
Abstract
Knowledge-based recommenders support users in
the identification of interesting items from large
and potentially complex assortments. In cases
where no recommendation could be found for a
given set of requirements, such systems propose
explanations that indicate minimal sets of faulty
requirements. Unfortunately, such explanations are
not personalized and do not include repair propos-
als which triggers a low degree of satisfaction and
frequent cancellations of recommendation sessions.
In this paper we present a personalized repair ap-
proach that integrates the calculation of explana-
tions with collaborative problem solving tech-
niques. In order to demonstrate the applicability of
our approach, we present the results of an empirical
study that show significant improvements in the
accuracy of predictions for interesting repairs.

1 Introduction
Knowledge-based recommenders [Burke, 2000; Felfernig et
al., 2007] support the effective identification of interesting
items from large and complex assortments. Examples for
such items are different types of financial services, comput-
ers, or digital cameras. In contrast to collaborative filtering
[Konstan et al., 1997] and content-based filtering approach-
es [Pazzani and Bilsus, 1997], knowledge-based recom-
menders rely on an explicit representation of item and advi-
sory knowledge. Those systems exploit two different types
of knowledge sources: on the one hand explicit knowledge
about the given set of customer requirements (in this paper
denoted as R={r1, r2, …, rm}), on the other hand deep know-
ledge about the underlying items (denoted as I={i1, i2, …,
in}). Recommendation knowledge is represented in the form

�The work presented in this paper has been developed within
the scope of the research projects WECARE, V-KNOW (both are
funded by the Austrian Research Agency, FFG/FWF), and Softnet
Austria that is funded by the Austrian Federal Ministry of Econom-
ics (bm:wa), the province of Styria, the Steirische Wirt-
schaftsförderungsgesellschaft mbH (SFG), and the city of Vienna
in terms of the center for innovation and technology (ZIT).

of explicit constraints that relate requirements to the corres-
ponding item properties. For simplicity, in this paper re-
quirements will be directly tested on the item properties in
the form of conjunctive queries. Interacting with a know-
ledge-based recommender application typically means to
answer a set of questions (requirements elicitation phase),
repairing inconsistent requirements (if no recommendation
could be found), and evaluating recommendations. In this
paper we focus on situations where no recommendation
could be found. In order to deal with such situations, we
propose an algorithm for the automated and personalized
repair of inconsistent requirements that can improve the
overall quality and acceptance of recommender interfaces.
Existing approaches to the handling of inconsistent require-
ments are focusing on low-cardinality diagnoses [Felfernig
et al., 2004; Jannach, 2006; Junker, 2004] respectively ex-
planations [O’Sullivan et al., 2007] (where diagnos-
es/explanations are computed in order-increasing cardinality
[Reiter 1987]), or high-cardinality sets of maximally suc-
cessful sub-queries [Godfrey, 1997; McSherry, 2004]. Such
diagnoses resp. successful sub-queries indicate potential
areas for changes but do not propose concrete repair actions.
Furthermore, it definitely cannot be guaranteed that low-
cardinality diagnoses lead to the most interesting repair ac-
tions for a user [O’Sullivan et al., 2007]. In order to tackle
this challenge, we propose an approach that integrates k-
nearest neighbor algorithms typically applied in case-based
[Burke, 2000] and collaborative recommendation [Konstan
et al., 1997] with the Hitting Set Directed Acyclic Graph
(HSDAG) algorithm used for the calculation of diagnoses
[Reiter, 1987]. Thus, our major contribution is to enhance
model-based diagnosis with collaborative problem solving
and thus to support the calculation of individualized repairs.
The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce a working example from the domain of
financial services. In Section 3 we sketch the basic concepts
behind non-personalized repair actions for inconsistent re-
quirements. In Section 4 we introduce our algorithm for
calculating personalized repairs. The results of evaluations
are presented in Section 5. In Section 6 we provide an over-
view of related work. With Section 7 we conclude the paper.

Plausible Repairs for Inconsistent Requirements�

Alexander Felfernig1, Gerhard Friedrich2, Monika Schubert1,
Monika Mandl1, Markus Mairitsch2, and Erich Teppan2

1Applied Software Engineering, Graz University of Technology
email:{alexander.felfernig, monika.schubert, monika.mandl}@ist.tugraz.at

2Intelligent Systems and Business Informatics, University of Klagenfurt
email: {gerhard.friedrich, markus.mairitsch, erich.teppan}@uni-klu.ac.at

791

2. Example Domain: Financial Services
The following (simplified) assortment of financial services
will serve as working example throughout the paper (see
Table 1). The set of financial services {i1, i2, …, i8} is stored
in the item table I. Let us assume that our example customer
has specified the following requirements that cannot be sa-
tisfied by the items of I: R = {r1:return-rate >= 5.5,
r2:runtime = 3.0, r3:accessibility = yes, r4:bluechip = yes}.
The feasibility of those requirements can simply be checked
by a relational query �[R]I where �[R] represents the selection
criteria of the query. For example, �[return-rate >= 5.5]I would
result in the financial services {i6, i7, i8}.
Note that �[r1:return-rate >= 5.5, r2:runtime = 3.0, r3:accessibility = yes, r4:bluechip =

yes]I = �, i.e., no solution could be found for the set of re-
quirements. In such situations customers ask for the recom-
mendation of possible repairs which restore consistency
between the requirements in R and the underlying item as-
sortment I. State-of-the-art knowledge-based approaches
[Felfernig et al., 2004; Jannach, 2006; Felfernig et al., 2007;
O’Sullivan et al., 2007] calculate minimal sets of faulty re-
quirements which should be changed in order to find a solu-
tion. We show how to extend those approaches by introduc-
ing an algorithm for the calculation of personalized repairs.
id return-

rate
(p.a.)

run-
time

risk
level

shares
percen-

tage

accessi-
bility

plow
back

earnings

blue
chip

i1 4.2 3.0 A 0 no yes yes
i2 4.7 3.5 B 10 yes no yes
i3 4.8 3.5 A 10 yes yes yes
i4 5.2 4.0 B 20 no no no
i5 4.3 3.5 A 0 yes yes yes
i6 5.6 5.0 C 30 no yes no
i7 6.7 6.0 C 50 yes no no
i8 7.9 7.0 C 50 no no no

Table 1: Example financial services I = {i1, i2, …, i8}

3. Calculating Non-Personalized Repairs
We exploit the concepts of Model-Based Diagnosis (MBD)
[Reiter 1987; de Kleer et al., 1992] which allows the auto-
mated identification of minimal sets of faulty requirements
ri � R [Felfernig et al., 2004]. Model-based diagnosis starts
with the description of a system which is in our case the
predefined item assortment I. If the actual behaviour of the
system conflicts with its intended behaviour (recommenda-
tion can be found), the diagnosis task is to determine those
components (in our case the requirements in R) which,
when assumed to be functioning abnormally, explain the
discrepancy between the actual and the intended system
behaviour. A diagnosis represents a minimal set of faulty
components (in our case requirements) whose adaptation
(repair) will allow the identification of a recommendation.
On a more technical level, minimal diagnoses for faulty
requirements are identified as follows. Given I = {i1, i2, …,
in} (item set) and a set R = {r1, r2, …, rm} of requirements

which is inconsistent with I, i.e., �[R]I = �. In such a situa-
tion, state-of-the-art recommenders [Felfernig et al., 2004;
Felfernig et al., 2007] calculate a set of minimal diagnoses
D = {d1, d2, …, dk}, where �di � D: �[R - di]I � �, i.e., each
di is a minimal set of requirements which have to be
changed in order to make recommendations feasible. Mini-
mality means that �di � D: not � di’�di s.t. �[R – di’]I � �.
A corresponding Customer Requirements Diagnosis Prob-
lem (CRQ Diagnosis Problem) can be defined as follows:
Definition 1 (CRQ Diagnosis Problem): A CRQ Diagnosis
Problem (Customer Requirements Diagnosis Problem) is
defined as a tuple (R, I) where R={r1, r2, …, rm} is a set of
requirements and I={i1, i2, …, in} is an item assortment.
Based on this definition of a CRQ Diagnosis Problem, a
CRQ Diagnosis (Customer Requirements Diagnosis) can be
defined as follows:
Definition 2 (CRQ Diagnosis): A CRQ Diagnosis (Cus-
tomer Requirements Diagnosis) for (R, I) is a set d={r1, r2,
…, rl} 	 R, s.t. �[R - d]I � �.
Following the basic principles of Model-Based Diagnosis
(MBD), the calculation of diagnoses di � D is based on the
determination and resolution of conflict sets. A conflict set
can be defined as follows (see, e.g., [Junker, 2004]):
Definition 3 (Minimal Conflict Set CS): A Conflict Set CS
is defined as a subset {r1, r2, …, rq} 	 R, s.t. �[CS]I = �. A
conflict set CS is minimal iff there does not exist a conflict
set CS’ with CS’ � CS.
As already mentioned, the requirements ri � R in our work-
ing example are inconsistent with the given assortment I of
financial services, i.e., there does not exist one financial
service in I that completely fulfills the requirements R = {r1,
r2, r3, r4}. The conflict sets are CS1:{r1,r2}, CS2:{r1,r4},
CS3:{r2,r3} since �[CS1]I = �, �[CS2]I = �, and �[CS3]I = �.
Furthermore, the identified conflict sets are minimal, since
there do not exist CS1’� CS1, CS2’ � CS2, CS3’ � CS3 with
�[CS1’]I = �, �[CS2’]I = �, and �[CS3’]I = �.
Diagnoses di � D can be calculated by resolving conflicts in
requirements. Due to its minimality property, one conflict
can be easily resolved by deleting one of the elements from
the conflict set. After having deleted at least one element
from each of the conflict sets we are able to present a mi-
nimal diagnosis. Diagnoses derived from {CS1, CS2, CS3}
are D = {d1:{r1,r2}, d2:{r1,r3}, d3:{r2,r4}}. A discussion of the
algorithm for calculating diagnoses is given in [Reiter,
1987; Friedrich and Shchekotykhin, 2006]. A personalized
version of this algorithm will be presented in Section 4.
After having identified the set of possible minimal diagnos-
es (D), we have to propose repair actions for each of those
diagnoses, i.e., we have to identify possible adaptations to
the existing set of requirements such that the user is able to
find a solution. The number of repair actions could poten-
tially become very large which makes the identification of

792

acceptable repair actions a very tedious task for the user
(see, e.g., [Felfernig et al., 2007; O’Sullivan et al., 2007]).
Alternative repair actions can be derived by querying the
item table I with �[attributes(d)](�[R-d]I). This query identifies all
possible repair alternatives for a single diagnosis d � D
where �[attributes(d)] is a projection and �[R-d]I is a selection of
tuples from I which satisfy the criteria in R-d. Executing this
query for each of the identified diagnoses produces a com-
plete set of possible repair alternatives. Table 2 depicts the
complete set of repair alternatives REP = {rep1, …, rep5} for
our working example where �[attributes(d1)](�[R-d1]I) = �[return-rate,

runtime](�[r3:accessibility = yes, r4:bluechip = yes]I) = {<return-rate=4.7, run-
time=3.5>, <return-rate=4.8, runtime=3.5>, <return-rate=4.3, run-
time=3.5>}. Furthermore, �[attributes(d2)](�[R-d2]I) = �[return-rate, acces-

sibility](�[r2:runtime = 3.0, r4:bluechip = yes]I) = {<return-rate=4.2, accessibili-
ty=no>} and �[attributes(d3)](�[R-d3]I) = �[runtime,bluechip](�[r1:return-

rate>=5.5, r3:accessibility=yes]I) = {<runtime=6.0, bluechip=no>}.
repair return-rate runtime accessibility bluechip
rep1 4.7 3.5

rep2 4.8 3.5

rep3 4.3 3.5

rep4 4.2
 no

rep5
 6.0
 no

Table 2: Repair alternatives for customer requirements

Note that in real-world scenarios (see, e.g., [Felfernig et al.,
2007]), the number of potential repairs could become very
large and it is crucial to propose representative ones in order
to avoid drawing false conclusions [O’Sullivan et al., 2007].

4. Calculating Personalized Repairs
The above repair alternatives would be presented to the cus-
tomer without taking into account the initially defined set of
requirements. Important to be mentioned in this context is
the fact that the repair alternatives in our example are at
least partially ignoring the originally defined requirements
and it is unclear which of those alternatives would be the
most interesting for the customer.
In order to systematically reduce the number of repair can-
didates we need to integrate personalization concepts. Our
approach is to identify those repair actions which resemble
the original requirements of the customer. In order to derive
such repair actions, we exploit the existing item definitions
(see Table 1) for identifying alternatives which are near the
originally defined requirements in R.1
From the item data in Table 1 we calculate the n-nearest
neighbors (in our case, n = 5), i.e., those entries of the item
table which are (most) similar to the given set of require-
ments in R. In our case, the determination of nearest neigh-
bors is based on a simple similarity metric that calculates
the individual similarities between the m given customer

1 Alternatively, customer interaction logs (or cases) can be ex-

ploited for the personalized recommendation of repair actions.

requirements in R (in our case m = 4) and the attribute set-
tings in the item table. For the purpose of our example we
use the following similarity function sim(R, ij) where R
represents a set of requirements and ij is the jth item in I.2
Furthermore, max(k) denotes the maximum value in the
domain of attribute k, and w(k) denotes the importance
(weight) of attribute k for the customer – see Formula (1).

)(*
)min()max(

|][|
1),(

1
kw

kk
kir

iRsim jkm

kj ��
�

��
�

�
�

�
��� �

 (1)

The similarity between the customer requirements of our
working example and item i1 in the item table is calculated
as follows: sim(R, i1) = (1-|5.5-4.2|/3.7)*1/4 + (1-|3.0-
3.0|/4)*1/4 + (1-|1-0|/1)*1/4 + (1-|1-1|/1)*1/4 = 0.66. Note
that we assume w(1) = 1/4, w(2) = 1/4, w(3) = 1/4, and w(4)
= 1/4 (�w(j) = 1).3 Using Formula (1) we can determine the
n-nearest neighbors which are those n items with the highest
similarity to ri � R. The 5-nearest neighbors used in our
example are shown in Table 3, the corresponding similarity
values between R and ij � I are shown in Table 4.
id return-

rate
(p.a.)

run-
time

risk
level

shares
percen-

tage

accessi-
bility

plow
back

earnings

blue
chip

i1 4.2 3.0 A 0 no yes yes
i2 4.7 3.5 B 10 yes no yes
i3 4.8 3.5 A 10 yes yes yes
i5 4.3 3.5 A 0 yes yes yes
i7 6.7 6.0 C 50 yes no no

Table 3: Calculated nearest neighbors {i1,i2,i3,i5,i7}

id i1 i2 i3 i4 i5 i6 i7 i8
sim(R,pi) .66 .91 .92 .41 .88 .36 .48 .08

Table 4: Calculated sim(R,ij) for {i1, …, i8}

On the basis of the entries in Table 4, we now show step-by-
step how our algorithm (Algorithm 1) calculates a persona-
lized repair. The requirements in R are inconsistent with the
nearest neighbors NE = {i1,i2,i3,i5,i7} (i.e., �[R]NE = �).
Consequently, our algorithm activates a conflict detection
component which returns one conflict set per activation. We
determine minimal conflicts using a QuickXPlain [Junker,
2004] type algorithm. For the requirements in R and the
items in NE the following conflict sets are derived:
CS1:{r1,r2}, CS2:{r1,r4}, CS3:{r2,r3}. Note that the reduction
of the considered items from I to NE could change the set of
calculated conflicts – in our case the set remains the same.
Let us assume that CS1:{r1,r2} is returned as the first conflict
set. A Hitting Set Directed Acyclic Graph (HSDAG) [Reiter

2 Note that different metrics (e.g., similarity, diversity, selec-

tion probability) could be applied in this context, for simplicity we
only use the nearer-is-better (NIB) similarity. An overview of
related metrics can be found, for example, in [Wilson and Marti-
nez, 1997; McSherry 2003].

3 Different approaches are possible for the determination of
importance weights, for example, direct specification by the cus-
tomer or preference learning [Biso et al., 2000].

793

1987] is now instantiated (see Figure 1) with two outgoing
paths from the root: [r1] and [r2]. These paths indicate which
elements of the identified conflict set have been used to re-
solve the conflict. Since it is our goal to identify repairs sim-
ilar to the original requirements, we have to analyze which
repairs are possible after eliminating one element from a
conflict set (requirement ri � R). For example, eliminating r1
would allow repairs supported by {i1,i2,i3,i5} since (�[¬r1]NE)
= {i1,i2,i3,i5}, furthermore, (�[¬r2]NE) = {i2,i3,i5,i7}. We com-
pute the average similarity value for the first k items (in our
case k=3). The first three items in {i2,i3,i5,i7} have a higher
average similarity than those in {i1,i2,i3,i5}, therefore we
decide to extend the path [r2] to [r2,r1] and [r2,r4].
The most promising paths (candidates) are leading to diag-
noses accepting those items in NE that are most similar to
the original set of requirements in R. Again, for each of the
resulting paths ([r2,r1] and [r2,r4]) we have to analyze which
are the supporting items: (�[¬r2,¬r1]NE) = {i2,i3,i5} and
(�[¬r2,¬r4]NE) = {i7}. The idea is to follow a best-first regime
which expands the most promising candidate paths. Follow-
ing our best-first strategy, we decide to extend the path
[r2,r1]. However, since �[R-{r2,r1}]NE, i.e., �[r3:accessibility=yes,

r4:bluechip=yes]NE, results in a non-empty set, {r1,r2} is already
a diagnosis (d). This diagnosis directly leads to repairs that
are most similar to the original set of customer requirements
(the fringe of the HSDAG does not contain any candidate
paths with better combinations of repair alternatives). The
set of possible repair actions for d can be simply determined
by executing the query �[attributes(d)](� [R-d]NE) = �[return-rate, run-

time](�[accessibility=yes, bluechip=yes]NE). Executing this query results
in the set of repairs {<return-rate=4.7, runtime=3.5>, <return-

rate=4.8, runtime=3.5>, <return-rate=4.3, runtime=3.5>}.

CS1:{r1,r2}

�[¬r1]NE={i1,i2,i3,i5}

CS2:{r1,r4}

d�=�{r1,r2}

…

…

�[¬r2]NE={i2,i3,i5,i7}

�[¬r2,¬r4]NE={i7}�[¬r2,¬r1]NE={i2,i3,i5}

r1
r2

r1 r4

*average similarity for the first k supporting items (k=3)

(*0.83)

�[true]NE={i1,i2,i3,i5,i7}

(*0.90)

(*0.90) (*0.48)

Figure 1: Personalized diagnosis d � D calculated using the

n-nearest neighbors. d = {r1,r2} is selected as basis for the deri-
vation of personalized repairs

The algorithm for calculating personalized repair alterna-
tives is the following (Algorithm 1 - CRQ Repairs). We
keep the description of the algorithm on a level of detail
which has been used in the description of the original
HSDAG algorithm [Reiter, 1987]. In Algorithm 1, the dif-
ferent paths of the HSDAG are represented as separate ele-
ments in the bag structure H which is initiated with �. H
stores all paths of the search tree in a best-first fashion,

where the currently best path (h) is the one with the most
promising potential repair alternatives (those repair alterna-
tives most similar to the original requirements in R). If the
theorem prover (TP) call (TP(R-h,NE)) does not detect any
further conflicts for the elements in h (isEmpty(CS)), a diag-
nosis is returned and the corresponding repair alternatives
can be calculated with �[attributes(d)](�[R-d]NE). The major role
of the theorem prover is to check whether there exists a rec-
ommendation for R minus the already resolved conflict set
elements in h. If the TP call TP(R-h,NE) returns a non-
empty conflict set CS, h is expanded to paths each contain-
ing exactly one element of CS (in this case no recommenda-
tion could be found). In the case that h is expanded, the
original h must be deleted from H (delete(h,H)). Finally, if
new elements have been inserted to H, it has to be sorted in
order to determine the h with the most nearest repair candi-
dates (SimilaritySort(H,k)).4 This function calculates a set of
supporting items for each hi � H (�[�(¬rj)]NE, rj � hi) and
ranks each hi � H conform to the highest item similarity
(see Table 4) in its set of supporting items.5
Note that the function CRQ-Diagnosis in Algorithm 1 re-
turns exactly one diagnosis d at a time (for which in the fol-
lowing potentially more than one repair is returned by CRQ-
Repairs). Since NE 	 I, the detected conflict sets could dif-
fer for TP(R-h,NE) and TP(R-h,I) and some minimal diag-
noses could be detected by CRQ-Diagnosis(R,NE,�,k)
which are not contained in CRQ-Diagnosis(R,I,�,k)6.

Algorithm 1 - CRQ-Repairs

/* R: set of customer requirements
I: set of items
n: number of nearest neighbours
k: k most similar items to be used by SimilaritySort(H,k) */

 CRQ-Repairs (R�,I�,n�,k�):Repair Set REP�
(1) { NE � GetNearestNeighbors(R,I,n)
(2) d � CRQ-Diagnosis(R,NE, �,k)
(3) return �[attributes(d)](�[R-d]NE) }

 CRQ-Diagnosis(R�,NE�,H�,k�): Diagnosis h�
(1) { h � first(H)
(2) CS � TP(R-h,NE)
(3) if (isEmpty(CS))
(4) {return h}
(5) else
(6) {foreach X in CS:H � H � {h � {X}}
(7) H � delete(h,H)
(8) H � SimilaritySort(H,k)
(9) CRQ-Diagnosis(R,NE,H,k)} }

4 Note that the necessary HSDAG pruning is implemented by

the functionalities of SimilaritySort(H,k).
5 Many different quality measures are possible in this context.

A simple one is the highest average of the k most similar items ij
(in our working example k = 3).

6 In this case, Algorithm 1 takes into account all items in I.

794

5. Evaluation

Although our proposed repair functionalities do not signifi-
cantly change the design of a recommender user interface,
they clearly contribute to a more intelligent behavior of re-
commender applications and have the potential to trigger
increased trust and satisfaction of users. The personalization
approach as it is presented in this paper is definitely not
restricted to conjunctive query based recommender applica-
tions but as well applicable with constraint [Junker, 2004]
and configuration technologies [Felfernig et al., 2004].
Performance. Algorithm 1 has been implemented on the
basis of the standard hitting set algorithm proposed by
[Reiter, 1987]. The algorithm is NP-hard in the general case
[Friedrich et al., 1991] but is applicable in interactive rec-
ommendation settings (see below). In our implementation,
the calculation of minimal conflict sets is based on a
QuickXPlain type algorithm [Junker, 2004]. QuickXPlain
needs O(2k*log(n/k)+2k) consistency checks (worst case) to
compute a minimal conflict set of size k out of n constraints
in R. Consistency checks in our implementation are repre-
sented as conjunctive queries on I (Hypersonic SQL data-
base). A performance evaluation (time effort depending on
the number of calculated diagnoses) clearly shows the ap-
plicability of Algorithm 1 for interactive settings. On the
basis of a test set of 5000 items with 10 associated proper-
ties we can observe the following calculation times for |D|
diagnoses (see Table 5). These performance results confirm
the results of our previous evaluations of financial service
recommender applications.

|D| time in
secs (avg.)

std.dev.

1 0.22 0.08
2 0.35 0.14
3 0.36 0.10
4 0.54 0.10
5 0.59 0.11
6 0.67 0.13
7 0.79 0.18
8 0.92 0.25
9 1.00 0.20

10 1.70 0.31

Table 5: Performance of Algorithm 1

Empirical evaluation. In order to demonstrate the im-
provements achieved by our approach we conducted an em-
pirical study. In this study we compared two different algo-
rithms for the calculation of repairs. The first (Type 1) sup-
ported repairs based on the algorithm proposed in [Reiter,
1987], where diagnoses and corresponding repair alterna-
tives are ranked according to their cardinality (standard
breadth-first search). The second approach (Type 2) sup-
ported the calculation of personalized repair actions on the
basis of Algorithm 1 (best-first search).

The used item assortment (90 items) has been selected from
a dataset of an e-Commerce platform (digital cameras). In
the scenario, the study subjects interacted with the recom-
mender in order to identify a pocket-camera that best suits
their needs. In the case of inconsistent requirements, sub-
jects were confronted with a list of repair alternatives from
which they had to select the most interesting one. N=493
subjects participated in the study. In order to systematically
induce conflicts (no recommendation could be found), we
filtered out items from the assortment that fulfilled require-
ments posed by the subject. On an average, 2.63 items
(std.dev. 1.68) were filtered out per recommendation ses-
sion. Subjects were informed about the fact that the item
which had been specified was not available and they had to
select a repair action from a proposed list of alternatives.
With the remaining set a corresponding repair process was
triggered. Thus each subject was confronted with a conflict
situation where a repair alternative had to be selected. In
order to keep the cognitive efforts realistic and acceptable,
we set the upper limit of the number of repair actions to 5 in
both recommender versions (Type 1 and Type 2).
Our hypothesis was that subjects will select higher ranked
repair actions significantly more often if the Type 2 repair
algorithm was used. For both recommender versions (Type
1 and Type 2) we measured in each session the normalized
distance between the position of the selected repair action
and position 1 (position of selected repair / #repair alterna-
tives). On the basis of a two-sample t-test, a significant dif-
ference between the two repair approaches in terms of pre-
diction quality can be observed. We detected significant
higher deviation values (t-score=4.859, p <0.001) for Type
1 recommenders. The average deviation for Type 1 recom-
menders was 0.599 (std.dev. 0.279), the value for Type 2
recommenders was significantly lower: 0.474 (std.dev.
0.274). Consequently, the above hypothesis can be con-
firmed. Furthermore, repair alternatives with the highest
ranking (position) have been selected significantly more
often in Type 2 recommenders (�2=17.746, p<0.001). The
precision (#correctly predicted repair actions / #predicted
repair actions) of Type 2 recommenders was 0.551 whereas
for Type 1 recommenders the precision was lower: 0.307.
Correct prediction is interpreted as ranking a repair on posi-
tion 1 that has been selected then.

 Type 1 Type 2 significance level
deviation .599 (.279) .474(.274) p<0.001
precision .307 .551 p<0.001

Table 6: Summarization of study results

6. Related Work
[Felfernig et al., 2004] have developed concepts for the di-
agnosis of inconsistent customer requirements in the context
of configuration problems. The idea was to apply the con-
cepts of Model-based Diagnosis [Reiter, 1987] (MBD) in
order to be able to determine minimal cardinality sets of

795

requirements which have to be changed in order to be able
to find a solution – repairs were not supported in this con-
text. In [O’Sullivan et al., 2007] such minimal cardinality
sets are called minimal exclusion sets, in [Godfrey, 1997;
McSherry, 2004] the complement of such a set is denoted as
maximally successful sub-query. The calculation of a diag-
nosis for inconsistent requirements relies on the existence of
minimal conflict sets. Such conflict sets can be determined,
for example, on the basis of QuickXPlain [Junker, 2004], a
divide-and-conquer algorithm. The approach presented in
[Felfernig et al., 2004] follows the standard breadth-first
search regime for the calculation of diagnoses [Reiter,
1987]. The major contribution of our paper in this context is
the extension of this algorithm with collaborative problem
solving concepts. This approach improves the prediction
quality for repair alternatives and thus contributes to higher-
quality recommender user interfaces. [O’Sullivan et al.,
2007] introduce the concept of representative explanations.
Representative explanations follow the idea of generating
diversity in alternative diagnoses – informally, constraints
which occur in conflicts should as well somehow be in-
cluded in diagnoses presented to the user. [Jannach, 2006]
introduces the concept of preferred relaxations for conjunc-
tive queries that help to select diagnoses on the basis of pre-
defined utility functions. Compared to those previous ap-
proaches, the work presented in this paper first introduces
an approach that exploits nearest neighbors concepts for the
determination of personalized repair actions. Finally, case-
based recommender systems [Burke, 2000] profit from the
work presented in this paper since in addition to intelligent
case retrieval, personalized and (if needed) minimal diag-
noses and repairs can be calculated systematically.

7. Conclusions

In this paper we have introduced an algorithm that calcu-
lates personalized (plausible) repairs for inconsistent re-
quirements. The algorithm integrates the concepts of model-
based diagnosis (MBD) with the ideas of collaborative prob-
lem solving and thus significantly improves the quality of
repairs in terms of prediction accuracy. We have evaluated
our approach with a recommender application based on real-
world items. The results of the study clearly demonstrate the
improvements induced by personalized repair actions. Fu-
ture work will include the evaluation of different alternative
metrics (e.g., similarity, diversity, and selection probability)
w.r.t. their impact on diagnosis/repair prediction accuracy.

References

[Biso et al., 2000] A. Biso, F. Rossi, A. Sperduti. Experi-
mental Results on Learning Soft Constraints, 7th Intl.
Conf. on Knowledge Representation and Reasoning (KR
2000), Breckenridge, CO, USA, pages 435-444, 2000.

[Burke, 2000] R. Burke. Knowledge-based Recommender
Systems. Lib. & Inform. Systems, 69(32):180-200, 2000.

[de Kleer et al., 1992] J. de Kleer , A. Mackworth and R.
Reiter. Characterizing diagnoses and systems, AI Journal
56(2-3):197-222, 1992.

[Felfernig et al., 2004] A. Felfernig, G. Friedrich, D.
Jannach, and M. Stumptner. Consistency-based
Diagnosis of configuration knowledge bases, AI Journal,
152(2):213–234, 2004.

[Felfernig et al., 2007] A. Felfernig, K. Isak, K. Szabo, and
P. Zachar. The VITA Financial Services Sales Support
Environment, AAAI/IAAI 2007, pages 1692-1699,
Vancouver, Canada, 2007.

[Friedrich and Shchekotykhin, 2005] G. Friedrich and K.
Shchekotykhin. A General Diagnosis Method for
Ontologies. International Semantic Web Conference,
LNCS 3729, pages 232-246, Galway, Ireland, 2005.

[Friedrich et al., 1990] G. Friedrich, G. Gottlob, and W.
Nejdl. Physical Impossibility Instead of Fault Models.
AAAI/IAAI 1990, pages 331-336, Boston, Massa-
chusetts, 1990.

[Godfrey, 1997] P. Godfrey. Minimization in cooperative
response to failing database queries. Intl. Journal of Co-
operative Information Systems 6(2):95–149, 1997.

[Konstan et al., 1997] J. Konstan, B. Miller, D. Maltz, J.
Herlocker, L. Gordon, and J. Riedl. GroupLens: applying
collaborative filtering to Usenet news Full text. Commu-
nications of the ACM, 40(3):77-87, 1997.

[Jannach, 2006] D. Jannach. Finding Preferred Query Re-
laxations in Content-based Recommenders, IEEE Intelli-
gent Systems Conf. (IS’2006), pages 355-360, 2006.

[Junker, 2004] U. Junker. QuickXPlain: Preferred Explana-
tions and Relaxations for Over-Constrained Problems.
AAAI’04, San Jose: AAAI Press, pages 167–172, 2004.

[McSherry, 2004] D. McSherry. Maximally Successful Re-
laxations of Unsuccessful Queries. 15th Conf. on Artifi-
cial Intelligence and Cognitive Science, Galway, Ireland,
pages 127–136, 2004.

[McSherry, 2003] Similarity and Compromise. Intl. Confer-
ence on Case-based Reasoning (ICCBR’03), pages 291-
305, Trondheim, Norway, 2003.

[O’Sullivan et al., 2007] B. O'Sullivan, A. Papadopoulos, B.
Faltings, P. Pu. Representative Explanations for Over-
Constrained Problems. AAAI’07, pages 323-328, 2007.

[Pazzani and Billsus, 1997] M. Pazzani and D. Billsus.
Learning and Revising User Profiles: The Identification
of Interesting Web Sites. Machine Learning, (27):313–
331, 1997.

 [Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. AI Journal, 23(1):57–95, 1987.

 [Wilson and Martinez, 1997] D. Wilson and T. Martinez.
Improved Heterogeneous Distance Functions, Journal of
Artificial Intelligence Research, 6:1-34, 1997.

796

