since CNN forecast rain” = b
P : “But the BBC are more trustworthy than CNN” = ¢

!Grounded semantics for Dung’s and the extended theory will be
discussed in Section 6
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Figure 1: Motivating EAF's

O : “However, statistics show that CNN are more accurate
than the BBC” = d

O : “And a statistical comparison is more rational than a com-
parison based on instincts about relative trustworthiness” = e

Arguments a and b symmetrically attack ((a, b),(b,a) € R),
yielding the admissible and preferred extensions {a} and {b}.
To choose amongst the two credulously justified arguments,
so that one is sceptically justified at the expense of the other,
one can incorporate ‘metalevel’ arguments expressing prefer-
ences over other arguments. Thus, c is an argument claiming
that a is preferred to b. Intuitively, c is an argument for a’s
repulsion of b’s attack on a, i.e., ¢ attacks b’s attack on a® so
that b’s attack on a does not succeed and we are left only with
a successfully attacking b (see Figure 1i) in which we intro-
duce the notation y — « for an attack, and z — (y — x) for
an attack on an attack). Now {c, a} is the only preferred ex-
tension and so a is sceptically justified. d claims b is preferred
to a and so attacks a’s attack on b. Now {c,a} and {d, b}
are preferred since the choice between a and b is unresolved
given that ¢ and d claim contradictory preferences and so ¢
and d attack each other (Figure 1ii)). However e then attacks
the attack from c to d (Figure liii)), and so d successfully at-
tacks c, b successfully attacks a, and the discussion concludes
in favour of b ({e, d, b} is the single preferred extension). Ex-
tended Argumentation Frameworks (EAF's) thus extend Dung
frameworks with a second attack relation D from arguments
to attacks. If (z, (x,y)) € D then z is an argument for prefer-
ring y to x, and if any two such preference arguments express
contradictory preferences, then they attack each other.

Definition 2 An Extended Argumentation Framework is a
tuple (A, R, D), where A is a set of arguments, R C A x A,
and:

e DCAXR

o If (2, (z,9)), (¢, (y,x)) € Dthen (z,2), (z/,2) € R

The notion of a successful attack, from hereon referred to

as a defeat, is then parameterised w.r.t. preferences specified
by some given set S of arguments:

[Modgil, 2009] discusses why it is not appropriate to consider ¢
as directly attacking b.



Definition 3 y defeatsg x, denoted y —5 z, iff (y,x) € R
and -3z € Ss.t. (z,(y,x)) € S.

In the weather example, a defeatsy b but does not defeaty gy b.
A conflict free set of arguments is then defined to account
for the case where y asymmetrically attacks x, but given a
preference for x over y, both may appear in a conflict free
set and hence an extension (as in citeBC03). Notice that a
conflict free set does not admit arguments that symmetrically
attack, irrespective of the preference arguments contained.

Definition 4 S is conflict free iff Vz,y € S: if (y,2) € R
then (z,y) ¢ R, and 3z € S s.t. (2,(y,x)) € D.

The acceptability of an argument = w.r.t. a set S is now de-
fined for an EAF. The basic idea is that for any attacker y of
T, a reinstating attack z — y from z € S, must be reinstated
against preference argument attacks on z — y. The defini-
tion is motivated in more detail in [Modgil, 2009] and relates
to an intuitive requirement (captured by Dung’s fundamental
lemma in [Dung, 1995]) on what it means for an argument to
be acceptable w.r.t. an admissible set S of arguments: if x
is acceptable with respect to S, then S U {x} is admissible.
To ensure satisfaction of this requirement, acceptability for
EAFs requires the notion of a reinstatement set for a defeat.

Definition 5 Let S C A in (A, R, D). Let Rg = {z; —°
Yly- s Ty —° ynt where fori =1...n,z; € S. Then Rg
is a reinstatement set for a —° b, iff a —° b € Rg, and

oV —% yc Rg, Yy st. (y (x,y) € D, I’ -y € Rg

Definition 6 z is acceptable w.r.t. S C Aiff Vys.t. y —° z,
Jz € S st z —5 y and there is a reinstatement set for
z =5y

In Figure liv), a is acceptable w.r.t. S. We have b —5q,
¢ —° b, and there is a reinstatement set {c —° b, cl —%
bl,c2 —9 b2} for ¢ —7 b. Note that if we had b3 — (c2 —
b2), and no argument in S defeating b3, there would be no
reinstatement set, and a would not be acceptable w.r.t. S.

Given the definitions of conflict free and acceptability for
EAFs, admissible, preferred and stable semantics for EAF's
are now defined as for DFs in Definition 1 (except that x
defeatss y replaces (z,y) € R). [Modgil, 2009] shows that
EAFs inherit many of the fundamental results that hold for
DFrs; in particular, Dung’s fundamental lemma holds, and for
each admissible S there exists a preferred extension S” such
that S C 5.

Extended argumentation has been proposed as a general
framework for non-monotonic logics that accommodate de-
feasible reasoning about priorities on rules. For example,
[Modgil, 2009] shows that the inferences from logic program-
ming theories with defeasible priorities [Prakken and Sartor,
1997] correspond to the grounded extension of the EAFs they
instantiate. Furthermore, unlike [Prakken and Sartor, 1997],
one can provide a well founded definition of the admissible
and preferred extensions of such theories. The extended the-
ory is also proposed as a unifying framework for formalis-
ing and extending works augmenting Dung frameworks with
preferences and values [Modgil and Bench-Capon, 2008;
Modgil, 2009], as a semantics for adaptive agent defeasi-
ble reasoning and conflict resolution [Modgil, 2007], and for
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conflict resolution in normative systems [Modgil and Luck,
2008]. Figure 2i) shows an EAF for argumentation over a
course of medical action (logical formalisms for constructing
these arguments are described in [Modgil, 2006]). a1 and a2
are arguments for prescribing drugs aspirin and chlopidogrel
respectively, given that both realise a treatment goal to re-
duce blood clotting. b1 and b2 are arguments (based on clin-
ical trials 1 and 2 respectively) expressing the contradictory
conclusions that chlopidogrel is more efficacious than aspirin,
and aspirin is more efficacious than chlopidogrel. c1 claims
that trial 1 is more statistically robust than trial 2. a3 claims
that chlopidogrel is costly, and so attacks a2, and b3 expresses
that the value of improving patient health (promoted by a2) is
greater than a3’s value of cost. b4’s contradictory value pref-
erence for cost over health mutually attacks b3, and finally,
c3 is a utilitarian argument preferring b4 to b3 on the grounds
that the cost of using chlopidogrel will compromise treatment
of other patients. The EAF has a single preferred extension
{c1,b1,2,b4, a3, al}; aspirin is the preferred choice.

3 Labellings for EAF's

This section builds on the work of [Caminada, 2007], and for-
malises labellings that characterise the admissible, preferred
and stable extensions of an EAF. A labelling assigns exactly
one label to each argument; either IN, OUT or UNDEC. The
arguments labelled IN constitute an extension E under some
given semantics, and the rules for deciding that an argument is
legally IN intuitively correspond to deciding the acceptability
of these arguments as defined in Section 2. OUT arguments
are defeated p by arguments in F, and an argument is UNDEC
if it is neither in the extension or defeated by an argument
in the extension. For EAF's, attacks on attacks and reinstate-
ment of attacks may decide the acceptability of arguments.
Hence, labels must also assigned to attacks in R, so that if
(z,y) € R is IN, respectively OUT, then this denotes that the
attack (x, y) is successful, respectively unsuccessful. Finally,
attacks can also be assigned UNDEC.

Definition 7 A labelling for an FAF(A, R, D) is a pair of
total functions (L 4, L) such that:

1. L4: A~ {IN,OUT, UNDEC}

2. Lr : R +— {IN,OUT,UNDEC}

For s € {IN,OUT,UNDEC}: s(L4) = {z|La(x)
s(Lr) ={(z,y)|Lr((z,y)) = S}

We now define the notion of a legal labelling:
Definition 8 Let £ = (L 4, L) be a labelling for (A, R, D).
Vo € A:

1. x € out(L 4) is legally OUT iff I(y,z) € R s.t. La(y)

=INand Lz ((y,x)) = IN.

2. x € in(Ly) is legally INiff V(y, x) € R, either L 4(y)

= OUT or Lz ((y, x)) = OUT.

3. x € undec(Ly) is legally UNDEC iff:

(@) =3(y,z) € Rsuchthat £ 4(y)=1INand Lz ((y,x))
= IN, and;

(b) it is not the case that: Yy € A, (y,z) € R implies
L 4(y)=0UT or LR((y,z)) =O0UT
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Figure 2: EAF's and their labellings (O stands for OUT and U
stands for UNDEC)

Y(y,x) € R:

1. (y,x) € out(Lr) is legally OUT iff 3 (2,(y, z)) € D s.t.
La(z)=1IN

2. (y,x) € in(Lr) is legally IN iff V (z,(y,xz)) € D,
L 4(2) = OUT

3. (y,x) € undec(LR) is legally UNDEC iff

(a) =3 (z,(y, ) € Ds.t. La(z)=1IN
(b) it is not the case that: Vz € A, (z,(y,x)) € D im-
plies £ 4(z) = OUT

For s € {IN,OUT, UNDEC}:

e An argument z is said to be illegally S iff z € s(L4),
and it is not legally S.

e An attack (y,x) is said to be illegally S iff (y,z) €
s(Lr), and it is not legally S.

Note, it is straightforward to show that £ 4 and Lz assign
exactly one label to each argument, respectively attack. Also
observe, that by definition, an argument or attack that is not
attacked cannot be legally UNDEC. Also, Definition 8 implies
that an attack (y, ) is legally UNDEC iff there exists at least
one UNDEC labelled argument z that attacks (y, x), and no 2’
attacking (y, ) is labelled IN. Similarly, an argument x is
legally UNDEC iff there exists at least one (y,x) € R such
that y or (y, x) are UNDEC, and there is no (y, x) such that y
and (y, x) are IN.

We now define admissible, preferred and stable FAF la-
bellings and state a correspondence with the extensions as
defined in Section 2.

Definition 9 Let £ = (L 4, L) be a labelling for (A, R, D).
e L is admissible iff :

1. nox € Aisillegally IN or illegally OUT
2. no (y,z) € Risillegally IN or illegally OUT
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3. Va,y € in(L.4), it is not the case that (y,z) € R
and (z,y) € R

o [ is prefered iff L is admissible and there does not exist
an admissible £’ such that in(£’,) O in(L4)

o L[ is stable iff L is admissible, and undec(L4) = 0,
undec(Lr) = 0.

Theorem 1 Let A = (A, R, D) be an EAF, and E C A. For
m € {admissible, preferred, stable}:

E is an m extension of A iff there exists an m labelling
(L4, Lr)within(Lg)=F

Consider the preferred labelling identifying the preferred
extension for the medical example FAF in Figure 2i). Con-
sider also the labelled EAF in Figure 2ii). It is easy to verify
that none of the arguments in the odd loop f = d —e — f
can be legally assigned IN or OUT. The undecided status of
these arguments ‘contaminates’ the attack a — b, so that only
{a} is admissible and preferred, and there does not exist a
stable extension. Notice the requirement that admissible la-
bellings require that attacks are legally labelled IN (OUT).
Suppose this were not the case, so that a — b was illegally
labelled IN. Then b would be legally OUT and c legally IN.
However, {a,c} is not admissible since ¢ is not acceptable
w.r.t. {a, c} (there is no reinstatement set for a —, ¢y b).

4 A dialectical framework for EAF games

Argument game proof theories establish the justified status of
an argument to be tested, and provide a basis for algorithm de-
velopment. In this section we define a dialectical framework
for EAF game proof theories played as dialogues between
two players — P (for “proponent”) and O (for “opponent”)
— each of which are referred to as the other’s ‘counterpart’.
We will from hereon assume finite EAF's that contain a finite
number of arguments. A game begins with P moving an ini-
tial argument x to be tested. O and P then take turns in moving
arguments that attack their counterpart’s last move, where un-
like games defined for Dung frameworks, a player can attack
either an argument or an attack moved by its counterpart.

Definition 10 Let (A, R, D) be an EAF. A dialogue d is a
possibly infinite sequence of moves mg, mq, ... such that:

e d; denotes the empty sequence, m the ‘initial move’

e cach m; is of the form xp; where x € A is the argument
moved in m;, denoted by arg(m;), and P1 € {P,0} is

the player of m;, denoted pl(m;).

pl(mo) = P, and pl(m;) # pl(mi41).

my attack replies mg, and for Vi > 1, either

—my; attack replies m;_1 (denoted m;_, < m;), or

— my; pref attack replies m;_1 (denoted m;_1 « m;),
and m; does not both attack and pref attack reply m;_1,
where:

e m,; attack replies m;_1 iff (arg(m;), argm;_1)) € R
e m; pref attack replies m;_1 iff (arg(m;), (arg(m;—1),
arg(m;_2)) € D

A finite dialogue d = m, — mj — ... — m,, is said to be won
by P1 if pl(m,) = P1 (note that from hereon, if we write
m;_1 — m; then ‘—’ denotes either «— or «).



The rules of the game encode restrictions on the legality of
a player’s attack on its counterpart’s previously moved argu-
ment or attack. Different sets of rules capture the different
semantics under which justification of the argument moved
by P in the initial move is to be shown, by effectively estab-
lishing when O or P run out of legal moves, and thus which
player wins the dialogue. In what follows, we will refer to
a generic legal move function ¢ that places restrictions on
players’ moves, and dialogues played according to ¢ as ¢-
dialogues.

In general, a player can backtrack to a counterpart’s previ-
ous move and initiate a new dialogue. Consider the dialogue
ap “— bo ‘= Cp «— do ‘— ep — fo won by O (xpl denotes
argument z moved by player P1). P must then try and back-
track to move an argument against either O’s move of b, or the
attack b — a, or d, and so try and establish an alternative P
winning dialogue (i.e., ‘line of defense’) for a. Suppose such
a dialogue ap < by < gp. Then O can backtrack and try an
alternative O winning dialogue (i.e., ‘line of attack’) moving
h against a, so that P must now try and win the newly initiated
dialogue ap — ho.

Thus, a ¢ game that establishes whether z is justified, is a
tree of ¢-dialogues whose root is P’s initial move of x, and
such that O fully fulfills its burden of attack by moving all ¢
legally allowed replies to each argument and attack moved by
P, and P fully fulfills its burden of defense by moving at least
one ¢ legally allowed reply to each argument or the associated
attack moved by O. If every dialogue in such a game is won
by P, then z is shown to be justified. Such a game is defined
below as a winning strategy, in which we refer to the notion of
a sub-dialogue d’' of a dialogue d, which is any sub-sequence
of d that starts with the same initial move as d.

Definition 11 Let (A, R, D) be an EAF and T a non-empty
finite set of finite ¢-dialogues with initial move xp. Then T
is a @ winning strategy for x iff:

1. Each dialogue in 7" is won by P.

2. Vd € T, Vd such that d’ = mg — ... — m is some sub-
dialogue of d and pl(m) = P, then if O can ¢ legally reply
to m with m/, there is a d” € T such that d’ — m/ is a
sub-dialogue of d”.

We now define notation that will be of use when specifying
legal move functions:

Notation 1 Let d be a dialogue. For P1 € {0,P}:
e Pl 4(d)={zlarg(m) = x,pl(m) = P1,m is amove in
d} is the set of arguments moved by P1 in d.

o Plr(d) = {(z,y)larg(m) = z,arg(m’) = y,pl(m) =
P1,m attack replies m’ in d} is the set of attacks moved
by P1lind.

e Plp(d) = {(z (z,y)) | arg(m) = zarg(m’) = z,
pl(m) = P1,m pref attack replies m' in d} is the set
of pref attacks moved by P1 in d.

5 An argument game for the credulous
preferred semantics

In this section we define a legal move function ¢p¢ for the
preferred credulous game. Since every admissible extension
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of an FAF is a subset of a preferred extension, it suffices to
show membership of an admissible extension in order to show
membership of a preferred extension.

f

l/b =
S
| f

e

Figure 3: An EAF's and ¢ pc winning strategy for a

The function ¢ pc prevents O from moving arguments and
attacks that have already been attacked by P in a dialogue,
since P will have already fulfilled its burden of defense with
respect to these arguments / attacks. One need only consider
the framework x = y. Without the restriction on O, P’s at-
tempt to show that x is in the admissible {z} will result in an
infinite dialogue xp “— yo “— xp < Yo .... Since every ad-
missible extension is conflict free, ¢ pc also prevents P from
introducing a conflict into the arguments it has already moved
in a dialogue. That is to say, P can only move an argument x
in d if: 1) z does not attack itself, and; 2) no argument y, and
attack (y, x) or (z,y) has been moved by P, and; 3) = does
not symmetrically attack some y moved by P.

Definition 12 Given (A,R,D), and a dialogue d, then
con flict(d) =

{z|(z,z) € R} U{z[3y € P4(d),(z,y),(y,r) € R} U
{xE]y € P.A(d)7 (l’,y) € PR(d) or (y,l’) € PR(d)}
Definition 13 Given (A, R, D), and a dialogue d, then ¢ pc
is a legal move function such that:

o dpc(dp) = A — {z|(x,x) € R} (the initial move by P)
e If d is of odd length (next move is by 0), then:

if d = 2p, then ppc(d) ={y | (y,z) € R},

elseif d=d — zo — wp then ppo(d) =

L{Jy | (y,2) € R, (2",y) ¢ Pr(d), (2", (y, 7)) € Pp(d) }

{y | (y7 (1’, Z)) € D’ ("E/,y) ¢ PR(d) }
o If d=d — zp — 10 is of even length (next move is by P),

then ¢pc(d) =
{y | (y,x) € Ror(y,x,2)) € D,and y ¢ conflict(d) }

One can then show that the following holds:

Theorem 2 Givenan FAF A= (A, R,D),z € Aisinanad-
missible extension of A iff there exists a ¢ pc winning strat-
egy T for z such that |, (P.4(d)) is conflict free °.

3[Modgil and Caminada, 2009] discuss why checks for conflict
freeness of winning strategies are required



Figure 3 shows an EAF, and ¢ pc winning strategy for a in
which moves are individuated by numerical indicies indicat-
ing the order in which they are played. a is in the admissible
and preferred extension {a, d, c}. Notice that P can move ¢
at 3, since although c is attacked by P’s previously moved a,
the attack by a on ¢ has not been moved by P. Indeed, cp3
forces O to move the attack of a on ¢, exposing this attack to
P’s pref attack with d at 5. Finally, the reader can easily ver-
ify that there is a ¢ pc winning strategy for a1, and no ¢pc
winning strategy for a2, for the EAF in Figure 2i).

6 Conclusions

In this paper we have built on the labelling approach of [Cam-
inada, 2007] in order to formalise a labelling based character-
isation of the admissible, preferred and stable extensions of
EAFss, and thus provided foundations for future development
of algorithms for computing extensions of EAF's. Future work
will also formalise a labelling based characterisation of the
grounded extension of an EAF. The grounded extension of
a Dung framework (DF) is the least fixed point of a charac-
teristic function F' that takes as input a set S' of arguments
and returns the set S of arguments acceptable w.r.t. S. The
characteristic function G for EAF's is not monotonic, so that
a least fixed point cannot be guaranteed. Hence the grounded
extension of an EAF is defined constructively, by iteration
of GG, beginning with the empty set (analogous to construc-
tion of a DF’s grounded extension). This in turn means that
the grounded extension of an FAF cannot be readily char-
acterised by a labelling that adapts the grounded labellings
defined by [Caminada, 2007] for DFs*.

In this paper we have defined a dialectical framework for
EAF argument game proof theories that determine the justi-
fied status of arguments. We have defined a specific game
within the framework for the credulous preferred semantics,
and future work will focus on specifying a game for the
grounded semantics. An advantage of dialectical games is
that they relate formal entailment to something most people
are familiar with in everyday life: debates and discussions.
These games will thus not only provide guidelines for the de-
sign of algorithms for computing the justified arguments of
an EAF, but will also inform development of frameworks for
argumentation based negotiation, deliberation and persuasion
dialogues in which participants can debate preferences.
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