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Abstract

Abductive inference is an important Al reasoning
technique to find explanations of observations, and
has recently been applied to scientific discovery.
To find best hypotheses among many logically pos-
sible hypotheses, we need to evaluate hypotheses
obtained from the process of hypothesis genera-
tion. We propose an abductive inference archi-
tecture combined with an EM algorithm working
on binary decision diagrams (BDDs). This work
opens a way of applying BDDs to compress mul-
tiple hypotheses and to select most probable ones
from them. An implemented system has been ap-
plied to inference of inhibition in metabolic path-
ways in the domain of systems biology.

1

Abductive inference is known as a reasoning method to gen-
erate best explanations of observations and is a pattern of
reasoning that occurs in such diverse places as diagnosis,
theory formation, language understanding and jury deliber-
ation [Josephson and Josephson, 1994]. Recently, abduc-
tive reasoning has been well applied to scientific discovery
in the area of systems biology [Zupan et al., 2003; King et
al., 2004; Tran et al., 2005; Tamaddoni-Nezhad et al., 2006;
Chen er al., 2008]. In scientific domains, knowledge bases
are often structured as a large network, in which relations
among nodes have important meanings in applications. For
example, in biological domains, a sequence of signalings or
biochemical reactions constitutes a pathway, which specifies
a mechanism to explain how genes or cells carry out their
functions. Thagard [2003] describes how pathway-based
explanations of diseases have frequently led to new treat-
ments that diminish disease by enhancing or inhibiting path-
ways. Much information of pathways is available as public
databases like KEGG [Kanehisa and Goto, 2000], but still
knowledge bases are generally incomplete in these domains.
Then, we need to predict the status of relations which is con-
sistent with the status of nodes [Tamaddoni-Nezhad et al.,
2006], or augment unknown relations between nodes to ex-
plain observations [Zupan et al., 2003; King et al., 2004;
Tran ef al., 2005]. These problems are characterized by ab-
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duction, and each set of inferred information to account for
the observations is called an explanation or a hypothesis.

One salient feature in applications of abduction in systems
biology is that, often, there are a large number of hypothe-
ses that explain the observations. This situation occurs not
only when the size of a network is huge, but there are two
fundamental problems in these domains. First, knowledge is
generally incomplete so that constraints among objects are
not strong enough. For example, a possible status of each re-
lation in a pathway is often chosen nondeterministically as a
hypothesis. Considering all relations in a pathway as well as
all pathways connecting to a goal node, there are a combi-
natorially large number of possible states that are consistent
with the constraints. Second, multiple observations are of-
ten given at once rather than they are input sequentially. To
solve such abductive tasks, a composite hypothesis must be
assembled in such a way that one hypothesis is selected for
each observation, which also results in an exponentially large
number of composite hypotheses [Josephson and Josephson,
1994]. Hence, the use of abductive systems in such domains
requires a method for hypothesis evaluation along with hy-
pothesis generation. That is, we need to find most plausible
hypotheses among the logically possible hypotheses.

Hence, in this work, we propose a new, simple yet pow-
erful, computer-oriented model of abductive reasoning sys-
tems. This model consists of a logically complete hypothesis-
generation system and a statistical hypothesis-evaluation sys-
tem (Figure 1). The complete abductive procedure is realized
with SOLAR [Nabeshima et al., 2003], which is a sound and
complete consequence-finding procedure for first-order full
clausal theories. The statistical hypothesis evaluation is based
on the expectation-maximization (EM) algorithm [Dempster
et al., 19771, which performs maximum likelihood estima-
tion (MLE) on marginal distributions to estimate parame-
ters (probabilities) in probabilistic models. As far as the
authors know, no previous abductive reasoning system com-
bined complete hypothesis generation with the EM algorithm.

After estimating atoms’ probabilities by the EM algorithm,
we use them to compute probabilities of competing hypothe-
ses, and determine most probable hypotheses. However, we
need to face the situation that the number of hypotheses com-
puted by hypothesis generation is very large in general. To
overcome this problem, we use an EM algorithm that works
on binary decision diagrams (BDDs) [Ishihata et al., 2008].
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Figure 1: Abductive reasoning system

BDDs have been a basic tool for compactly representing
boolean functions [Akers, 1978; Bryant, 1986]. Hence, our
work opens a way of applying BDDs to compress multiple
hypotheses and to select most probable ones from them.

An implemented abductive system has been applied to pre-
diction of inhibitors in metabolic pathways in the domain of
systems biology [Tamaddoni-Nezhad et al., 2006]. The hy-
potheses that are ranked high by the proposed BDD-EM algo-
rithm agree with experts’ knowledge and known results, and
contain those useful hypotheses that have been overlooked or
even excluded by previous studies.

In the rest of this paper, Sections 2 and 3 respectively ex-
plain hypothesis generation and hypothesis evaluation in this
work. Section 4 applies the proposed abductive system to
reasoning about inhibition in metabolic networks. Sections 5
and 6 respectively discuss related and future work.

2 Hypothesis Generation

2.1 Logic of Explanation

The logical framework of hypothesis generation in abduction
can be expressed as follows. Let B be a set of clauses, which
represents the background knowledge, and O be a set of lit-
erals, which represents observations (or goals). Also let I'
be a set of literals representing the set of abducibles, which
are candidate assumptions to be added to B for explaining O.
Given B, O and T, the hypothesis-generation problem is to
find a set H of literals (called a hypothesis) such that

BUH E O, (1)
B U H is consistent, and 2)
H is a set of instances of literals from I'. 3)

In this case, H is also called an explanation of O (with re-
spect to B and I'). An explanation H of O is minimal if no
proper subset of H satisfies the above three conditions. We
often introduce additional conditions of hypotheses such as
the maximum number of literals in each explanation. A hy-
pothesis is ground if it is a set of ground literals.

The next proposition is important in our abductive frame-
work: if Hy, ..., Hy are hypotheses that satisfy (1) and (2),
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then so does the disjunction of them, i.e.,
k
=V AL ©&

k k
BU {\/ H}
i=1 t=1L€eH;

E O, where \/ H;
i=1
and BU{H;V---V Hy} is consistent. We call H; V-V Hy,
an explanatory disjunction for O, which can also be regarded
as an explanation of O.

Hypothesis evaluation in Section 3 can be done only when
hypotheses are ground. This restriction is often employed
in applications whose observations are also given as ground
literals. To guarantee that the number of minimal ground hy-
potheses is finite for any observation, we here assume that
the language contains no function symbols and there are only
finitely many constants.

2.2 Hypothesis Enumeration by SOLAR

Given the observations O, each explanation H of O can be
computed by the principle of inverse entailment [Inoue, 1992;
Muggleton, 1995], which converts the equation (1) to

BU{-0} -4, ®)

where O = \/; ., L and =H = \/; _; —~L. Note that
both —O and —H are clauses because O and H are sets of
literals. Similarly, the equation (2) is equivalent to
B}~ —H. (6)

Hence, for any hypothesis H, its negated form —H is deduc-
tively obtained as a “new” theorem of BU{—O} which is not
an “old” theorem of B alone. Moreover, by (3), every literal
in —H is an instance of a literal in ' = {~L | L € T'}.

SOLAR [Nabeshima et al., 2003] is a sophisticated de-
ductive reasoning system based on SOL-resolution [Inoue,
1992], which is complete for finding minimal consequences
belonging to a given language bias (called a production field).
Consequence-finding by SOLAR is performed by skipping
literals belonging to a production field I' instead of resolving
them. Those skipped literals are then collected at the end of
a proof, which constitute a clause as a logical consequence of
the axiom set. Using SOLAR, we can implement an abduc-
tive system that is complete for finding minimal explanations
due to completeness of consequence-finding. When a pro-
duction field contains ground literals, they are converted to a
non-ground production field by way of [Ray and Inoue, 2007]
to assure completeness of ground hypotheses in abduction.

Although many other resolution-based abductive proce-
dures are designed for Horn clauses or normal logic programs
[Kakas er al., 1998], SOLAR works for full clausal theo-
ries containing non-Horn clauses. Extending a connection
tableau format [Letz et al., 1994], SOLAR greatly avoides
producing redundant deductions using various state-of-the-art
pruning techniques [Nabeshima ez al., 2003], thereby enu-
meration of (negated) hypotheses is efficiently realized.

3 Hypothesis Evaluation
3.1 Basic Variables and the EM Algorithm

We here describe our hypothesis evaluation setting. Suppose
that our problem is modeled with k£ independent boolean vari-
ables (or ground atoms) X, X, ..., Xy, each probabilisti-
cally taking either 1 (true) or O (false), and their boolean



function (or ground formula) F F(Xq,...,X). We
henceforth treat ' as a boolean random variable and call it
an observable (or manifest) variable. Contrastingly we call
the X;’s basic (or latent) variables. We assume that only
the value of F' is observable while those of basic variables
are not. The first step of hypothesis evaluation is to esti-
mate parameters, i.e., probabilities of the basic variables from
the manifestations of F' using maximum likelihood estima-
tion (MLE). However, as data is incomplete, meaning that
we have no data about the basic variables as they are unob-
servable, a simple counting method for complete data does
not work. Instead, we employ the expectation-maximization
(EM) algorithm [Dempster et al., 1977] which is applicable
to the case of incomplete data like ours. The essence of the
EM algorithm is to supplement missing data by their average.
The output is parameters (locally) maximizing the likelihood
of the manifestations. Since the EM algorithm is an abstract
framework, we have to derive a concrete algorithm adapted
to a specific probabilistic model. We next describe the EM
algorithm adapted to our problem setting.

Let X = {Xji,...,Xx} be the set of basic variables
and ¢(X) € {0,1} be the value of X € X assigned by
an assignment ¢. We denote by W the set of all assign-
ments and by 0x—, the parameter (probability) of X taking
x (€ {0,1}). g stands for the set of all parameters. Since
the value f € {0,1} of F is uniquely determined by an as-
signment ¢ € U, F is considered as a function of ¢. Hence,
we can write the set of assignments for which F' takes f as
F=1(f) ={¢e¥ | F(¢)=f}. We also introduce 1,(x)=s
and let it take 1 if ¢(X ) ==z, and O otherwise.

Under this setting, the EM algorithm computes parameters
g from F~1 (f) and iterates their update until convergence.
The update process consists of the expectation step (E-step)
followed by the maximization step (M-step) as defined below.

E-step: Compute Ez[14(x)—, |F' = f], the conditional ex-
pectation for each X € X and z € {0, 1}, by

1
Yo Lexr=e [ Ox=erx)

PAFR=1) yeimip) X'ex

> 1 ox=ex) -

peF—1(f) XeX
M-step:! Update §x—, foreach X € X and x € {0,1} by

_ E5llyx)=o|F'=f]
Egllyx)=1|F'=f] + Eg{lyx)=0 | F' = f]

3.2 The BDD-EM Algorithm

The EM algorithm described in the previous subsection can-
not deal with many variables because the E-step has to take
the sum of |F~1(f)| terms, where |F~1(f)| is the number
of assignments satisfying F'= f, and |FF~*(f)] is usually ex-
ponential in the number of variables. Often however, we can
alleviate this intractability by expressing F'~*(f) compactly
using binary decision diagrams (BDDs) [Akers, 1978].

where Py(F=f) =

HX:LIJ

"The denominator at the M-step here is designed to work for a
general case where iid variables occur more than once in the BDD.
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Figure 2: Examples of (a) a truth table, (b) a binary decision
tree (BDT), (c) a BDD which is ordered but is not reduced,
(d) the ROBDD, for F' = (X1 V X3) A = X3.

A BDD is a rooted directed acyclic graph representing a
boolean formula as a disjunction of exclusive conjunctions.

It has two terminal nodes, |1|(true) and @ (false). Each non-
terminal node n is labeled with a propositional variable de-
noted by Label(n), and has two outgoing edges called 1-edge
and 0-edge, indicating that Label(n) takes 1 and 0, respec-
tively. To compactly express boolean formulas, we use a spe-
cific type of BDDs called reduced ordered BDDs (ROBDDs).
When a variable ordering is fixed, ROBDDs give a unique
representation of the target boolean formula [Bryant, 1986].
Figure 2 illustrates how the ROBDD of F' = (X;V X2)A—X3
is obtained. Figure 2 (a) is a truth table, in which a row corre-
sponds to an assignment ¢ for X = {X;, X3, X3}. From the
truth table, a binary decision tree (BDT) (Figure 2 (b)) is con-
structed, and then by applying two reduction rules, deletion
and merging, repeatedly, we reach the ROBDD (Figure 2 (d)).
ROBDDs give compressed representation of original boolean
formulas because subexpressions are shared by other nodes
and redundant nodes are deleted in the construction process.
In what follows, BDDs mean ROBDDs.

Getting back to the EM algorithm, we introduce BDDs as a
data structure to efficiently compute conditional expectations
at the E-step. Since BDDs are directed and share subgraphs,
sum-product computation of probabilities by dynamic pro-
gramming becomes possible, just like the forward-backward
probability computation used in hidden Markov models. The
resulting EM algorithm is called the BDD-EM algorithm
[Ishihata et al., 2008]. It can compute Ez{14(x)=z [F' = f]
in time proportional to the size of a BDD representing F' at
the E-step.

3.3 Computing Probabilities of Hypotheses

We now show how to evaluate hypotheses output by SOLAR
using the BDD-EM algorithm. Given the background knowl-
edge B and the observations O, suppose that SOLAR outputs
the minimal ground explanations of O as Hi, ..., H;. Our
task is to rank the hypotheses Hi, ..., Hy according to their
probabilities. So we need to compute their probabilities.

Let A be a finite set of ground atoms {A1,..., A,} such
that the set of abducibles I' satisfies that ' C AU {—A |
A € A}. We consider each 4, € A (i 1,...,n)as a
basic boolean variable, and put §; = 64,1 = P(A4;). The
0;’s determine the probability of every boolean formula made



up of {4y,..., A, } including Hy, ..., H; and we are free
to choose their values. At this point, recall that we wish to
obtain plausible hypotheses that explain our observations. In
this context, false hypotheses are useless and the parameter
01, ...,0, should be chosen so that the probability of one of
Hy, ..., H being true is maximum. In other words, the ex-
planatory disjunction Hy V - - -V H,, for O in (4) should have
a high probability. Furthermore, since the explanatory dis-
junction cannot prove O without the help of the background
knowledge B, B also should have a high probability. Hence,
we will search for the 6;’s that maximize the probability of
(HyV---V H,) A B. This is done by applying the EM algo-

rithm to
k
F= (\/ HZ-) A
i=1

as the observable boolean function, where Ground(B) is the
set of all ground instances of clauses in B. In fact, the equa-
tion (4) implies that P(F) < P(O), then by maximizing a
lower bound P(F'), P(O) is expected to be maximized too.
Unfortunately, the ground formula F' in (7) is quite large.
We therefore employ the BDD-EM algorithm which retains
F as a BDD, but in some cases the size of Ground(B) is still
too large to store in the BDD. Then we introduce a “proof-
theoretic” approximation of Ground(B) to reduce its size.
For each explanation H; (1 < i < k) of O, let B; be a set of
ground clauses in Ground(B) that contribute to an abductive
proof of O with H;: B; U H; F O. In SOLAR, this proof can
be extracted as a ground deduction of —H; from B U {-0}.
k

Then,
k
VDRV
i=1 i=1CeB;

V Hi

is substituted for (7) as an approximation of F'. Here, B; U
-+ -U DBy is reasonably expected as a good approximation of B
asfaras O and Hy, ..., Hy are concerned. In fact, if a ground
instance of a clause in B does not appear in any abductive
proof of O, it is irrelevant to our abductive task, thereby can
be excluded from parameter learning in the EM algorithm.

Equating A with the set of atoms appearing in F”, the
BDD-EM algorithm estimates the probabilities of ground
atoms in A as maximizers of the probability of F’. The in-
dividual probability of H; (i = 1,...,k) is then computed
as the product of the probabilities of literals appearing in H;,
which is used to rank the H;’s.

N ¢

CeGround(B)

(N

®)

4 Evaluation: Reasoning about Inhibition in
Metabolic Networks

A metabolic pathway is a coherent sequence of enzymatic re-
actions which are interconnected via substrates. To represent
inhibitory effects on metabolic pathways, a logical model has
been introduced in [Tamaddoni-Nezhad et al., 2006]. This
model has been used in the Metalog project for predictive tox-
icology [Tamaddoni-Nezhad er al., 2006], in which actions of
toxins are predicted from NMR together with known pathway
information in KEGG [Kanehisa and Goto, 2000]. In the log-
ical model, three kinds of biochemical information are repre-
sented in a clausal form: (a) inhibitory effects of reactions
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in terms of qualitative concentration changes, (b) integrity
constraints on inhibitory effects and concentration changes,
and (c) chemical reactions catalyzed by enzymes in metabolic
networks. Part of the data set was available from the web site
containing (a) 4 rules of causal effects, (b) 4 integrity con-
straints, and (c) 76 facts of enzymatic reactions which are all
reversible. These data are represented as Horn clauses in the
background knowledge. The next clauses are examples of the
4 causal rules, 2 integrity constrains, and 4 reactions:

reaction(X, Enz,Y') Ainhibited(Enz,t,Y, X, T)
— concentration(X, down, T).
reaction(X, Enz,Y) Ainhibited(Enz,£,Y, X,T) A
concentration(Y, down,T) — concentration(X, down,T).
reaction(X, Enz,Y') Ainhibited(Enz,t,Y, X, T)
— concentration(Y,up,T).
reaction(X, Enz,Y) Ainhibited(Enz,£,Y, X,T) A
concentration(Y,up, T) — concentration(X,up,T).
—concentration(M, up, T) V —concentration(M, down, T).
—inhibited(Enz,t, X,Y,T) V —inhibited(Enz, £, X, Y, T).
reaction(2-ozxo-glutarate, 2.6.1.39, I-2-aminoadipate).
reaction(l-2-aminoadipate, 2.6.1.39, 2-oxo-glutarate).
reaction(2-ozo-glutarate,1.1.1.42, isocitrate).
reaction(l-as,4.3.2.1, arginine).
The data set contains 100 observations for this network in-
cluding the following concentration changes:
concentration(citrate, down, 8).
concentration(2-oxo-glutarate, down, 8).
concentration(l-2-aminoadipate, up, 8).
concentration(l-as, up, 8).

The abducibles in this example is given as the schema
{inhibited( Enzyme, Status, From,To,Time)}, any ground
instance of which can be assumed. In [Tamaddoni-Nezhad
et al., 2006], Progol [Muggleton, 1995] (ver.5.0) is used for
computing abductive hypotheses.

With this data set, SOLAR computes 808 abductive deriva-
tions in the form (5) for the observations with respect to
Time = 8 (hrs), of which 66 hypotheses are consistent. The
maximum search depth is set to 5 and the maximum length
of produced clauses is set to 15 in running SOLAR. In the 66
hypotheses, the unique output of Progol5.0 is contained.

Next, the BDD-EM algorithm takes as the input F’ the
disjunctive normal form of 66 hypotheses obtained by SO-
LAR and the ground instances used in abductive proofs of
the observations. In this process, to satisfy the integrity
constraint that two ground atoms inhibited(e, t,m1, m2,8)
and inhibited(e,£,m1,m2,8) cannot occur simultane-
ously, we convert them to the complimentary literals
inhibited(e,m1,m2,8) and —inhibited(e,m1,m2,8), re-
spectively. There are 70 variables (ground atoms .4) for this
input, and the ROBDD contains 384 nodes. After repeatedly
running the EM algorithm on the BDD 100,000 times with
random initialization, the probabilities of abducibles were
chosen as the one achieving the highest likelihood.?

2We excluded the top two extremely biased ones that only have
less than 10 hypotheses with probabilities more than 1E—10.
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Figure 3: Ranking of 66 hypotheses

The ranking of 66 hypotheses in order of probability is
plotted in Figure 3.3 In the figure, the hypotheses are indexed
as 1,2, ..., 60, in the order of appearance in the output of SO-
LAR. In our result, the hypothesis #13 is put in the first rank
with the probability 0.85. This best one agrees with both ex-
perts” knowledge and a known result written in [Tamaddoni-
Nezhad et al., 2006], that is,

1. The enzyme EC2.6.1.39 is inhibited by hydrazine, and
2. The enzyme EC4.3.2.1 is inhibited by hydrazine,
which are respectively represented as the abducibles:

inhibited(2.6.1.39, t,[-2-aminoadipate, 2-oxo-glutarate, 8).
inhibited(4.3.2.1, t,l-as, fumarate, 8).

Moreover, the average probability of the 22 hypotheses sat-
isfying these two inhibitory states (shown by black bars) is
0.258, which is 8.19 times higher than the average probabil-
ity 0.032 of the 44 hypotheses not satisfying both of them
(shown by white bars). More impressively, the top 7 hypothe-
ses in the ranking satisfy these two inhibitory states. Hence,
we can see that those biologically reasonable explanations are
more probable than others in this logical model.

On the other hand, Progol attempts to find the most com-
pressive hypotheses based on its internal predictive measure,
so avoids producing all consistent hypotheses. In fact, when
Progol is run without any option, it outputs the unique hy-
pothesis #12, which now ranks 13th in our experiment. This
pruning mechanism by Progol gains efficiency, but is in dan-
ger of losing many alternative hypotheses which are com-
peting with the best ones. The results here indicate that our
method of hypothesis evaluation provides a more precise way
of hypothesis ranking,* and thus can provide the user better
promising hypotheses and insights into the next experiment.

5 Related Work and Discussion

Previous work on combining abduction and the EM algorithm
can be seen in PRISM [Sato and Kameya, 20011, which real-
izes statistical abduction from probabilistic logic programs.

3In the submitted version, the program used in the experiment
had a bug while a similar tendency was observed. The result in Fig-
ure 3 obtained with a corrected program is better than the previous.

“We have also obtained the resluts for Time = 24,48, 72,96, in
which 1638, 3738, 22 and 5145 hypotheses are respectively ordered.

814

PRISM uses definite clauses similarly to Probabilistic Horn
abduction in [Poole, 1993] and realizes efficient proof search
through a tabling mechanism, though not applicable to non-
Horn clausal theories. PRISM employs a propositionalized
data structure called explanation graphs to represent propo-
sitional formulas in DNF. However, PRISM assumes the ex-
clusiveness condition that the disjuncts are exclusive to make
sum-product probability computation possible. In our work,
on the other hand, SOLAR can deal with abduction in non-
Horn clausal theories, and the BDD-EM algorithm does not
assume the exclusiveness condition. ProbLog [De Raedt et
al., 2007] is a recent probabilistic logic programming lan-
guage that computes probabilities via BDDs. A ProbLog pro-
gram computes the probability of a query atom by applying
sum-product computation to a BDD which represents inde-
pendent choices of program clauses. ProbLog also allows
definite clauses only, and is not designed for abduction.

For abduction in propositional theories, Simon and del Val
[2001] propose a consequence-finding procedure imple-
mented on Zero-suppressed BDDs. Eiter and Makino [2002]
present an efficient algorithm for hypothesis enumeration in
propositional Horn theories. Since our BDD-EM algorithm
works on ground theories, it is surely possible to give outputs
of these algorithms to the input of the BDD-EM algorithm for
evaluating them. The problem here would be how to reduce
the size of ground instances of the background theory when it
is given as a first-order theory like the pathway representation
in Section 4. Our proof-theoretic approximation F’ by (8)
gives a compromise to this matter, although it seems hard to
extract abductive proofs from the algorithms in [Simon and
del Val, 2001; Eiter and Makino, 2002].

The EM algorithm has been applied to constraint satisfac-
tion problems (CSPs) in [Hsu ef al., 2007]. CSPs and ab-
duction are common in finding assignments of variables: in
abduction we find probable assignments of abducibles, while
likely variable assignments are estimated in CSPs. However,
the goal of [Hsu et al., 2007] is to find a solution of a difficult
CSP, which is different from our evaluation of explanations
that have been already computed by hypothesis generation.

Finally, abduction has been applied to various problems
in systems biology [Zupan et al., 2003; King et al., 2004,
Tran et al., 2005; Tamaddoni-Nezhad et al., 2006; Chen et
al., 2008]. However, none of these work has employed a
complete hypothesis generator followed by a systematic hy-



pothesis evaluator in contrast to our use of the EM algorithm.
Those underlying abductive systems do hypothesis genera-
tion by evaluating hypotheses at the same time. Although this
reduces the search space, incomplete search may overlook
useful hypotheses. In these domains, the process of hypothe-
sis evaluation should be more clearly shown to the user. We
believe that our abductive architecture provides a new way of
hypothesis generation and evaluation for this purpose.

6 Conclusion

We have proposed a novel abductive reasoning architecture
which has several unique features. SOLAR provides a com-
plete system for hypothesis generation from full clausal the-
ories, and the BDD-EM algorithm provides a systematic and
domain-independent way of hypothesis evaluation in which
multiple ground hypotheses are compressed in a BDD. No
previous abductive system contains these features, and the ne-
cessity of these features are justified in the domain of systems
biology. We are applying the proposed abductive system to
other important problems in systems biology.

As future work, we plan to use some propositional algo-
rithms for hypothesis generation, and to apply the BDD-EM
algorithm for hypothesis evaluation in statistical abduction
[Poole, 1993; Sato and Kameya, 2001; Chen er al., 2008].
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